MacDonald, G., Marcoux, L.W., Mastnak, M., Omladic, M. and Radjavi, H., * A note on the structure of matrix *-subalgebras with scalar diagonals*, to appear in Oper. Matrices, (2021).

Marcoux, L.W., Radjavi, H. and Zhang, Y.H., * Normal operators with highly incompatible off-diagonal corners*, Studia Math. ** 256 ** (2021), 73-92.

Marcoux, L.W. and Zhang, Y.H., * On Specht's Theorem in UHF C*-algebras*, J. Funct. Anal. ** 280 ** (2021).

Marcoux, L.W., Radjavi, H. and Zhang, Y.H., *Off-diagonal corners of subalgebras of L(C^n)*, Lin. Alg. Appl. ** 607 ** (2020), 58-88.

Marcoux, L.W. and Sourour, A.R., * On the spectrum of the Sylvester-Rosenblum operator acting on triangular algebras*, Oper. Matrices ** 14 ** (2020), 401-416.

MacDonald, G., Marcoux, L.W., Mastnak, M., Omladic, M. and Radjavi, H., * A note on the structure of matrix *-subalgebras with scalar diagonals*, to appear in Oper. Matrices, (2021).

Marcoux, L.W., *On norm-limits of algebraic quasidiagonal operators*, J. Operator Th. ** 83 ** (2020), 475-494.

Marcoux, L.W. and Zhang, Y.H., *Operators which are polynomially isometric to a normal operators*, Proc. Amer. Math. Soc. ** 148** (2020), 2019-2033.

Marcoux, L.W., Radjavi, H., and Yahaghi, B.R., *On *-similarity in C*-algebras*,Studia Math. ** 252 ** (2020), 93-103.

Aghamollaei, G., Marcoux, L.W., and Radjavi, H., *Linear preservers of polynomial numerical convex hulls*, Lin. Alg. Appl. ** 575 ** (2019), 27-34.

Clouâtre, R. and Marcoux, L.W., *Compact ideals and rigidity of representations for amenable operator algebras*, Studia Math. ** 244** (2019), 25-41.

Clouâtre, R. and Marcoux, L.W., *Residual finite-dimensionality and representations of amenable operator algebras*, J. Math. Anal. Appl. **472**, (2019), 1346-1368.

Livshits, L., MacDonald, G., Marcoux, L.W. and Radjavi, H., *Hilbert space operators with compatible off-diagonal corners*, J. Funct. Anal. **275** (2018), 892-925.

Marcoux, L.W., Radjavi, H. and Yahaghi, B.R., *Reducibility of operator semigroups and values of vector states*, Semigroup Forum **95**, (2017), 126-158.

Bernik, J., Marcoux, L.W., Popov, A.I., and Radjavi, H., *On selfadjoint extensions of semigroups of partial isometries*, Trans. Amer. Math. Soc. **2016** (2016), 264-304.

Marcoux, L.W. and Popov, A., *Abelian, amenable operator algebras are similar to C*-algebras*, Duke Math. J. **165** (2016), 2391-2406.