MENU 
Training 

Complete list of past, present, and future students (*** Click on student's name to hide/unhide details ***)
PhD (Doctor of Philosophy) students
Thesis title: "TBA"
Thesis abstract: TBA, but likely to involve gauge theory on manifolds of special holonomy.
Thesis title: "TBA"
Thesis abstract: TBA, but likely to involve calibrated geometry, Riemannian submanifold theory, and special holonomy; including moduli spaces, geometric analysis, and singularities.
Thesis title: "TBA"
Thesis abstract: TBA, but likely to involve multisymplectic geometry, multimoment maps, and generalizations of reduction theory to G_{2}geometry.
Thesis title: "Moduli space and deformations of special Lagrangian submanifolds with edge singularities"
Thesis abstract: Special Lagrangian submanifolds are submanifolds of a CalabiYau manifold calibrated by the real part of the holomorphic volume form. In this thesis we use elliptic theory for edgedegenerate differential operators on singular manifolds to study general deformations of special Lagrangian submanifolds with edge singularities. We obtain a general theorem describing the local structure of the moduli space. When the obstruction space vanishes the moduli space is a smooth, finite dimensional manifold. PDF version: MMath (Master of Mathematics) students — (Thesis) denotes Thesis option
Thesis title: "Derived geometry and the integrability problem for Gstructures"
Thesis abstract: In this thesis, we study the integrability problem for Gstructures. Broadly speaking, this is the problem of determining topological obstructions to the existence of principal Gsubbundles of the frame bundle of a manifold, subject to certain differential equations. We begin this investigation by introducing general methods from homological algebra used to obtain cohomological obstructions to the existence of solutions to certain geometric problems. This leads us to a precise analogy between deformation theory and the formal integrability properties of partial differential equations. Along the way, we prove a differentialgeometric analogue of a wellknown result from derived algebraic geometry, as well as the identification of the infinitesimal generator of the natural S^{1}action corresponding to loop rotation with the de Rham differential. As a short corollary we obtain a natural isomorphism identifying the standard Gerstenhaber bracket with the Schouten bracket. These two results are wellknown in derived algebraic geometry and are folklore in differential geometry, where we were unable to find an explicit proof in the literature. In the end, this machinery is used to provide what the author believes is a new perspective on the integrability problem for Gstructures. PDF version:
Thesis title: "KTheory for C^{*}algebras and for topological spaces"
Thesis abstract: This thesis is an introduction to both the Ktheory of C^{*}algebras and the Ktheory of compact Hausdorff spaces, including a proof of the equivalence of the two theories in a certain special case. PDF version:
Research essay title: "Nöether's theorem under the Legendre transform"
Research essay abstract: In this paper we demonstrate how the Legendre transform connects the statements of Nöether's theorem in Hamiltonian and Lagrangian mechanics. We give precise definitions of symmetries and conserved quantities in both the Hamiltonian and Lagrangian frameworks and discuss why these notions in the Hamiltonian framework are somewhat less rigid. We explore conditions which, when put on these definitions, allow the Legendre transform to set up a onetoone correspondence between them. We also discuss how to preserve this correspondence when the definitions of symmetries and conserved quantities are less restrictive. PDF version:
Research essay title: "Characterizations of the Chern characteristic class"
Research essay abstract: Chern's characteristic class may be defined by several different ways, including algebraic topology, differential geometry, and sheaf theory. All these approaches are presented, with the main goal being to show that even though the definitions lie in different spaces, they all satisfy the Chern class axioms and are isomorphic by various theorems. To reach this goal, strong background machinery is constructed, including the complex Grassmannian as a CWcomplex, a detailed setup for the splitting principle, and a thorough proof of the ChernWeil theorem. PDF version:
Research essay title: "A Review of Whitehead's Asphericity Conjecture"
Research essay abstract: This paper summarizes some of the work done to date on Whitehead's question about the asphericity of subcomplexes of an aspherical 2complex. We start with a review of the theory of higher homotopy groups. Next, we study some of their particular properties for 2complexes; including their translation into an algebraic structure called crossed modules. The next section includes a translation of Whitehead's conjecture using properties of crossed modules. We also review a different approach using homotopy of finite spaces; we include a short summary of the main definitions and results of that theory, and the implications for Whitehead's conjecture. We finish the paper by considering some interesting questions that arise from the above mentioned translations. PDF version:
Research essay title: "Milnor's Exotic Spheres"
Research essay abstract: In 1956, John Milnor surprised the mathematical community by exhibiting examples of smooth manifolds that were homeomorphic to the 7sphere but not diffeomorphic to it with its standard smooth structure; this was the first example of socalled "exotic" manifolds. This paper concerns itself with John Milnor's exotic spheres. After establishing some familiar terminology and notation, we will use Morse theoretical methods to provide a means of determining whether a given manifold is homeomorphic to the nsphere. We shall then use tools from the theory of characteristic classes to define a quantity (Milnor's invariant) that distinguishes smooth structures on manifolds. We will give Milnor's original construction of his exotic spheres and show that they are all homeomorphic to the 7sphere but that they are not all diffeomorphic to the 7sphere with its standard smooth structure by means of computing Milnor's invariant for these spaces. This paper assumes familiarity with elementary smooth manifold theory and Riemannian geometry, including differential forms and integration thereof, familiarity with vector bundles, elements of algebraic topology and quaternion arithmetic. Facts pertaining to these topics are freely used throughout, though many definitions are repeated to establish terminology and notation. PDF version:
Thesis title: "Mean Curvature Flow in Euclidean spaces, Lagrangian Mean Curvature Flow, and Conormal Bundles"
Thesis abstract: We present the mean curvature flow in Euclidean spaces and the Lagrangian mean curvature flow. We will first study the mean curvature evolution of submanifolds in Euclidean spaces, with an emphasis on the case of hypersurfaces. Along the way we will demonstrate the basic techniques in the study of geometric flows in general (for example, various maximum principles and the treatment of singularities). After that we will move on to the study of Lagrangian mean curvature flows. We will make the relevant definitions and prove the fundamental result that the Lagrangian condition is preserved along the mean curvature flow in KählerEinstein manifolds, which started the extensive, and still ongoing, research on Lagrangian mean curvature flows. We will also define special Lagrangian submanifolds as calibrated submanifolds in CalabiYau manifolds. Finally, we will study the mean curvature flow of conormal bundles as submanifolds of C^{n}. Using some tools developed recently, we will show that if a surface has strictly negative curvatures, then away from the zero section, the Lagrangian mean curvature flow starting from a conormal bundle does not develop Type I singularities. PDF version:
Research essay title: "The Kähler and Special Lagrangian Calibrations"
Research essay abstract: Definition and basic properties of calibrations and calibrated submanifolds, including the fundamental theorem of calibrated geometry. Two important examples: Kähler and special Lagrangian calibrations. Explicit constructions of examples involving high degrees of symmetry. Relations between them in the hyperKäher case. PDF version: Undergraduate Research students — listed by project; (NSERC) denotes NSERC USRA
Project title: "A Modern Characterization of the Walker Torsion Derivation"
Project abstract: An almost complex manifold is a real 2mdimensional smooth manifold together with a smooth endomorphism J of the tangent bundle that squares to minus the identity, allowing one to identity each tangent space with a complex mdimensional vector space. In classical literature of the 1950's and 1960's, there exists a notion called the "torsional derivation" on an almost complex manifold, introduced by Walker and later expanded on by Willmore. This notion seems to have disappeared from the literature. Most likely, it is equivalent to an algebraic or Lie derivation on the bundle of forms as discussed by Michor et al in their text on "Natural Operations in Differential Geometry". The goal of this project is to understand what almost complex manifolds are, what algebraic and Lie derivations are, and to deduce whether or not the torsional derivation of Walker/Willmore is really a special case of one of these modern derivations. In the process, the students will also consider related questions for other vectorvalued forms that are generalizations of almost complex structures, as arise, for example, in G_{2} geometry.
Project title: "Differential Invariants of Vector Cross Products"
Project abstract: Vector cross products on manifolds were classified in the 1960's by Brown and Gray and fall into 4 types: the Hodge star operator, almost complex structures, and the 2fold and 3fold cross products associated to G_{2} and Spin(7) structures, respectively. The covariant derivatives of the associated calibration forms measure the "torsion" of the geometric structure, and are obvious fundamental differential invariants. However, the cross products themselves are vectorvalued differential forms, and as such one can compute their exterior covariant derivatives with respect to either the LeviCivita connection or any other canonical connection in this context. These are additional differential invariants associated to such structures. It would be interesting to relate these to the classical torsion. If they are equal, this gives a new geometric characterization of torsion in this context. If they are not equal, it would be useful to interpret these new invariants in terms of classical invariants. In a very closely related vein, for the case of almost complex structures one can define the notion of the "Nijenhuis tensor" which is a first order differential invariant that is defined using the FrolicherNijenhuis bracket of vector valued forms. There is an obvious generalization available here to the setting of the other vector cross products, and it is unclear how such generalized Nijenhuis tensors are related to the aforementioned classical torsion. Moreover, in analogy with the almost complex case, an investigation of these Nijenhuis tensors may provide a new geometric interpretation of torsionfree vector cross product structures in terms of integrable distributions of the tangent bundle.
Project title: "Generalization of the MarsdenWeinstein Reduction from symplectic geometry to G_{2} geometry"
Project abstract: The MarsdenWeinstein symplectic reduction theorem constructs a new symplectic manifold from an existing symplectic manifold M that admits a symplectic action by a Lie group G. The principal object involved in such a construction is the moment map, which is a map from M to g^{*}, the dual of the Lie algebra of G. The purpose of this project is to study to what extent such a reduction theory is possible in the context of manifolds with closed G_{2} structures, which are generalizations of symplectic manifolds, admitting a closed nondegenerate 3form rather than a 2form. It appears that the moment map should be generalized to a g^{*} valued 1form rather than a 0form. Moreover, the correct reduced space should just be an oriented Riemannian 3manifold. It would be interesting to see if we can construct special 3manifolds using such a reduction procedure.
Project title: "First order elliptic equations and calibrated geometry"
Project abstract: A system of first order partial differential equations with the same number of unknown functions as equations is called elliptic if a certain property is satisfied, having to do with the invertibility of the prinicpal symbol of the associated linear differential operator. Elliptic systems enjoy good regularity properties. The classical example is the CauchyRiemann equations of complex analysis in any number of complex variables. In the geometry of isometrically immersed submanifolds of R^{n} there is a distinguished class of submanifolds known as calibrated submanifolds. Examples include complex submanifolds and special Lagrangian submanifolds of C^{n}, and associative and coassociative submanifolds of R^{7}. Such submanifolds satisfy first order nonlinear equations, which are in some sense elliptic. The aim of this project is to understand the notion of ellipticity both for linear an nonlinear systems, and to verify explicitly the ellipticity of the CauchyRiemann, special Lagrangian, associative, and coassociative systems of equations.
Project title: "Hopf fibrations and the NavierStokes equations"
Project abstract: The Hopf fibrations in geometry are fibrations of spheres over projective spaces with spheres as the fibres. All the Hopf fibrations are related to the four finite dimensional normed real division algebras: the real numbers R, the complex numbers C, the quaternions H, and the octonions O. In particular the "classical" Hopf fibration of S^{3} over S^{2} = CP^{1} with fibre S^{1} is related to the quaternions. Closely related to these algebras is the notion of a "cross product", which exists nontrivially only in dimensions 3 and 7, being determined by the imaginary part of quaternion or octonion multiplication, respectively. This cross product allows us to define the notion of the "curl" of a vector field in R^{3} and R^{7}. The NavierStokes equations of fluid dynamics in R^{3} are a very complex nonlinear system of partial differential equations that have been studied for centuries. These equations involve the cross product and curl operations on R^{3} in an essential way. Remarkably, an explicit exact solution in a certain special case is given by the classical Hopf fibration. The aim of this project is to look for an analogue of the NavierStokes equations in 7 dimensional space, exploiting the existence of curl and cross product only in dimensions 3 and 7. Furthermore, the correct equations could possibly be found by demanding that one of the other Hopf fibrations, related to the octonions, provide an explicit exact solution. A potential byproduct may be a method to reduce solutions to the 7d "NavierStokes" equations to obtain new exact solutions to the classical 3d NavierStokes equations.
Project title: "Octonionic surfaces in sevendimensional space"
Project abstract: If a smooth twodimensional oriented surface L is immersed into ndimensional Euclidean space, one can define a "second fundamental form" which is a symmetric bilinear form on M whose values are normal vector fields to L. Then the trace of this bilinear form, with respect to the induced metric, gives a distinguished normal vector field H on L called the "mean curvature vector field". When this vector field vanishes, the surface is called "minimal" and one can show that it is a critical point of the area functional with respect to nearby variations. In sevendimensional space, there is a notion of a "cross product", with similar but slightly different properties to the usual cross product in threedimensional space. This operation is intimately connected with the nonassociative algebra of the octonions. This cross product allows one to pick out a distinguished normal vector field N to an oriented smooth surface L, immersed in sevendimensional space. One can then consider the class of such surfaces for which only the component of the mean curvature vector field H in the direction of N vanishes. It may be possible to give a variational characterization of such surfaces. One can also attempt to explore other aspects of the extrinsic geometry of surfaces in sevendimensional space that are adapted to this octonionic structure. For example, every oriented surface L in sevendimensional space can be (in some sense uniquely) partially "thickened" to a socalled "associative submanifold", which is a class of calibrated submanifolds first defined by Reese Harvey and Blaine Lawson in 1982. These are of interest in Mtheory and supergravity in modern physics. It would be interesting to see what consequences on the "thickened associative submanifold" arise from a priori conditions on the extrinsic geometry of the immersed surface L.
Project title: "Generalized symmetries of the equations of calibrated geometry"
Project abstract: There exists a general method for determining the (usually compact) Lie group G that is the "symmetry group" of a system of partial differential equations in the sense that it transforms solutions to solutions, and is like a Galois group for PDE's. For example, the symmetry group of Maxwell's equations of electromagnetism is the Poincaré group of Minkowski space. If a system of PDE's is kth order, then this symmetry group G naturally extends to act on the kth jet bundle of the domain on which the equations are defined. Conversely, it sometimes happens that a group acts on the kth jet bundle, taking solutions to solutions, but it does not arise by extension of a group action on the domain. These are called "generalized symmetries" and usually are present in equations that exhibit qualities of "integrable systems." One natural class of PDE's that occurs in geometry (inspired from physics) are the equations for calibrated submanifolds. In particular, the equations of special Lagrangian geometry do admit integrable systems interpretations, and therefore are particularly well suited to study by these techniques. We propose to look for generalized symmetries (of second order) for the special Lagrangian differential equations. This is a problem that can easily be solved (in the sense that we can determine unambiguously if such symmetries exist, and if they do, exactly what they are) during the summer term. This would be an interesting addition to the literature, at the interface of the fields of (i) symmetry groups of differential equations and (ii) calibrated geometry. If successful, we can use similar methods to study other calibrated geometries, which although they are only first order, tend to be much more nonlinear.
Project title: "Relations between two circle families of minimal surfaces in 4dimensional Euclidean space"
Project abstract: There is a deep relationship between minimal surfaces in R^{n} and the theory of holomorphic functions, which is encoded by the classical Weierstrass representation of minimal surfaces in terms of holomorphic data. Understanding this relationship involves a mixture of complex analysis and the differential geometry of surfaces in Euclidean space. One interesting aspect of the Weierstrass representation is that it reveals the existence of a continuous family of "associated" minimal surfaces, parametrized by a circle. For example, this family continuously deforms the catenoid to the helicoid through minimal surfaces in R^{3}. More recently, there has been intense interest in the study of "calibrated submanifolds" of Euclidean space, which are a special class of absolutely volume minimizing submanifolds defined by a first order nonlinear differential equation. One type of calibrated submanifolds are the socalled "special Lagrangian" submanifolds, which are halfdimensional minimal submanifolds of a certain type in R^{2n}. In this case, too, there is a circle family of such submanifolds. In the special case of surfaces in R^{4}, it would be of interest to see how these two circle families of minimal (special Lagrangian) surfaces interact.
Project title: "Special submanifolds of seven dimensional Euclidean space"
Project abstract: There exists a skewsymmetric multiplication of vectors in R7, which is analogous to the standard cross product in R3. However, this seven dimensional cross product does not satisfy all the same identities as its three dimensional counterpart, but rather it satisfies more complicated relations. It is well known that in this setting one can define special classes of three and four dimensional submanifolds (called associative and coassociative, respectively) which are examples of minimal submanifolds: they have vanishing mean curvature, and are critical points of the volume functional. An interesting question which has not yet been satisfactorily addressed is the following: are there natural classes of submanifolds of other dimensions (specifically curves, surfaces, and five and six dimensional submanifolds) which are somehow nicely compatible with the cross product structure on R7? If so, what kind of curvature properties do such submanifolds possess? For example, one can attempt to study the analogue in seven dimensional space of the FrenetSerret formulas for curves in R3 (where the cross product plays an important role). Such a project involves an interplay of the differential geometry of submanifolds of Euclidean space with the exceptional algebraic structures arising from a nonassociative eight dimensional division algebra known as the octonions or Cayley numbers.
Project title: "Constructions of calibrated submanifolds in seven and eight dimensions"
Project abstract: Minimal submanifolds of Euclidean space are critical points of the volume functional, and have zero mean curvature. They are solutions to a second order differential equation. In certain specific dimensions, some exceptional algebraic structures lead to the existence of special minimal submanifolds called 'calibrated submanifolds.' These are solutions to certain first order differential equations which are not only critical points of volume, but are actually global minimizers. One example of a calibrated submanifold is an ndimensional special Lagrangian submanifold of R2n = Cn. Another interesting case occurs only in seven dimensional Euclidean space, and consists of 3dimensional associative submanifolds and 4dimensional coassociative submanifolds. There is also a case of 4dimensional Cayley submanifolds which exist only in eight dimensional Euclidean space. All three of these types of submanifolds are intimately related to the algebra of the octonions, an exceptional real 8dimensional nonassociative division algebra. Many explicit examples have been found of calibrated submanifolds by assuming certain symmetries and reducing the problem to more tractable differential equations (sometimes enough symmetry actually leads to ordinary differential equations.) In this research project, the students will study a particular wellknown construction of special Lagrangian submanifolds in Cn, that of the twisted normal cone construction of Harvey and Lawson, and attempt to generalize this construction to the case of associative or coassociative submanifolds of R7 and to Cayley submanifolds of R8. This project resulted in the following research paper: Spiro Karigiannis and Nat ChunHo Leung; "Deformations of calibrated subbundles of Euclidean spaces via twisting by special sections"; Annals of Global Analysis and Geometry; print version to appear. DOI:10.1007/s1045501293171 
This page is maintained by Spiro Karigiannis. Send comments, suggestions, or corrections to