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Preface

These notes were designed as lecture notes for a first course in Banach Algebras
and Operator Algebras. The student is assumed to have already taken a first course
in Linear Analysis. In particular, they are assumed to already know the Hahn-
Banach Theorem, the Open Mapping Theorem, etc., all of which can be found in
my notes on Functional Analysis [35]. A list of those results which will be used in
the sequel is included in the second section of the first chapter.

I am indebted to a number of people who have found typos in earlier versions of
the notes, including Dan Pollock, Paul Skoufranis, and Austin Shiner. Any remain-
ing errors are clearly the fault of my friend and colleague Heydar Radjavi. (Ok, I
might be exaggerating there – they might be my fault.)

April 30, 2021
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ii PREFACE

The reviews are in!

He is a writer for the ages, the ages of four to eight.

Dorothy Parker

This paperback is very interesting, but I find it will never replace a
hardcover book - it makes a very poor doorstop.

Alfred Hitchcock

It was a book to kill time for those who like it better dead.

Rose Macaulay

That’s not writing, that’s typing.

Truman Capote

Only the mediocre are always at their best.

Jean Giraudoux
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CHAPTER 1

A Brief Review of Banach Space Theory

Somewhere on this globe, every ten seconds, there is a woman giving
birth to a child. She must be found and stopped.

Sam Levenson

Definitions and examples

1.1. In this manuscript, we shall be studying the basic properties of Banach
algebras and of operator algebras acting on a Hilbert space. The reader is assumed
to have already taken a first course in Functional Analysis. In particular, we shall
assume that the reader is familiar with the material contained in An introduction to
functional analysis [35].

In an effort to keep these notes relatively self-contained, we shall list the main
results contained therein. But first, let us also review the definition of a Banach
space, as well as a number of examples thereof.

Those who study Banach spaces are as interested (at times even more interested)
in real Banach spaces as they are in complex Banach spaces. From the point of view
of Banach algebras, complex Banach algebras are considered the more important
example. One reason for this is that complex Banach spaces have the property that
each of their elements has non-empty spectrum, and the spectrum of an element is
one of the most important tools used to study it and the algebra it generates. We
shall much more to say about this in subsequent Chapters. For now, we are only
trying to justify why we are only considering complex Banach spaces in the current
Chapter.

1.2. Definition. Let X be a vector space over C. A seminorm on X is a map

ν ∶ X→ R
satisfying

(i) ν(x) ≥ 0 for all x ∈ X;
(ii) ν(λx) = ∣λ∣ ν(x) for all x ∈ X, λ ∈ C; and

(iii) ν(x + y) ≤ ν(x) + ν(y) for all x, y ∈ X.

If ν satisfies the extra condition:

(iv) ν(x) = 0 if and only if x = 0,

1



2 1. A BRIEF REVIEW OF BANACH SPACE THEORY

then we say that ν is a norm, and we usually denote ν(⋅) by ∥ ⋅ ∥. In this case, we
say that (X, ∥ ⋅ ∥) (or, with a mild abuse of nomenclature, X) is a normed linear
space.

A Banach space normed linear space which is complete with respect to the
metric

d(x, y) ∶= ∥x − y∥, x, y ∈ X
induced by the norm.

1.3. Example. Let n ∈ N, and let 1 ≤ p < ∞ be a real number. We define the
p-norm ∥ ⋅ ∥p on Cn as follows. Given x = (x1, x2, . . . , xn) ∈ Cn, we set

∥x∥p ∶= (
n

∑
i=1

∣xi∣p)
1/p

.

We also define the ∞-norm

∥x∥∞ ∶= max
1≤i≤n

∣xi∣.

For each 1 ≤ p ≤∞, (Cn, ∥ ⋅ ∥p) is complete, hence a Banach space.

1.4. Remark. Recall that two norms ∥ ⋅ ∥ and ∣∣∣⋅∣∣∣ on a complex vector space X
are said to be equivalent if there exist constants α,β > 0 such that

α ∥x∥ ≤ ∣∣∣x∣∣∣ ≤ β ∥x∥

for all x ∈ X. It is a theorem that all norms on a finite-dimensional normed linear
space are equivalent. In other words, they generate the same topology.

A consequence of this is that given n ∈ N and any norm ∥ ⋅ ∥ on Cn, (Cn, ∥ ⋅ ∥) is
complete, and thus a Banach space.

1.5. Example. Let X be a compact, Hausdorff topological space and set

C(X) = { f ∶X → C ∶ f is continuous}.

With respect to the sup-norm ∥f∥∞ ∶= maxx∈X ∣f(x)∣, the space C(X) is complete,
and thus a Banach space.

1.6. Example. The above example may be generalised somewhat. Let X be a
locally compact Hausdorff space. Then (C0(X), ∥ ⋅ ∥∞) is a Banach space, where

C0(X) = { f ∈ C(X) ∶ f vanishes at ∞}
= { f ∈ C(X) ∶ ∀ε > 0, {x ∈X ∶ ∣f(x)∣ ≥ ε} is compact in X }.

As before, the norm under consideration is the supremum norm: ∥f∥∞ = supx∈X ∣f(x)∣.
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1.7. Example. If (X, Ω, µ) is a measure space and 1 ≤ p <∞. Set

Lp(X,Ω, µ) = { f ∶X → C ∶ f is Lebesgue measurable

and ∫
X

∣f(x)∣p dµ(x) <∞}.

The map νp ∶ f ↦ (∫X ∣f(x)∣p dµ(x))1/p
defines a seminorm on Lp(X,Ω, µ), with

kernel which we denote by N p(X,Ω, µ). The quotient space

Lp(X,Ω, µ) ∶= Lp(X,Ω, µ)/N p(X,Ω, µ)

is then a normed linear space, and a standard result from measure theory asserts
that it is complete, and therefore a Banach space. The norm here is given by
∥[f]∥p ∶= νp(f). With (X, Ω, µ) as above, and with f ∶ X → C measurable, we also
define

ν∞(f) = ess sup(f) ∶= inf{γ > 0 ∶ µ{x ∈X ∶ ∣f(x)∣ > γ} = 0},
and set

L∞(X,Ω, µ) = {f ∶X → C ∶ f is Lebesgue measurable and ν∞(f) <∞}.

Similar to the construction above, we let N∞(X,Ω, µ) denote the kernel of ν∞, and
set

L∞(X,Ω, µ) ∶= L∞(X,Ω, µ)/N∞(X,Ω, µ).
In this case the norm is ∥[f]∥∞ ∶= ν∞(f) = ess sup(f).
For the sake of readability, we subscribe to the usual abuse of notation and

denote an element of Lp(X,Ω, µ) as “f”, rather than “[f]”, although it is crucial
that the reader be aware that elements of Lp(X,Ω, µ) are equivalence classes of
functions, rather than functions. Thus, in general, it does not make sense to speak
of f(x) for f ∈ Lp(X,Ω, µ) and x ∈X.

1.8. Example. Let I ≠ ∅ be a set and let 1 ≤ p <∞. Define `p(I) to be the set
of all functions

{ f ∶ I → C ∶∑
i∈I

∣f(i)∣p <∞}

and for f ∈ `p(I), define ∥f∥p = (∑i∈I ∣f(i)∣p)1/p. Then `p(I) is a Banach space. If
I = N, we also write `p. Of course,

`∞(I) = { f ∶ I → C ∶ sup{ ∣f(i)∣ ∶ i ∈ I } <∞}

and ∥f∥∞ = sup{ ∣f(i)∣ ∶ i ∈ I }. A closed subspace of particular interest here is

c0(I) = { f ∈ `∞(I) ∶ for all ε > 0, cardinality{ i ∈ I ∶ ∣f(i)∣ ≥ ε} <∞}.

Again, if I = N, we write only `∞ and c0, respectively.
The reader may wish to review what it means for ∑i∈I xi to converge (where

xi ∈ C for all i ∈ I) when I is uncountable.
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1.9. Example. Let µ denote normalised Lebesgue measure on the set T = { z ∈
C ∶ ∣z∣ = 1}. From Example 1.7, for each 1 ≤ p ≤ ∞, the space Lp(T,Ω, µ) is a
Banach space, where the corresponding measure space Ω on T is the set of Lebesgue
measurable subsets of T. We may also define the so-called Hardy spaces

Hp(T, µ) = { [f] ∈ Lp(T, µ) ∶ ∫
2π

0
f(θ)einθ dθ = 0 for all n ≥ 1}.

These are Banach spaces for each p ≥ 1, including p =∞.

1.10. Example. Let n ∈ N and let

C(n)[0,1] = { f ∶ [0,1]→ C ∶ f has n continuous derivatives}.

Define ∥f∥ = max0≤k≤n{ sup{ ∣f (k)(x)∣ ∶ x ∈ [0,1] } }. Then (C(n)[0,1], ∥ ⋅ ∥) is a
Banach space.

1.11. Example. If X is a Banach space and Y is a closed subspace of X, then

● Y is a Banach space under the inherited norm, and
● X/Y is a Banach space — where X/Y = {x +Y ∶ x ∈ X}. The norm is the

usual quotient norm, namely: ∥x +Y∥ = infy∈Y ∥x + y∥.

1.12. Example. Examples of Banach spaces can of course be combined. For
instance, if X and Y are Banach spaces over C, then we can form the so-called
`p-direct sum of X and Y as follows:

X⊕pY = { (x, y) ∶ x ∈ X, y ∈Y},

and ∥(x, y)∥ = (∥x∥pX + ∥y∥pY)
1
p
.

More generally, given a family (Xn, ∥ ⋅ ∥Xn)n of Banach spaces over C, the space

⊕nXn ∶= {(xn)n ∶ xn ∈ Xn, n ≥ 1}

is a Banach space with norm defined by ∥(xn)n∥ ∶= (∑n ∥xn∥pXn)
1
p .

1.13. Example. Let X and Y be Banach spaces over C. Then the set of
continuous linear transformations B(X, Y) from X into Y is a Banach space under
the operator norm ∥T ∥ = sup∥x∥≤1 ∥Tx∥. When X = Y, we also write B(X) for

B(X, X).
In particular, B(Cn) is isomorphic to the n×n complex matrices Mn and forms

a complex Banach space under a variety of norms, including the operator norm from
above. On the other hand, as we observed in Remark 1.4, all such norms must be
equivalent to the operator norm.
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1.14. Example. Suppose that X is a Banach space over K. Then X∗ = B(X, C)
is a Banach space, called the dual space of X.

For example, if µ is σ-finite measure on the measure space (X,Ω),
1 ≤ p < ∞, and if q, 1 < q ≤ ∞ the Lebesgue conjugate of p so that 1

p +
1
q = 1,

then

[Lp(X, Ω, µ)]∗ = Lq(X, Ω, µ)
[`p]∗ = `q

[c0]∗ = `1.

This is referred to as the Riesz Representation Theorem. Note that in general,
the first two equalities fail if p =∞.

As a second example, suppose X is a compact, Hausdorff space. Then

C(X)∗ = M(X)
∶= {µ ∶ µ is a bounded, regular Borel measure on X }

Note that for µ ∈M(X), the action on C(X) is given by Φµ(f) = ∫X f dµ. This is
known as the Riesz-Markov Theorem.

In the case where X = [0,1], the space of bounded, regular Borel measures
may also be identified with the set BV ([0,1],K) of left-continuous complex-valued
functions of bounded variation on [0,1].

For our purposes, one of the most important examples of a Banach space will
be:

1.15. Definition. A complex Hilbert space H is a Banach space over C
whose norm is generated by an inner product ⟨⋅, ⋅⟩, which is a map from H×H → C
satisfying:

(i) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0;

(ii) ⟨x, y⟩ = ⟨y, x⟩; and
(iii) ⟨λx + βy, z⟩ = λ⟨x, z⟩ + β⟨y, z⟩

for all x, y, z ∈H; λ,β ∈ C. The norm on H is given by ∥x∥ = ⟨x, x⟩1/2, x ∈H.

Each Hilbert space H is equipped with a Hilbert space basis, also referred
to as an orthonormal basis. This is an orthonormal set {eα}α∈Λ in H with the
property that any x ∈H can be expressed as

x = ∑
α∈Λ

xαeα

in a unique way. It is a standard result that any two orthonormal bases for H are
of the same cardinality, which allows one to define the dimension of the space H
as the cardinality of any orthonormal basis of H. From this it follows that any two
Hilbert spaces of the same dimension are isomorphic. Examples of Hilbert spaces
include:
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● The spaces (Cn, ∥ ⋅ ∥2), n ≥ 1, as defined in Example 1.3.
● The space L2(X, Ω, µ) defined in Example 1.7.
● The space `2(I) defined in Example 1.8.
● The space H2(T, µ) defined in Example 1.9.
● Mn(C) is a Hilbert space with the inner product < x, y >= tr(y∗x). Here

tr denotes the usual trace functional on Mn, and if y ∈ Mn(C), then y∗

denotes the conjugate transpose of y.
It should be noted that the norm induced on Mn(C) by the inner prod-

uct is not the operator norm (unless n = 1). For y = [yi,j] ∈ Mn(C), the
induced norm is

∥y∥2 ∶=
⎛
⎝ ∑1≤i,j≤n

∣yi,j ∣2
⎞
⎠

1
2

,

and is referred to as the Fröbenius norm.

The main theorems

1.16. We now enumerate the main results we shall assume in the sequel. The
proofs of all of these results may be found in [35].

1.17. Theorem. [The Hahn-Banach Theorem 01.] Suppose X is a Ba-
nach space, M ⊆ X is a linear manifold and f ∶ M → C is a continuous linear
functional. Then there exists a functional g ∈ X∗ such that ∥g∥ = ∥f∥ and g∣M = f .

1.18. Theorem. [The Hahn-Banach Theorem 02.] Let X be a Banach
space and suppose 0 ≠ x ∈ X. Then there exists f ∈ X∗ such that ∥f∥ = 1 and
f(x) = ∥x ∥.

1.19. Corollary. Let X be a Banach space and suppose that x ≠ y are two
vectors in X. Then there exists f ∈ X∗ such that f(x) ≠ f(y).

1.20. Theorem. [The Hahn-Banach Theorem 03.] Let X be a Banach
space, M be a closed subspace of X and x be a vector in X such that x ∉ M. Then
there exists f ∈ X∗ such that f ≡ 0 on M and f(x) ≠ 0.

1.21. Theorem. [The Open Mapping Theorem.] Let T ∶ X → Y be
a surjective continuous linear map of a Banach space X onto a Banach space Y.
Then T is an open map; that is, T (V ) is open in Y for all open sets V in X.

1.22. Theorem. [The Banach Isomorphism Theorem.] Let T ∶ X → Y
be a bijective, continuous linear map of a Banach space X onto a Banach space Y.
Then T−1 is continuous.
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1.23. Definition. Let X and Y be Banach spaces and M ⊆ X be a linear
manifold. Then a linear map T ∶M → Y is closed if xn → x and Txn → y together
imply that x ∈ M and Tx = y. This is equivalent to saying that the graph G(T ) =
{ (x,Tx) ∶ x ∈M} is a closed subspace of X⊕Y.

1.24. Theorem. [The Closed Graph Theorem.] If X and Y are Banach
spaces and if T ∶ X→Y is a closed linear map that is defined everywhere, then T is
continuous.

An alternative formulation reads:

If X and Y are Banach spaces, T ∶ X → Y is linear, {xn}∞n=1 ⊆ X, and if
limn→∞ xn = 0 and limn→∞ Txn = b together imply that b = 0, then T is continu-
ous.

1.25. Theorem. [The Banach-Steinhaus Theorem (aka the Uniform
Boundedness Principle).]

Suppose X and Y are Banach spaces and F ⊆ B(X,Y). Suppose that for all
x ∈ X, Kx ∶= supT ∈F ∥Tx∥ <∞. Then K ∶= supT ∈F ∥T ∥ <∞.

1.26. Corollary. Let {Tn}∞n=1 be a sequence of bounded linear operators in
B(X,Y) such that Tx ∶= limn→∞ Tnx exists for all x ∈ X. Then supn≥1 ∥Tn∥ <∞ and
T ∈ B(X,Y).

1.27. Theorem. [The Banach-Alaoglu Theorem.] Let X be a Banach
space. Then the unit ball X∗

1 of X∗ is compact in the weak∗-topology.

1.28. Of course, this is but a brief outline of some of the major results and
definitions which will be relevant to our study of Operator Algebras. For more in-
formation, the reader is encouraged to consult the texts of Dunford and Schwarz [20],
of Bollobás [7], and of Pryce [42], to name but three. Alternatively, one may choose
to save one’s hard earned pennies and consult [35].

Theorems from measure theory

We shall also require a couple of results from Measure Theory.

1.29. Definition. A measure µ on the Borel sets of a Hausdorff topological
space X is said to be a Radon measure if it satisfies the following two properties.

(a) The measure µ is regular: that is, if U ⊆X is open, then

µ(U) = sup{µ(K) ∶K ⊆ U,Kcompact}.
(b) The measure µ is locally finite: that is, x ∈X implies that there exists a

nbhd U in the neighbourhood base Ux of x such that µ(U) <∞¿
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1.30. Theorem. [Lusin’s Theorem.] Let (X,Ω, µ) be a Radon measure
space, and let f ∶ X → C be a measurable function. Given ε > 0 and Y ⊆ X, there
exists a closed set F ⊆X such that µ(Y ∖ F ) < ε and f ∣F is continuous.

If Y is locally compact, we can choose F to be compact and we can find a con-
tinuous function gε ∶X → C with compact support such that gε∣F = f and

sup
x∈X

∣gε(x)∣ ≤ sup
x∈X

∣f(x)∣.

1.31. Theorem. [The Riesz-Markov Theorem.] Let X be a locally com-
pact Hausdorff space. If ϕ is a continuous linear functional on the space C○(X)
of continuous functions on X which vanish at infinity, then there exists a unique
regular Borel measure µ on X such that

ϕ(f) = ∫
X
fdµ for all f ∈ C○(X).

If X is compact, then µ is a finite measure, and if 0 ≤ f ∈ C○(X) implies that
ϕ(f) ≥ 0, then the measure µ is positive.
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Supplementary examples

S1.1. Example. Let x = (xn)n be a sequence of complex (or real) numbers.
The total variation of x is defined by

V (x) ∶=
∞
∑
n=1

∣xn+1 − xn∣.

If V (x) <∞, we say that x has bounded variation. The space

bv ∶= {(xn)n ∶ xn ∈ K, n ≥ 1, V (x) <∞}
is called the space of sequences of bounded variation. We may define a norm
on bv as follows: for x ∈ bv, we set

∥(xn)n∥bv ∶= ∣x1∣ + V (x) = ∣x1∣ +
∞
∑
n=1

∣xn+1 − xn∣.

It can be shown that bv is complete under this norm, and hence that bv is a
Banach space. which is isomorphic to `1.

If we let bv0 = {(xn)n ∈ bv ∶ limn xn = 0}, then

∥(xn)n∥bv0 ∶= V ((xn)n)
defines a norm on bv0, and again, bv0 is a Banach space with respect to this norm,
and that it is isometrically isomorphic to `1, though not by the identity map. We
refer the reader to [20] for more details.

S1.2. Example. Given a sequence x = (xn)n ∈ CN, we define the extended real
number

µ(x) ∶= sup
n

∣
n

∑
k=1

xk∣ .

We then define the space

bs = {x = (xn)n ∈ CN ∶ µ(x) <∞}.
Again, it can be shown that ∥x∥bs ∶= µ(x) defines a norm on the vector space bs
under which the latter becomes a Banach space. As before, we refer the reader
to [20] for more details.

S1.3. Example. Let D ∶= {z ∈ C ∶ ∣z∣ ≤ 1} denote the closed unit disk in the
complex plane, and D○ ∶= {z ∈ C ∶ ∣z∣ < 1} denote its interior. Then, as we have seen,
C(D) ∶= {f ∶ D → C ∶ f is continuous} is a Banach space when equipped with the
supremum norm ∥f∥∞ ∶= sup{∣f(z)∣ ∶ z ∈ D}.

By the Stone-Weierstraß Theorem, we know that C(D) is the norm-closure of
the set

{p(z, z) ∶ p a polynomial in two commuting variables}.

The subalgebra A(D) ∶= {f ∈ C(D,C) ∶ f ∣D○ is holomorphic} of C(D) is called the
disk algebra. It is easily seen to coincide with the norm-closure of the set of all
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polynomials {p(z) ∶ p a polynomial} in C(D), and the function q∗(z) ∶= z, z ∈ D is
an example of a function which lies in C(D) but not in A(D).

S1.4. Example. Another Banach space of interest to those who study the
geometry of said spaces is James’ space.

For a sequence (xn)n of real numbers, consider the following condition, which
we shall call condition J : for all k ≥ 1,

sup
n1<n2<⋯<nk

[(xn1 − xn2)
2 + (xn2 − xn3)

2 +⋯ + (xnk−1 − xnk)
2] <∞.

The James’ space is defined to be:

J = {(xn)n ∈ c0 ∶ (xn)n satisfies condition J}.
The norm on J is defined via:

∥(xn)n∥J ∶= sup
n1<n2<⋯<nk

[(xn1 − xn2)
2 + (xn2 − xn3)

2 +⋯ + (xnk−1 − xnk)
2]

1
2 .

It can be shown that J is a Banach space when equipped with this norm.

S1.5. Example. Here’s an interesting example we recently found in a paper of
Kalton [32]. We confess that we are not quite sure what these spaces are used for,
but they do appear somewhat exotic, yet tractable.

Let X and Y be Banach spaces. A map f ∶ X → Y is said to be positively
homogeneous if for all x ∈ X and 0 < r ∈ R,

f(rx) = rf(x).
For example, the map g ∶ C3 → C3 defined by g(z1, z2, z3) = (∣z3∣, ∣z2 + z1∣, z3) is
positively homogeneous. Observe that g is not linear.

We say that a positively homogeneous map is bounded if

sup{∥f(x)∥Y ∶ ∥x∥X ≤ 1} <∞.
We define the space

H(X,Y) ∶= {f ∶ X→Y ∣ f is positively homogeneous and bounded}.
We leave it as a routine exercise for the reader to prove that H(X,Y) becomes a
Banach space when equipped with the norm

∥f∥H(X,Y) ∶= sup{∥f(x)∥Y ∶ ∥x∥X ≤ 1}.
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Appendix

A1.1. Topological vector spaces (or tvs’s) are a generalisation of normed linear
spaces. A vector space V over C is said to be a topological vector space if it is
equipped with a Hausdorff topology τ under which the vector space operations of
summation and scalar multiplication are continuous.

Many introductions to Functional Analysis avoid mention of these, in part be-
cause most of their theory can be avoided by simply concentrating on Banach spaces
and Banach algebras. The one place where things get “sticky” is when one wishes to
consider various topologies on the dual spaces of Banach spaces, such as the weak op-
erator topology, the strong operator topology, the weak∗-topology, and so on. In these
cases, the resulting topology is not a norm-topology, and it is very fruitful indeed to
see that all of these topologies can be grouped under one umbrella, namely they are
all locally convex topologies generated by a separating family of semi-norms. For
this reason, the reference notes [35] introduce just enough topological vector space
and locally convex space theory so as to be able to study all of the relevant operator
algebra topologies from without having to introduce them ad hoc.
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Exercises for Chapter 1

Exercise 1.1. Banach spaces of operators
Recall that a normed linear space X is complete if and only if every absolutely

summable series in X is summable; that is, X is complete provided that whenever
{xn}∞n=1 ⊆ X satisfies ∑n ∥xn∥ <∞, there exists x ∈ X so that x = limN→∞∑Nn=1 xn.

Let X and Y be normed linear spaces.

(a) Prove that the operator norm ∥T ∥ ∶= sup{∥Tx∥ ∶ ∥x∥ ≤ 1} is indeed a norm
on B(X,Y) ∶= {T ∶ X→Y ∶ ∥T ∥ <∞};

(b) Prove that B(X,Y) is complete if and only if Y is complete.

Exercise 1.2. `p-sums and duals
Let X and Y be Banach spaces and 1 < p <∞. Let Z = X⊕pY, i.e., Z = {(x, y) ∶

x ∈ X, y ∈Y} with ∥(x, y)∥Z ∶= (∥x∥pX + ∥y∥pY)1/p.

(a) Prove that ∥ ⋅ ∥Z is indeed a norm on Z. You may assume that (R2, ∥ ⋅ ∥p) is
a Banach space if this helps.

Note: it is understood that for p =∞, ∥(x, y)∥Z ∶= max(∥x∥X, ∥y∥Y).
(b) Show that Z∗ ≡ X∗ ⊕q Y∗, where 1/p + 1/q = 1. That is, prove that there

exists a bijective linear isometry from Z∗ onto X∗ ⊕q Y∗. You may assume
that the dual of (R2, ∥ ⋅ ∥p) is (R2, ∥ ⋅ ∥q) if this helps.

Prove that the same result holds for p = 1 and p =∞.

Exercise 1.3. Compact operators between Banach spaces
Let X and Y be Banach spaces, and T ∈ B(X,Y). Then T is said to be compact

if T (X1) is compact in Y. The set of compact operators from X to Y is denoted by
K(X,Y), and if Y = X, we simply write K(X).

Recall that a subset K of a metric space L is said to be totally bounded if for
every ε > 0 there exists a finite cover {Vε(yi)}ni=1 of K with yi ∈ K, 1 ≤ i ≤ n, where
Vε(yi) = {z ∈ L ∶ dist (z, yi) < ε}.

We remind the reader that if E is a subset of L and E is totally bounded, then
so is E, and that if E is a subset of a metric space, then E is compact if and only
if E is complete and totally bounded, if and only if E is sequentially compact (i.e.
for each sequence (xn)n in E we can find a subsequence (xnk)∞k=1 of (xn)n which
converges to some element of E).

Let X and Y be Banach spaces, and T ∈ B(X,Y). Given r > 0, we denote by Xr
the closed ball {x ∈ X ∶ ∥x∥X ≤ r} of radius r in X.

Prove that the following are equivalent:

(a) T is compact;

(b) T (F ) is compact in Y for all bounded subsets F of X;
(c) If (xn)n is a bounded sequence in X, then (Txn)n has a convergent subse-

quence in Y;
(d) T (X1) is totally bounded.
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Exercise 1.4. Tensor products of Banach spaces
Let X and Y be complex Banach spaces and X ⊙ Y be the algebraic tensor

product of X and Y as linear spaces over C.

(a) Show that if for z ∈ X⊙Y we define

∥z∥π = inf{
n

∑
i=1

∥xi∥ ∥yi∥ ∶ x1, ..., xn ∈ X; y1, ..., yn ∈Y; z =
n

∑
i=1

xi ⊗ yi},

then ∥ ⋅ ∥π is a norm on X ⊙ Y. The completion of X ⊙ Y is called the
projective tensor product of X and Y and is denoted by X⊗̂Y.

(b) Show that if for z ∈ X⊙Y we define

∥z∥i = sup{∣
n

∑
i=1

ϕ(xi)ψ(yi)∣ ∶ x1, ..., xn ∈ X;

y1, ..., yn ∈Y;ϕ ∈ X∗, ψ ∈Y∗; ∥ϕ∥ = ∥ψ∥ = 1; z =
n

∑
i=1

xi ⊗ yi},

then ∥ ⋅ ∥i is a norm on X ⊙Y. The completion of X ⊙Y with respect to
this norm is called the injective tensor product of X and Y, and is denoted
by X⊗Y.

(c) Show that the identity mapping j on X⊙Y extends to a contractive mapping
from X⊗̂Y to X⊗Y.

Exercise 1.5. Weak convergence

(a) Let (xn) be a sequence in `2 converging in the weak topology to x ∈ `2.
Prove that if ∥xn∥2 converges to ∥x∥2 as n→∞, then ∥xn − x∥2 → 0.

(b) Let {en}∞n=1 denote the standard onb of `2 and let

A = {em +men ∶ 1 ≤m < n}.
Prove that 0 is in the weak-closure of A but that no sequence in A converges
weakly to 0.

Exercise 1.6. Weak closures of the unit ball
Suppose that X is an infinite dimensional Banach space. Prove that the weak

closure of the unit sphere S1 = {x ∈ X ∶ ∥x∥ = 1} is the closed unit ball X1 = {x ∈ X ∶
∥x∥ ≤ 1}.

Exercise 1.7. Schauder bases

(a) Let {en}∞n=1 be a Schauder basis for a separable Banach space (X, ∥ ⋅ ∥).
Define

Pn(∑
i

λiei) =∑
i

nλiei

and for x ∈ X, define ∣∣∣x∣∣∣ = supn≥1 ∥Pnx∥. Prove that ∣∣∣x∣∣∣ is a norm on X.
(b) Assume that X is complete with respect to this norm and that {en}∞n=1 is

also a Schauder basis for (X, ∣∣∣⋅∣∣∣). (See the addendum at the end of the
assignment for a proof.) Prove that the norms ∣∣∣⋅∣∣∣ and ∥ ⋅ ∥ are equivalent.
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(c) Prove that Pn ∈ B(X) for all n ≥ 1 (where X carries its usual norm ∥ ⋅ ∥),
and that

sup
n≥1

∥Pn∥ <∞.

Exercise 1.8. Separable Banach spaces
Prove that every separable Banach space X is isometrically isomorphic to a

quotient space of `1.
Hint. Let (xn)n be a dense subset of X1, the closed unit ball of X. For each
α ∶= (αn)n ∈ `1, set yα ∶= ∑n αnxn and consider the map T (α) ∶= yα.



CHAPTER 2

Banach Algebras - an introduction

Who are you going to believe, me or your own eyes?

Groucho Marx

Definitions and Examples

2.1. The principal objects of investigation in this course are Banach algebras.
The typical approach to writing a set of notes or a book is to begin with the definition
of a Banach algebra (or whatever mathematical structure one wishes to investigate),
and to then produce a (hopefully long) list of examples to demonstrate their impor-
tance and to justify having made the definition. This process is, however, essentially
the inverse of how such a concept develops in the first place. In practice, one nor-
mally starts with a long list of examples of objects, each of which has its own intrinsic
value. Through inspiration and hard work, one may discover certain commonalities
between those objects, and one may observe that any other object which shares that
commonality will – by necessity – behave in a certain way as suggested by the initial
objects of interest. The advantage of doing this is that if one can prove that certain
behaviour is a result of the commonality, as opposed to being specific to one of the
examples, then one may deduce that such behaviour will apply to all objects in this
collection and beyond.

Granted an unlimited amount of time, it would be instructive to approach an
entire course through carefully selected examples which gradually lead the students
to discover on their own the desired definitions, propositions and theorems. Over
a period of twelve weeks, however, this is not practical, and so we submit to the
common, if more prosaic practice of definition, example, theorem and proof.

2.2. Definition. A Banach algebra A is a Banach space together with a
norm compatible algebra structure, namely: for all x, y ∈ A, ∥xy∥ ≤ ∥x∥ ∥y∥. If A has
a multiplicative identity (denoted by e or 1), we say that the algebra A is unital.

Note that when A is unital,

∥1∥ = ∥12∥ ≤ ∥1∥2,

15
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and so 1 /= 0 implies that ∥1∥ ≥ 1. By scaling the norm if necessary, we may (and
do) assume that ∥1∥ = 1.

2.3. Example. The Banach space (C(X), ∥ ⋅ ∥∞) of continuous complex-valued
functions on a compact Hausdorff space X introduced in Example 1.5 becomes a
Banach algebra under pointwise multiplication of functions. That is, for f, g ∈
(C(X), ∥ ⋅ ∥∞), we set

(fg)(x) = f(x)g(x) for all x ∈X.

The constant function 1(x) = 1, x ∈X serves as the multiplicative identity of C(X).

2.4. Example. The Banach space (C0(X), ∥ ⋅∥∞) of continuous complex-valued
functions vanishing at infinity on a locally compact Hausdorff space as introduced
in Example 1.6 also becomes a Banach algebra under pointwise multiplication of
functions. Note that this algebra is not unital unless X is compact. In particular, if
X = N with the discrete topology, then (C0(X), ∥ ⋅ ∥∞) = c0 is a non-unital Banach
algebra under component-wise multiplication.

2.5. Example. Let us return to Example S1.3. Let D = {z ∈ C ∶ ∣z∣ ≤ 1} and
let D○ be the interior of D. Also, let A(D) = {f ∈ C(D) ∶ f is holomorphic on D○}.
Then (A(D), ∥ ⋅ ∥∞) is a unital Banach algebra under pointwise multiplication of
functions, called the disk algebra.

The map

τ ∶ A(D) → C(T)
f ↦ f ∣T

is an isometric embedding, by the Maximum Modulus Principle.
It is often useful to identify the disk algebra with its image under this embedding.

Thus, it is not unusual to see the disk algebra defined as

A(D) = {f ∈ C(T) ∶ f can be holomorphically continued to D○}.

In general, given a compact subset X ⊆ C, we may define

A(X) = {f ∈ C(X) ∶ f is holomorphic on int (X) },
R(X) = {f ∈ C(X) ∶ f is a rational function

with poles outside of X }−∥ ∥, and

P(X) = {f ∈ C(X) ∶ f is a polynomial }−∥ ∥

Each of these is a closed subalgebra of C(X) under the supremum norm. Clearly
P(X) ⊆R(X) ⊆ A(X) ⊆ C(X), and it is often an interesting and important problem
to decide when the inclusions reduce to equalities. That this is the case, for instance,
when X is a compact subset of the real line is the content of the Stone-Weierstraß
Theorem.
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2.6. Example. Let G be a locally compact abelian group, and let ν denote
Haar measure on G. Then

L1(G,ν) = {f ∶ G→ C ∶ ∫
G
∣f(x)∣dν(x) <∞}.

For f, g ∈ L1(G,ν), x ∈ G, we define the product of f and g via convolution:

(f ∗ g)(x) = ∫
G
f(xy−1) g(y)dν(y).

We also define ∥f∥1 = ∫G ∣f(x)∣dν(x).
This is called the group algebra of G. It is a standard result (cf. Para-

graph 5.32) that f ∗ g = g ∗ f and that ∥f ∗ g∥1 ≤ ∥f∥1 ∥g∥1. (We remind the reader
that elements of L1(G,ν) are really equivalence classes of functions, and so the
definition of f ∗ g is interpreted as “almost everywhere” with respect to ν.)

Writing `1(Z) = L1(Z, ν) where ν represents counting measure on Z, we obtain:

(f ∗ g)(n) = ∑k∈Z f(n − k)g(k)
∥f∥1 = ∑k∈Z ∣f(k)∣.

As we shall see in Chapter 5, `1(Z) can be identified with the Wiener algebra

AC(T) = {f ∈ C(T) ∶ f(eiθ) = ∑
n∈Z

ane
inθ, ∑

n∈Z
∣an∣ <∞},

where an = 1
2π ∫

2π
0 f(eiθ)e−inθ dθ.

2.7. Example. The Banach space L∞(X, Ω, ν) is a unital Banach algebra
under pointwise multiplication (almost everywhere).

2.8. Example. The set Cb(Ω) continuous, complex-valued, bounded functions
on a locally compact space Ω is a unital Banach algebra under the supremum norm
and pointwise multiplication.

The above examples are all abelian. The following need not be.

2.9. Example. Let X be a Banach space. Then the Banach space B(X) from
Example 1.13 is a Banach algebra, using the operator norm and composition of
linear maps as our product. To verify this, we need only verify that the operator
norm is submultiplicative, that is, that ∥AB∥ ≤ ∥A∥ ∥B∥ for all operators A and B.
But indeed, we observe that

∥AB∥ = sup{∥ABx∥ ∶ ∥x∥ = 1}
≤ sup{∥A∥ ∥Bx∥ ∶ ∥x∥ = 1}
≤ sup{∥A∥ ∥B∥ ∥x∥ ∶ ∥x∥ = 1}
= ∥A∥ ∥B∥.
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In particular, Mn can be identified with B(Cn) by first fixing an orthonormal
basis {e1, e2, . . . , en} for Cn, and then identifying a linear map in B(Cn) with its
matrix representation with respect to this fixed basis.

It is easy to verify that any closed subalgebra of B(X) (or indeed, of any Banach
algebra) is itself a Banach algebra using the operator norm.

2.10. Example. Let X be a Banach space, and let T ∈ B(X). Then

Alg(T ) = {p(T ) ∶ p a polynomial over C}−∥ ∥

is a Banach algebra, called the algebra generated by T . The norm under consid-
eration is the operator norm.

2.11. Example. Let Tn denote the set of upper triangular n×n matrices in Mn,
equipped with the operator norm. Then Tn is a Banach subalgebra of Mn. After
fixing an orthonormal basis for the underlying Hilbert space, Tn can be viewed as
a Banach subalgebra of B(Cn). In fact, it is the largest subalgebra of B(Cn) which
leaves each of the subspaces Hk = span{e1, e2, . . . , ek}, 1 ≤ k ≤ n invariant.

More generally, given a Banach space X and a collection L of closed subspaces
{Lα}α∈Λ of X, then

Alg(L) = {T ∈ B(X) ∶ TLα ⊆ Lα for all Lα ∈ L}
is a Banach algebra. This is closed because if limn→∞ Tn = T , then x ∈ Lα implies
Tx = limn→∞ Tnx ∈ Lα for each α.

2.12. Example. The space H∞(T, µ) defined in Example 1.9 is a unital Banach
algebra under pointwise multiplication of functions (almost everywhere).

2.13. Example. Let H be a Hilbert space and let K(H) denote the set of
compact operators acting on H. (We shall deal with these in more detail in Chap-
ter 7. Then K(H) is a Banach subalgebra of B(H). It is non-unital if H is infinite-
dimensional. In fact, as we shall see, K(H) is a closed, two-sided ideal of B(H).

2.14. Example. Let (Aα, ∥ ⋅∥α)α∈Λ denote a family of Banach algebras indexed
by a set Λ. Then

A =∏
α

Aα ∶= {(aα)α∈Λ ∶ aα ∈ Aα, α ∈ Λ, sup
α

∥aα∥ <∞}

is a Banach algebra when equipped with the norm

∥(aα)α∥ = sup
α

∥aα∥α.

If each Aα is unital, then so is A. This is the direct product of the algebras Aα.

We may also define

B ∶= ⊕αAα ∶= {(aα)α ∈∏
α

Aα, ∣{α ∈ Λ ∶ ∥aα∥α ≥ ε}∣ <∞ for all ε > 0}.
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If Λ is infinite, then B is never unital. We refer to B as the direct sum of the
algebras Aα.

2.15. Example. Consider the Hilbert space H =H2(T, µ) of Example 1.9. Let
PH denote the orthogonal projection of L2(T, µ) onto H. A Toeplitz operator
with symbol ϕ ∈ C(T) is an operator Tϕ ∈ B(H) of the form

Tϕ(g) = PH(ϕg), g ∈ H.

The Toeplitz algebra on H to be the set of operators in B(H) of the form

Tϕ +K,

where ϕ ∈ C(T) and K ∈ K(H) is a compact operator on H. This is a Banach
subalgebra of B(H).

Basic Results

2.16. Now that we have a plentiful supply of Banach algebras at hand, we may
begin to prove results about them.

2.17. Proposition. Let K be a closed ideal in a Banach algebra A. Then the
quotient space A/K is a Banach algebra with respect to the quotient norm.
Proof. That A/K is a Banach space follows from Example 1.11. Let π denote the
canonical map from A to A/K. We must show that

∥π(x)π(y)∥ ≤ ∥π(x)∥ ∥π(y)∥

for all x, y ∈ A.
Suppose ε > 0. By definition of the quotient norm, we can find m,n ∈ K such

that ∥x +m∥ < ∥π(x)∥ + ε and ∥y + n∥ < ∥π(y)∥ + ε. Then

∥π(x)π(y)∥ = ∥π(x +m)π(y + n)∥
≤ ∥π((x +m) (y + n))∥
≤ ∥(x +m) (y + n)∥
≤ ∥(x +m)∥ ∥(y + n)∥
< (∥π(x)∥ + ε) (∥π(y)∥ + ε).

Since ε > 0 is arbitrary, we obtain the desired result.

◻

Recall from Example 2.14 our claim that the set K(H) of compact operators is
a closed, two-sided ideal of B(H). Using this and the above Proposition, we obtain
the following important example.
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2.18. Example. Let H be a Hilbert space. Then the quotient algebra

Q(H) = B(H)/K(H)
is a Banach algebra, known as the Calkin algebra. The canonical map from B(H)
to Q(H) is denoted by π.

2.19. Remark. In general, if a Banach algebra A does not have an identity
element, it is possible to append one as follows:

Consider the linear space Au = A⊕C. We may define a multiplication on Au by
setting

(a,α) ⋅ (b, β) ∶= (ab + aβ + bα,αβ).
(This definition is not random – it is helpful to think of the ordered pair (a,α) as
“a + α1”, where 1 ∶= (0,1) should be the multiplicative identity of Au. The above
equation then writes itself.)

We define a norm on Au via ∥(a,α)∥ = ∥a∥ + ∣α∣. Then we have

∥(a,α) (b, β)∥ = ∥ab + aβ + bα∥ + ∣αβ∣
≤ ∥a∥ ∥b∥ + ∥a∥ ∣β∣ + ∥b∥ ∣α∣ + ∣α∣ ∣β∣
= (∥a∥ + ∣α∣) (∥b∥ + ∣β∣)
= (∥(a,α)∥) (∥(b, β)∥)

It is clear that the embedding of A into Au is linear and isometric, and that
A sits inside of Au as a closed ideal. (In fact, as a maximal ideal, given that its
co-dimension is equal to 1.) It should be added, however, that this construction is
not always natural. The group algebra L1(R, ν) of the real numbers with Lebesgue
measure ν is not unital. On the other hand, the most natural candidate for a
multiplicative identity here might be the Dirac delta function (corresponding to a
discrete measure with mass one at 0 and zero elsewhere), which clearly does not
lie in the algebra. Similarly, C0(R) is another much studied non-unital algebra. In
this case, there is more than one way to embed this algebra into a unital Banach
algebra. For instance, one may want to consider the one-point compactification, or
the Stone-C̆ech compactifications of the reals. Each of these induces an imbedding
of C0(R) into the corresponding unital Banach algebra of continuous functions on
these compactifications.

2.20. Proposition. Every Banach algebra A embeds isometrically into B(X)
for some Banach space X. Here, A need not have a unit.
Proof. Consider the map

Φ ∶ A → B(Au)
a ↦ La

where La(x,λ) = (a,0) (x,λ) is the left regular representation of A. That

Φ(αa + b) = Lαa+b = αLa +Lb = αΦ(a) +Φ(b)
and that

Φ(ab) = Lab = LaLb = Φ(a)Φ(b)
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for all a, b ∈ A and α ∈ C are easily verified.
Then

∥Φ(a)∥ = ∥La∥ = sup
(x,λ)/=(0,0)

∥(a,0) (x,λ)∥
∥(x,λ)∥

≤ ∥(a,0)∥ = ∥a∥

and

∥Φ(a)∥ = ∥La∥ ≥ ∥(a,0) (0,1)∥ = ∥a∥,
so that ∥Φ(a)∥ = ∥La∥ = ∥a∥. In particular, the map is isometric.

◻

We recall that a group G equipped with a topology τ is said to be a topological
group if τ is Hausdorff, and if the maps

µ ∶ G ×G → G
(g, h) ↦ gh

and
ι ∶ G → G

g ↦ g−1

are continous.
Our present goal is to show that if A is a unital Banach algebra, then the group

A−1 of invertible elements of A is a topological group using the norm topology,
which is clearly Hausdorff. The next result, while not particularly difficult to prove,
is exceedingly useful when studying Banach and C∗-algebras.

2.21. Theorem. The set A−1 of invertible elements of a unital Banach algebra
A is open in the norm topology. In fact, if d ∈ A−1, then the open ball of radius
∥d−1∥−1 centred at d is contained in A−1.
Proof. If ∥a∥ < 1, then the element b = ∑∞n=0 a

n exists in A since the defining series
is absolutely convergent. As such,

(1 − a) b = (1 − a) ( lim
k→∞

k

∑
n=0

an)

= ( lim
k→∞

k

∑
n=0

an) − ( lim
k→∞

k+1

∑
n=1

an)

= lim
k→∞

1 − ak+1

= 1

= ( lim
k→∞

k

∑
n=0

an) − ( lim
k→∞

k+1

∑
n=1

an)

= ( lim
k→∞

k

∑
n=0

an) (1 − a)

= b (1 − a),

so that the open ball of radius 1 centred at the identity 1 is contained in the set of
invertible elements of A.
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Now if d ∈ A−1 and ∥a∥ < ∥d−1∥−1, then (d − a) = d (1 − d−1a) and ∥d−1a∥ < 1 so
that

(d − a)−1 = (1 − d−1a)−1d−1

exists. This means that the open ball of radius ∥d−1∥−1 centred at d is again contained
in A−1. Thus A−1 is open.

◻

2.22. Corollary. If A is a unital Banach algebra, then the map τ ∶ a ↦ a−1 is
a homeomorphism of A−1 onto itself. It follows that A−1 is a topological group.

Proof. That multiplication is continuous in A−1 follows from the fact that it is
jointly continuous in A. It remains therefore to show that τ is continuous - as it is
clearly a bijection which is equal to its own inverse.

Let us first show that τ is continuous at 1. If ∥b∥ < 1, then we have just seen
that (1 − b) is invertible and

∥1 − (1 − b)−1∥ = ∥1 −
∞
∑
n=0

bn∥

= ∥
∞
∑
n=1

bn∥

≤
∞
∑
n=1

∥b∥n

= ∥b∥/ (1 − ∥b∥).
Thus as ∥b∥→ 0 (i.e. as b→ 0 and hence (1− b)→ 1), we get (1− b)−1 → 1, implying
that the map τ ∶ a↦ a−1 is continuous at 1, as claimed.

If a ∈ A−1 and an → a, then an a
−1 → aa−1 = 1, and also a−1 an → a−1 a = 1, so

that a−1
n → a−1.

◻

2.23. Proposition. Let G be a locally connected topological group, and let G0

be the connected component of the identity e in G. Then G0 is an open and closed
normal subgroup of G, the cosets of G0 are the components of G, and G/G0 is a
discrete group.

Proof. A component of a topological space is always closed. If g ∈ G, then G locally
connected implies that there exists an open connected neighbourhood Og of g which
clearly lies in the connected component Cg of g. This shows that Cg is open and
therefore components of G are both open and closed.

Let f ∈ G. Then the map Lf−1 ∶ h ↦ f−1h is a homeomorphism of G, and so

f−1G0 is open, closed and connected. If, furthermore, f ∈ G0 and g ∈ G0, then f−1G0

is a connected set containing e and f−1g, and therefore f−1g ∈ G0, implying that G0

is a subgroup of G. Since the map Rf ∶ h ↦ hf is also a homeomorphism of G, it

follows that f−1G0 f = Lf−1(Rf(G0)) is an open, closed and connected subset of G

containing e, so that f−1G0 f = G0, and therefore G0 is normal.
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Since f−1G0 is open, closed and connected for all f ∈ G, the cosets of G0 are
precisely the components of G. In particular, in G/G0, each point is both open and
closed in the quotient topology, and thus G/G0 is discrete.

◻

2.24. Definition. Let A be a unital Banach algebra. Let A−1
0 denote the con-

nected component of the identity in A−1. Then the abstract index group of A,
denoted ΛA, is the group A−1/A−1

0 . The abstract index is the canonical homomor-
phism from A−1 to ΛA.

2.25. Remark. It follows from Proposition 2.23 that the abstract index group
of a Banach algebra A is well-defined, that ΛA is discrete, and that the components
of A−1 are the cosets of A−1

0 in ΛA.

2.26. Example. We leave it as an exercise for the reader to show that the set
gln(C) of invertible n × n complex matrices is connected. It follows that ΛMn(C) =
{0}.

2.27. Exercise. More interesting is the fact that ΛC(T) ≃ Z, which we also leave
as an exercise.

One of the most important tools to study elements of Banach algebras is their
spectrum.

2.28. Definition. Let A be a Banach algebra and a ∈ A. If A is unital, then
the spectrum of a relative to A is the set

σA(a) = {λ ∈ C ∶ a − λ1 is not invertible in A}.
If A is not unital, then σA(a) is set to be σAu(a).

Observe that since A is a proper ideal in Au, 0 always lies in σAu(a). When
the algebra A is understood, we generally write σ(a). The resolvent of a is the set
ρ(a) = C/σ(a).

2.29. Corollary. Let A be a unital Banach algebra, and let a ∈ A. Then ρ(a)
is open and σ(a) is compact.
Proof. Clearly ρ(a) = {λ ∈ C ∶ a − λ1 is invertible} is open, since A−1 is. Indeed, if
a−λ01 is invertible inA, then λ ∈ ρ(a) for all λ ∈ C such that ∣λ−λ0∣ < ∥(a−λ01)−1∥−1.
Thus σ(a) is closed.

If ∣λ∣ > ∥a∥, then λ1 − a = λ (1 − λ−1a) and ∥λ−1a∥ < 1, and so (1 − λ−1a) is
invertible. This implies

(λ1 − a)−1 = λ−1 (1 − λ−1a)−1.

Thus σ(a) is contained in the closed disk D∥a∥ ∶= {z ∈ C ∶ ∣z∣ ≤ ∥a∥} of radius ∥a∥
centred at the origin. Since it both closed and bounded, σ(a) is compact.

◻
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The above proof shows that for all a ∈ A, σ(a) ⊆ D∥a∥. This is a useful fact to
keep in mind.

Although we have determined that σ(a) is compact for each element a of a
unital Banach algebra A, it is still not clear that it is not empty. Indeed, if we were
working over the real field R, this could in fact be the case. For example, the matrix

a = [ 0 1
−1 0

] ∈ M2(R) has no real eigenvalues, and so the set of “real eigenvalues”

satisfies

{λ ∈ R ∶ a − λI2 is not invertible} = ∅.

Since spectrum is one of the most important tools we have to study elements of
Banach algebras, we concentrate our attention on complex Banach algebras where,
as we shall now demonstrate, the spectrum of an element is always non-empty.

2.30. Definition. Let X be a Banach space and U ⊆ C be an open set. A
function f ∶ U → X is said to be holomorphic on U if for each z ∈ U ,

f ′(z) ∶= lim
h→0

h−1(f(z + h) − f(z))

exists in X. We say that f ∶ U → X is weakly holomorphic if for each x∗ ∈ X∗,
the complex-valued map x∗ ○ f is holomorphic on U in the usual sense.

2.31. Remark. Suppose that ∅ ≠ U ⊆ C is open, that X is a Banach space and
that f ∶ U → X is holomorphic on U . Then for x∗ ∈ X∗, the continuity and linearity
of x∗ implies that for z ∈ U ,

(x∗ ○ f ′)(z) = x∗(f ′(z))

= x∗ (lim
h→0

h−1(f(z + h) − f(z)))

= lim
h→0

h−1x∗(f(z + h) − f(z))

= lim
h→0

h−1(x∗ ○ f(z + h) − x∗ ○ f(z))

= lim
h→0

(x∗ ○ f)(z + h) − (x∗ ○ f)(z)
h

exists. Thus f is weakly holomorphic and (x∗ ○ f)′(z) = x∗ ○ f ′(z).

If f is weakly holomorphic on U = C, we say that f is weakly entire.
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2.32. Theorem. [Liouville’s Theorem.] Every bounded, weakly entire func-
tion into a Banach space X is constant.
Proof. For each linear functional x∗ ∈ X∗, x∗ ○ f is a bounded, entire function
into the complex plane. By the complex-valued version of Liouville’s Theorem, it
must therefore be constant. Now by the Hahn-Banach Theorem, X∗ separates the
points of X. So if there exist z1, z2 ∈ C such that f(z1) /= f(z2), then there must
exist x∗ ∈ X∗ such that x∗(f(z1)) /= x∗(f(z2)). This contradiction implies that f is
constant.

◻

2.33. Definition. Let A be a unital Banach algebra and let a ∈ A. The map

R(⋅, a) ∶ ρ(a) → A
λ ↦ (λ1 − a)−1

is called the resolvent function of a.

2.34. Proposition. [The Common Denominator Formula.] Let a ∈ A, a
unital Banach algebra. If µ, λ ∈ ρ(a), then

R(λ, a) −R(µ, a) = (µ − λ)R(λ, a)R(µ, a).

Proof. The proof is transparent if we consider t ∈ C and consider the corresponding
complex-valued equation:

1

λ − t
− 1

µ − t
= (µ − t) − (λ − t)

(λ − t) (µ − t)
= (µ − λ)

(λ − t) (µ − t)
.

In terms of Banach algebra, we have:

R(λ, a) = R(λ, a)R(µ, a) (µ − a)
R(µ, a) = R(µ, a)R(λ, a) (λ − a).

Noting that R(λ, a) and R(µ, a) clearly commute, we obtain the desired equation
by simply subtracting the second equation from the first.

◻
We shall return to this formula when establishing the holomorphic functional

calculus in the next Chapter.

2.35. Proposition. If a ∈ A, a unital Banach algebra, then R(⋅, a) is holomor-
phic on ρ(a).
Proof. Let λ0 ∈ ρ(a). Then

R′(λ0, a) = lim
λ→λ0

R(λ, a) −R(λ0, a)
λ − λ0

= lim
λ→λ0

(λ0 − λ)R(λ, a)R(λ0, a)
λ − λ0

= −R(λ0, a)2,

since inversion is continuous on ρ(a). Thus the limit of the Newton quotient exists
at each point of ρ(a), and so R(⋅, a) is holomorphic on that set.
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◻

2.36. Corollary. [Gelfand’s Theorem.] If a ∈ A, a Banach algebra, then
σ(a) is non-empty.
Proof. We may assume that A is unital, for otherwise 0 ∈ σ(a) and we are done.
Similarly, if a = 0, then 0 ∈ σ(a). If ρ(a) = C, then clearly R(⋅, a) is entire. Now for
∣λ∣ > ∥a∥, we have

(λ1 − a)−1 = (λ(1 − λ−1a))−1

= λ−1
∞
∑
n=0

(λ−1a)n

=
∞
∑
n=0

λ−n−1an

so that if ∣λ∣ ≥ 2∥a∥, then

∥(λ1 − a)−1∥ ≤
∞
∑
n=0

∥a∥n

(2∥a∥)n+1
≤ 1

∥a∥
.

That is, ∥R(λ, a)∥ ≤ ∥a∥−1 for all λ ≥ 2∥a∥.
Clearly there exists M <∞ such that

max
∣λ∣≤2∥a∥

∥R(λ, a)∥ ≤M,

since R(⋅, a) is a continuous function on this compact set. The conclusion is that
R(⋅, a) is a bounded, entire function. By Liouville’s Theorem 2.32, the resolvent
function must be constant. This obvious contradiction implies that σ(a) is non-
empty.

◻
Recall that a division algebra is an algebra in which each non-zero element is

invertible.

2.37. Theorem. [The Gelfand-Mazur Theorem.] If A is a Banach alge-
bra and a division algebra, then there is a unique isometric isomorphism of A onto
C.
Proof. If b ∈ A, then σ(b) is non-empty by Corollary 2.36. Let β ∈ σ(b). Then
β1 − b is not invertible, and since A is a division algebra, we conclude that β1 = b;
that is to say, that σ(b) is a singleton.

Thus: if a ∈ A, then σ(a) is a singleton, say {λa}, and a = λa1. The complex-
valued map φ ∶ a↦ λa1 is then an algebra isomorphism. Moreover,

∥a∥ = ∥λa1∥ = ∣λa∣ = ∥φ(a)∥,
so the map is isometric as well. If φ0 ∶ A → C were another such map, then φ0(a) ∈
σ(a), implying that

φ0(a) = λa = φ(a).
◻
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2.38. Definition. Let a ∈ A, a Banach algebra.The spectral radius of a is

spr(a) = sup{∣λ∣ ∶ λ ∈ σ(a)}.

2.39. Lemma. [The Spectral Mapping Theorem : polynomial version.]
Let a ∈ A, a unital Banach algebra, and suppose p ∈ C [z] is a polynomial. Then

σ(p(a)) = p(σ(a)) ∶= {p(λ) ∶ λ ∈ σ(a)}.

Proof. Let α ∈ C. Then for some γ ∈ C,

p(z) − α = γ (z − β1) (z − β2)⋯(z − βn)

and so

p(a) − α = γ (a − β11) (a − β21)⋯(a − βn1).
Thus (as all of the terms (a − βi) commute),

α ∈ σ(p(a)) ⇐⇒ βi ∈ σ(a) for some 1 ≤ i ≤ n
⇐⇒ p(z) − α = 0 for some z ∈ σ(a)
⇐⇒ α ∈ p(σ(a)).

◻

2.40. Theorem. [Beurling’s Theorem : The Spectral Radius Formula.]
If a ∈ A, a Banach algebra, then

spr(a) = lim
n→∞

∥an∥1/n.

Proof. First observe that if A is not unital, then we can always embed it isometri-
cally into a unital Banach algebra Au. Since both the left and right hand sides of
the above equation remain unchanged when a is considered as an element of Au, we
may (and do) assume that A is already unital.

Now σ(an) = (σ(a))n, and so spr(an) = (spr(a))n. Moreover, for all b ∈ A, the
proof of Corollary 2.29 shows that spr(b) ≤ ∥b∥. Thus

spr(a) = (spr(an))1/n ≤ ∥an∥1/n for all n ≥ 1.

This tells us that spr(a) ≤ infn≥1 ∥an∥1/n.
On the other hand, R(⋅, a) is holomorphic on ρ(a) and hence is holomorphic on

{λ ∈ C ∶ ∣λ∣ > spr(a)}. Furthermore, if ∣λ∣ > ∥a∥, then

R(λ, a) = (λ1 − a)−1

= λ−1(1 − λ−1a)−1

=
∞
∑
n=0

an/λn+1.
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Let x∗ ∈ A∗. Then x∗ ○R(⋅, a) is a holomorphic, complex-valued function,

[x∗ ○R(⋅, a)](λ) =
∞
∑
n=0

x∗(an)/λn+1

and this Laurent expansion is still valid for {λ ∈ C ∶ ∣λ∣ > ∥a∥}, since the series for
R(⋅, a) is absolutely convergent on this set, and applying x∗ introduces at most a
factor of ∥x∗∥ to the absolutely convergent sum. Since [x∗ ○R(⋅, a)] is holomorphic
on {λ ∈ C ∶ ∣λ∣ > spr(a)}, the complex-valued series converges on this larger set.

From this it follows that the sequence (x∗(an)/λn+1)n converges to 0 for all
x∗ ∈ A∗. In particular, it is bounded for all x∗ ∈ A∗. It is now a consequence of the
Uniform Boundedness Principle that for each λ > spr(a), the set

Ωλ ∶= {an/λn+1 ∶ n ≥ 1}
is bounded in norm, say by Mλ > 0. That is:

∥an∥ ≤Mλ∣λn+1∣
for all ∣λ∣ > spr(a). But then, for all ∣λ∣ > spr(a),

lim sup
n≥1

∥an∥1/n ≤ lim sup
n≥1

M
1/n
λ ∣λ(n+1)/n∣ = ∣λ∣,

so that
lim sup

n
∥an∥1/n ≤ spr(a).

Combining this estimate with the above yields spr(a) = limn→∞ ∥an∥1/n.

◻

2.41. Remark. One interesting fact about Beurling’s Spectral Radius Formula
is that it implies that given a Banach algebra A, the limit

lim
n→∞

∥an∥1/n

exists for any a ∈ A! This in itself is a priori far from obvious.
We also mention that the Spectral Radius Formula is actually a practical tool,

as well as a theoretical tool.
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Supplementary Examples

S2.1. Example. The following example is closely related to that of Exam-
ple 2.12. Let H be an infinite-dimensional, separable Hilbert space. A nest on H is
a chain N ∶= {Nα ∶ α ∈ Λ} of closed subspaces of H such that

(a) {0} and H belong to N; and
(b) N is closed under arbitrary intersections and closed linear spans. That is,

if Ω ⊆ Λ, then
M1 ∶= ∩{Nλ ∶ λ ∈ Ω} ∈N

and
M2 ∶= ∨{Nλ ∶ λ ∈ Ω} ∈N.

Given a nest N on H, we define the nest algebra

T (N) ∶= {T ∈ B(H) ∶ TN ⊆ N for all N ∈N}.
We leave it to the reader to verify that T (N ) is a Banach algebra using the operator
norm. In fact, it is closed under the weak operator topology wot on B(H). We
shall see this topology later in looking at von Neumann algebras.

S2.2. Example. An interesting generalisation of a nest algebra is a so-called
commutative subspace lattice algebra, or a CSL algebra for short. Let H be
a (typically) separable Hilbert space. Recall that an orthogonal projection on
H is an idempotent P = P 2 of norm one. (There are many equivalent definitions
- the most common one being a self-adjoint idempotent. Since we shall introduce
adjoints later - we’ve settled upon this definition.) Given an orthogonal projection
P ∈ B(H), we denote by MP the range of P , which is necessarily a closed subspace
of H.

Let P be a complete lattice of commuting orthogonal projections, where we
define P ∨Q ∶= P +Q−PQ and P ∧Q ∶= PQ. Corresponding to P we define a CSL
(or commutative subspace lattice) L(= LP) by

L ∶= {ranP ∶ P ∈ P}.
Corresponding to L we obtain a CSL algebra

Alg(L) ∶= {T ∈ B(H) ∶ TMP ⊆MP for all MP ∈ L}
= {T ∈ B(H) ∶ TP = PTP for all P ∈ P}.

These algebras have a rich theory. We refer the reader to [18] for more information
regarding both CSL algebras, but especially nest algebras.

S2.3. Example. Let G be a locally compact group with Haar measure µ. A
representation of G is a pair (π,H) where H is a Hilbert space and π ∶ G→ B(H)
is a unital group homomorphism. That is, π(e) = I (where e is the identity element
of the group and I is the identity operator on H), and π(gh) = π(g)π(h) for all
g, h ∈ G.

We say that the representation (π,H) is continuous if for each x ∈H, the map

g ↦ π(g)x
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is continuous. (Another way of expressing this is to say that π is continuous from G
with its locally compact topology to B(H) with the strong operator topology.
We shall discuss the strong operator topology in greater detail in Chapter 12.) It
follows that π(g) is invertible for all g ∈ G. If π(g) is unitary for all g ∈ G (meaning
that π(g) is a bijective isometry, or equivalently that π(g)−1 = π(g)∗, the Hilbert
space adjoint of π(g) for each g ∈ G), then we say that the representation is a
unitary representation.

We define the Fourier-Stieltjes algebra B(G) to be set of complex-valued
functions on G defined as

B(G) ∶= {g ↦ ⟨π(g)ξ, η⟩ ∶ π ∶ G→ B(H) a unitary representation of G, ξ, η ∈H}.
This is an algebra (under point-wise operations), and we endow it with the norm

∥ϕ∥ ∶= inf{∥ξ∥ ∥η∥ ∶ ϕ(g) = ⟨π(g)ξ, η⟩ for some unitary representation π}.

This algebra was introduced by Eymard [22] and is a particularly important
Banach algebra for people studying Abstract Harmonic Analysis.

S2.4. Example. The Fourier algebra A(G) – also introduced by Eymard [22]
– may be described as the norm-closure in B(G) of the algebra of elements with
compact support. It admits the following alternate description.

It is known that there exists a group homomorphism

λ ∶ G → B(L2(G,µ))
g ↦ λg

with the property that for all y ∈ G and ξ ∈ L2(G,µ), λg ξ(x) = ξ(g−1x) (a.e. - µ).
This is referred to as the left regular representation of G, and it is known to be
a unitary representation of G, as defined above.

The Fourier algebra A(G) is equivalently defined to be the space of functions

A(G) ∶= {y ↦ ⟨λyξ, η⟩ ∶ ξ, η ∈ L2(G,µ)},
equipped with the norm it inherits as a subset of B(G). It is a Banach algebra,
being the norm-closure of a subalgebra of a Banach algebra.
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Appendix

A2.1. The examples of Banach algebras given in this Chapter are but a tiny
fraction of those which are of interest in the theory of Operator Algebras. One
particular class which we shall be examining in much greater detail is that of C∗-
algebras. Even in this subclass there is a plethora of examples, including B(H) itself,
von Neumann algebras, UHF-algebras and more generally AF-algebras, the irrational
rotation algebras, Toeplitz algebras, Bunce-Deddens algebras, group C∗-algebras, and
many more.

A2.2. Let H be an infinite-dimensional, separable Hilbert space with orthonor-
mal basis {en}∞n=1. For each integer n ≥ 1, define Hn ∶= span{e1, e2, . . . , en}. It is not
hard to verify that N ∶= {{0},H} ∪ {Hn ∶ n ≥ 1} is a nest on H. Thus

T (N ) ∶= {T ∈ B(H) ∶ THn ⊆Hn, n ≥ 1}
is a nest algebra, as defined in Example S2.1. It is an immediate generalisation of
the finite-dimensional algebra of upper-triangular n × n matrices relative to a fixed
orthonormal basis.

The question of whether or not the invertible group of T (N ) is connected has
been open for at least 40 years.
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Exercises for Chapter 2

Exercise 2.1. Connected components of invertible groups
Let n ≥ 1 be an integer and set gln(C) ∶= {T ∈ Mn(C) ∶ T is invertible}. Prove

that gln(C) is connected.

Exercise 2.2. Abstract index groups
Find the abstract index groups of the following Banach algebras:

(a) A = C[0,1].
(b) B = C(T).
(c) A =Mn(C).
(d) A = Tn(C).

Exercise 2.3. Alg(L)
In Example 2.11, we define Alg(L), where L was a collection of closed subspaces

of X. Show by way of example that it is possible to have L1 ≠ L2, and yet Alg(L1) =
Alg(L2). Is there a way of “correcting this”?

Exercise 2.4. The unitisation of a Banach algebra
Proposition 2.20 shows that if A is a Banach algebra, then the map

Φ ∶ A → B(Au)
a ↦ La

is an isometric embedding of A into B(Au). Let B = {Φ(a) + αI ∶ a ∈ A, α ∈ C} be
the smallest norm-closed subalgebra of B(Au) which contains Φ(A) and the identity
operator. By identifying A with Φ(A), we may view B as a unitisation of A.

What is the relationship between B and the unitisation Au of A we defined in
Remark 2.19?

Exercise 2.5. An open question
Here is an interesting question to which I would love to see the answer.
Let k and n be positive integers and ε > 0. Suppose that T ∈ B(Cn) ≃Mn(C) is

a matrix of (operator) norm one, and that ∥T k∥
1
k < ε. Does there exist a nilpotent

operator M ∈Mn(C) of order k (i.e. Mk = 0) such that

∥M − T ∥ < f(ε),
where f ∶ (0,∞)→ (0,∞) is a function which satisfies limx→0+ f(x) = 0?

The key issue here is that the function must be independent of n, the dimension
of the space upon which T acts. I would be happy if we could choose the order of
nilpotence of M to be 2k, or 3k, or some (very nice) function of k, as long as this
order is independent of n.
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Exercise 2.6. The closure of the set of invertibles
Find the norm closure of the invertibles in the following Banach algebras:

(i) A =Mn(C).
(ii) A = Tn(C).
(iii) A = C([0,1]).
(iv) `∞.

Exercise 2.7. Left invertible elements
Show that the set of left invertible elements of a Banach algebra A is open.

(Alternatively, show that the set of right invertible elements of a Banach algebra is
open.)





CHAPTER 3

The holomorphic functional calculus

Telegram to a friend who had just become a mother after a prolonged
pregnancy: “Good work, Mary. We all knew you had it in you.”

Dorothy Parker

Integration in a Banach space

3.1. Let α ≤ β ∈ R and let X be a Banach space. An X-valued step function
f is a function on [α,β] for which there exists a partition P = {α = α0 < α1 < . . . <
αn = β} of [α,β] so that

(1) f(t) = ck, αk−1 < t ≤ αk, 1 ≤ k ≤ n

for some ck ∈ X, 1 ≤ k ≤ n, and f(α0) = c1. Given an X-valued step function f , a
partition P satisfying (1) will be referred to as an admissible partition for f .

Denote by S = S([α,β],X) the linear manifold of X-valued step functions in the
Banach space `∞([α,β],X). For each f ∈ S, define

∫
β

α
f =

n

∑
k=1

(αk − αk−1)ck

whenever P = {α = α0 < α1 < . . . < αn = β} is an admissible partition for f . We
remark that this sum is easily seen to be independent of the choice of admissible

partitions, and so ∫
β
α f is well-defined. Moreover, ∥ ∫

β
α f∥ ≤ (β − α)∥f∥∞. It follows

that the map

Φ ∶ S → X

f ↦ ∫
β
α f

is continuous.
We may therefore extend Φ to the closure S in `∞([α,β],X) and continue to

write ∫
β
α f or ∫

β
α f(t)dt for f ∈ S. Clearly we still have

∥∫
β

α
f∥ ≤ (β − α)∥f∥∞

for all f ∈ S.

35
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If T ∈ B(X,Y) for some Banach space Y, then it is easy to check that T ○ f ∈
S([α,β],Y) for all f ∈ S, and

T (∫
β

α
f) = ∫

β

α
T ○ f.

3.2. Proposition. Let f ∈ C([α,β],X) and let ε > 0. Then f ∈ S and there
exists δ > 0 such that for every partition P = {α = α0 < α1 < . . . < αn = β} of
[α,β] such that ∥P ∥ ∶= max1≤k≤n(αk − αk−1) < δ, and for all t1, t2, . . . , tn satisfying
αk−1 ≤ tk ≤ αk, 1 ≤ k ≤ n, the following statements hold:

(1) there exists g ∈ S([α,β],X) with g(t) = f(tk), (αk−1 ≤ t < αk, 1 ≤ k ≤ n)
and ∥f − g∥ ≤ ε.

(2) ∥ ∫
β
α f −∑

n
k=1(αk − αk−1)f(tk)∥ ≤ (β − α)ε.

Proof. Since f is continuous on the compact set [α,β], it is uniformly continuous
there, and so we can choose δ > 0 such that ∣a− b∣ < δ implies that ∥f(a)− f(b)∥ < ε.

Let P be any partition of [α,β] with ∥P ∥ < δ, and choose {tk}nk=1 such that αk−1 ≤
tk < αk, 1 ≤ k ≤ n. Let g(α0) = f(t1), and for 1 ≤ k ≤ n, let g(t) = f(tk), αk−1 < t ≤ αk.

(1) Now

∥f − g∥∞ = sup
t∈[α,β]

∥f(t) − g(t)∥

= max
1≤k≤n

sup
t∈(αk−1,αk]

∥f(t) − g(t)∥

= max
1≤k≤n

sup
t∈(αk−1,αk]

∥f(t) − f(tk)∥

< ε.

(2) Secondly,

∥∫
β

α
f −

n

∑
k=1

(αk − αk−1)f(tk)∥ = ∥∫
β

α
f − ∫

β

α
g∥

= ∥∫
β

α
f − g∥

≤ ∫
β

α
∥f − g∥∞

≤ (β − α)ε.

◻

We remark in passing that a minor adaptation of the above proof shows that
piecewise continuous functions also lie in S.
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3.3. With α ≤ β ∈ R as above, we define a curve in X to be a continuous function
τ ∶ [α, β]→ X. The interval [α, β] is referred to as the parameter interval of the
curve, and we denote the image of τ in X by τ∗. The point τ(α) is then called the
initial point of the curve, while τ(β) is referred to as the final point.

A contour in X is a piecewise continuously differentiable curve. That is, there
exists a partition P = {α = α0 < α1 < . . . < αn = β} of [α, β] such that τ ∣[αi−1,αi] is
continuously differentiable, 1 ≤ i ≤ n. If τ(α) = τ(β), we say that the contour τ is
closed.

Suppose that τ is a contour in C, and that f ∶ τ∗ → X is a continuous function.
We can then think of τ as a parametrization of τ∗. We shall define the integral of
f over τ as

(2) ∫
τ
f(z)dz = ∫

β

α
f(τ(x))τ ′(x)dx.

Note that the integral on the right hand side exists by the comment following Propo-
sition 3.2.

Suppose next that γ ∶ [α1, β1]→ [α, β] is a continuously differentiable bijection
with γ(α1) = α and γ(β1) = β. Let τ1 = τ ○ γ. Then

∫
τ1
f(z)dz = ∫

β1

α1

f(τ1(x))τ ′1(x)dx

= ∫
β1

α1

f(τ(γ(x))τ ′(γ(x))γ′(x)dx

= ∫
β

α
f(τ(y))τ ′(y)dy

= ∫
τ
f(z)dz,

and so the integral is seen to be independent of the parametrization of the contour.
Any two such contours τ1 and τ2 for which

∫
τ1
f(z)dz = ∫

τ2
f(z)dz

for all continuous functions f ∈ C(τ∗1 = τ∗2 ) will be considered equivalent.
The notion of equivalence of contours allows us to manipulate vector-valued

integrals in the standard way. For instance, suppose that the final point of τ1 equals
the initial point of τ2, and suppose f ∈ C(τ∗1 ∪ τ∗2 ). We can “concatenate” the two
contours into one longer contour τ satisfying

∫
τ
f(z)dz = ∫

τ1
f(z)dz + ∫

τ2
f(z)dz.
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Moreover, equation (2) shows that

∥∫
τ
f(z)dz∥ = ∥∫

β

α
f(τ(x))τ ′(x)dx∥

≤ ∥f∥∞ ∥∫
β

α
τ ′(x)dx∥

= ∥f∥∞ ∥τ∥,

where ∥f∥∞ = max{∥f(x)∥ ∶ x ∈ τ∗}, while ∥τ∥ = ∥ ∫
β
α τ

′(x)dx∥ is (by definition) the
length of τ∗. Note that this length is finite as τ ′ is piecewise continuous.

Finally, observe that as before, if T ∈ B(X,Y) for some Banach space Y, then

T (∫
τ
f(z)dz) = ∫

τ
(T ○ f)(z)dz.

3.4. Our present goal is to make sense of expressions of the form f(a), where
a ∈ A, a Banach algebra, and f is a function. An important question in this regard
is to find the largest set of functions for which f(a) makes sense. Clearly if p(z) =
∑nk=0 ckz

k is polynomial over the complex numbers, then

p(a) =
n

∑
k=0

ck a
k

can be defined in any unital Banach algebra which contains a. (If we also stipulate
that c0 = 0, then p(a) makes sense even if the algebra is not unital.)

Suppose now that the algebra A is unital, that p and q are polynomials over C,
and that 0 /∈ q(σ(a)). Then q(z) = β(Πm

k=1(z − λk)), where λk /∈ σ(a) for 1 ≤ k ≤ m,
so we can define r(z) = p(z)/q(z) as a holomorphic function on some neighbourhood
of σ(a) and

r(a) = p(a)β−1 (Πm
k=1(a − λk)

−1).
The question remains: can we do better than rational functions? For general

Banach algebras A and arbitrary elements a ∈ A, we are now in a position to develop
an holomorphic functional calculus: that is, we shall make sense of f(a) whenever
f is a function which is holomorphic on some neighbourhood of σ(a).

This is definitely not the only possible functional calculus that exists. For ex-
ample, later we shall see that if A is a C∗-algebra and n ∈ A is normal, then one can
develop a continuous functional calculus for n. As another example, if T ∈ B(H) is
a contraction, then an H∞ functional calculus is possible.

Recall from Complex Analysis the following:

3.5. Definition. If Γ is a finite system of closed contours in C and λ /∈ Γ, then
the index or winding number of Γ with respect to λ is

IndΓ(λ) =
1

2πi
∫

Γ

1

(z − λ)
dz,

and represents the number of times that Γ wraps around λ in the positive (i.e. coun-
terclockwise) direction.
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3.6. Theorem. [Cauchy’s Theorem] Let f be holomorphic on an open set
U ⊆ C, and let z0 ∈ U . Let Γ be a finite system of closed contours in U such that
z0 /∈ Γ, IndΓ(z0) = 1, and {z ∈ C ∶ IndΓ(z) /= 0} ⊆ U . Then

f(z0) =
1

2πi
∫

Γ

f(z)
(z − z0)

dz.

Furthermore,

∫
Γ
f(z)dz = 0.

3.7. Remarks.

● We shall say that a complex valued function f is holomorphic on a com-
pact subset K of C if f is holomorphic on some open subset U of C which
contains K.

● Let U ⊆ C be open and K ⊆ U be compact. Then there exists a finite
system of contours Γ ⊆ U such that
(a) IndΓ(λ) ∈ {0,1};
(b) IndΓ(λ) = 1 for all λ ∈K;
(c) {z ∈ C ∶ IndΓ(z) /= 0} ⊆ U .

The existence of such a system Γ is a relatively standard result from Com-
plex Analysis, and follows from the Jordan Curve Theorem. A proof can
be found in [13], although (to quote Conway himself [14]), “some details
are missing”.

In practice, the idea is to cover K by open disks of sufficiently small
radius so as to ensure that their closures still lie in U . Since K is presumed
to be compact, there will exist a finite subcover V by these disks. Modulo
some technicalities, the boundary of V will then yield the desired system Γ
of contours.

In fact, with a bit more work, one can even assume that Γ consists of a
finite system of infinitely differentiable curves [14], Proposition 4.4.

3.8. The Riesz-Dunford Functional Calculus. Let a ∈ A, a unital Banach
algebra, and fix U be an open subset of C such that σ(a) ⊆ U . Set

F(a) = {f ∶ U → C ∶ f is holomorphic}.
Choose a system Γ ⊆ U of closed contours such that

(1) IndΓ(λ) = 1 for all λ ∈ σ(a);
(2) {z ∈ C ∶ IndΓ(z) /= 0} ⊆ U .

We define

f(a) = 1

2πi
∫

Γ
f(z) (z − a)−1 dz.

The first question we must ask is whether or not this definition makes sense. As
stated, the definition appears to depend upon the choice of the system Γ and of U .
The following Theorem addresses this issue.
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3.9. Theorem. [The Riesz-Dunford Functional Calculus 01.] With the
above setting, f(a) is well-defined (i.e. independent of the choice of curves Γ), and
for f, g ∈ F(a), h ∈ F(f(a)), and λ ∈ C,

(i) (f + g)(a) = f(a) + g(a);
(ii) (λf)(a) = λ(f(a));
(iii) (fg)(a) = f(a) g(a);

Proof. First note that if U1 and U2 are two open sets containing σ(a), then so is
U ∶= U1 ∩U2. If Γ1 (resp. Γ2) is an eligible system of contours in U1 (resp. U2), then
it suffices to show that the integral along each of Γ1 and Γ2 agrees with the integral
along an eligible system of contours Γ contained in U . By symmetry, it suffices to
show that the integral along Γ1 agrees with the integral along Γ. Since U ⊆ U1, this
implies that the problem reduces to the case where Γ1 and Γ2 sit inside the same
open set U .

Let Γ1 and Γ2 be two eligible systems of contours. We must show that

b = 1

2πi
∫

Γ1

f(z)(z − a)−1 dz − 1

2πi
∫

Γ2

f(z)(z − a)−1 dz = 0.

By the Corollary to the Hahn-Banach Theorem [Corollary 1.19], it suffices to
show that x∗(b) = 0 for all x∗ ∈ A∗. Now

x∗(b) = 1

2πi
∫

Γ1−Γ2

f(z)x∗(z − a)−1 dz.

Also, f(z) is holomorphic on U , R(z, a) = (z − a)−1 is holomorphic on ρ(a) ⊇
Γ1, Γ2 and so x∗((z −a)−1) is holomorphic on ρ(a) for all x∗ ∈ A∗. So the integrand
is holomorphic on the open set U ∩ ρ(a). To apply Cauchy’s Theorem above, we
need only verify the index conditions.

If λ /∈ U , then we have IndΓ1(λ) = IndΓ2(λ) = 0, and therefore

IndΓ1−Γ2(λ) = IndΓ1(λ) − IndΓ2(λ) = 0.

If λ ∈ σ(a), then IndΓ1(λ) = IndΓ2(λ) = 1, therefore IndΓ1−Γ2(λ) = 0.

Thus {z ∈ C ∶ IndΓ1−Γ2(λ) /= 0} ⊆ U ∩ ρ(a) and so Cauchy’s Theorem applies,
namely:

x∗(b) = 1

2πi
∫

Γ1−Γ2

f(z)x∗(z − a)−1 dz = 0 for all x∗ ∈ A∗.

Thus b = 0 and so f(a) is indeed well-defined.

(i) (f + g)(a) = f(a) + g(a):
This follows for the linearity of the integral, and is left as an exercise.

(ii) (λf)(a) = λ(f(a)):
Again, this follows from the linearity of the integral.

(iii) (fg)(a) = f(a) g(a):
Now f and g are both holomorphic on some open set U ⊇ σ(a). Choose

two systems of contours Γ1 and Γ2 such that
(a) {z ∈ C ∶ IndΓi(z) /= 0} ⊆ U, i = 1,2;
(b) IndΓi(z) = 1 for all z ∈ σ(a), i = 1,2;
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(c) IndΓ1(z) = 1 for all z ∈ Γ2.
To get part (c), we choose Γ2 first and then choose Γ1 to lie “outside”

of Γ2. Then

f(a) g(a) = 1

2πi
∫

Γ1

f(z)(z − a)−1 dz
1

2πi
∫

Γ2

g(w)(w − a)−1 dw

= ( 1

2πi
)2∫

Γ1
∫

Γ2

f(z)g(w)(z − a)−1(w − a)−1 dw dz

= ( 1

2πi
)2∫

Γ1
∫

Γ2

f(z)g(w)( 1

w − z
)[(z − a)−1 − (w − a)−1]dz dw

= ( 1

2πi
)2∫

Γ1

f(z)(z − a)−1∫
Γ2

g(w)(w − z)−1 dw dz −(3)

( 1

2πi
)2∫

Γ2

g(w)(w − a)−1∫
Γ1

f(z)(w − z)−1 dz dw

= 1

2πi
∫

Γ2

g(w)(w − a)−1f(w)dw

= (fg)(a).

where the first integral in equation (3) is zero since z lies “outside” of Γ2

and g is holomorphic.

◻

3.10. Remark. Let a be an element of a unital Banach algebra A and let U
be an open set in the complex plane such that σ(a) ⊆ U . Let

H(U) = {f ∶ U → C ∶ f is holomorphic}.

From (i), (ii) and (iii) above, we conclude that the map:

Φ ∶ H(U) → A
f ↦ f(a)

is an algebra homomorphism. Moreover, for all a ∈ A and f, g ∈ H(U), we have
f(a)g(a) = g(a)f(a) since f(z)g(z) = g(z)f(z).

3.11. Proposition. Suppose A is a unital Banach algebra and that a ∈ A. Let
U ⊆ C be an open set containing σ(a), and let (fn)∞n=0 be a sequence of holomorphic
functions on U converging uniformly to f on compact subsets of U . Then f is also
holomorphic on U and

lim
n→∞

∥fn(a) − f(a)∥ = 0.

Proof. Choose an open set V with boundary Γ consisting of a finite number of
piecewise smooth curves such that σ(a) ⊆ V ⊆ V ⊆ U .
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Since (fn)∞n=0 converges uniformly on compact subsets of U , f is holomorphic
on U . Thus f ∈H(U) and (fn)∞n=0 converges uniformly to f on Γ. It follows that

∥fn(a) − f(a)∥ = ∥(1/2πi)∫
Γ
[fn(z) − f(z)](z − a)−1 dz∥

≤ (1/2π)K ∥Γ∥ ∥fn − f∥Γ,

where K = sup{∥(z − a)−1∥ ∶ z ∈ Γ}, ∥Γ∥ represents the arclength of the contour, and
∥fn −f∥Γ = sup{∣fn(z)−f(z)∣ ∶ z ∈ Γ}. Since both K and ∥Γ∥ are fixed and ∥fn −f∥Γ

tends to zero as n→∞, we obtain the desired conclusion.

◻

3.12. Theorem. [The Riesz-Dunford Functional Calculus 02.] Let A
be a unital Banach algebra and a ∈ A. If f(z) = ∑∞n=0 cnz

n converges to a function
holomorphic in a neighbourhood of σ(a), then f(a) = ∑∞n=0 cna

n.
Proof. Suppose f(z) = ∑∞n=0 cnz

n converges in DR({0}) ⊇ σ(a). Then consider the
curve Γ = {reiθ ∶ 0 ≤ θ ≤ 2π} for some r, spr(a) < r ≤ R and consider

f(a) = 1

2πi
∫

Γ
(
∞
∑
n=0

cnz
n) (z − a)−1 dz

= 1

2πi

∞
∑
n=0

cn∫
Γ
zn (z − a)−1 dz(4)

=
∞
∑
n=0

cnz
n(a),

where z(a) = 1
2πi ∫Γ z(z − a)

−1 dz is the identity function evaluated at a. Note that
(4) uses the uniform convergence of the series on Γ.

But

z(a) = 1

2πi
∫

Γ
z(z − a)−1 dz

= 1

2πi
∫

Γ

∞
∑
n=0

z−nan dz

=
∞
∑
n=0

an
1

2πi
∫

Γ
z−n dz(5)

=
∞
∑
n=0

an(δn1)(6)

= a.

Here (5) uses the uniform convergence of the series when ∣z∣ = r > spr(a), and (6)
uses the Residue Theorem. We can now apply induction on part (iii) of Theorem 3.9
to get zn(a) = (z(a))n = an, and so

f(a) =
∞
∑
n=0

cna
n,

as desired.
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◻

3.13. Corollary. [Dunford: The Spectral Mapping Theorem.] Let
a ∈ A, a unital Banach algebra and suppose that f is holomorphic on σ(a). Then

σ(f(a)) = f(σ(a)).

Proof. If λ /∈ f(σ(a)), then g(z) = (λ − f(z))−1 is holomorphic on σ(a). From the
functional calculus,

g(a) (λ − f(a)) = (g(z) (λ − f(z))) (a)
= 1(a)
= 1

= (λ − f(a)) g(a),

since everything commutes. Thus λ /∈ σ(f(a)).
If λ ∈ f(σ(a)), then λ − f(z) has a zero on σ(a), say at z0. As such,

λ − f(z) = (z0 − z)g(z)

for some function g which is holomorphic on σ(a). Via the functional calculus, we
obtain

λ − f(a) = (z0 − a)g(a),
and since (z0 − a) is not invertible and (z0 − a) commutes with g(a), we conclude
that λ − f(a) is not invertible either. Thus λ ∈ σ(f(a)).

Combining the two results, f(σ(a)) = σ(f(a)).
◻

3.14. Theorem. [The Riesz-Dunford Functional Calculus 03.] Suppose
that A is a unital Banach algebra, and that g is a complex-valued function which is
holomorphic on σ(a) while f is a complex-valued function which is holomorphic on
g(σ(a)). Then (f ○ g)(a) = f(g(a)).
Proof. Let V be an open neighbourhood of g(σ(a)) upon which f is holomorphic
and consider U = g−1(V ), an open neighbourhood of σ(a). Let Γ1 be a system of
closed contours in U such that

(a) IndΓ1(λ) = 1 for all λ ∈ σ(a);
(b) IndΓ1(λ) /= 0 implies that λ ∈ U .

Let Γ2 be a system of closed contours in V such that

(A) IndΓ2(β) = 1 for all β ∈ g(σ(a));
(B) IndΓ2(β) = 1 for all β ∈ g(Γ1);
(C) IndΓ1(β) /= 0 implies that β ∈ V .

(One can view Γ2 as lying “outside” of g(Γ1) in V .)
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Then

(f ○ g)(a) = 1

2πi
∫

Γ1

(f ○ g)(z)(z − a)−1 dz

= 1

2πi
∫

Γ1

f(g(z))(z − a)−1 dz

= 1

2πi
∫

Γ1

1

2πi
∫

Γ2

f(w)(w − g(z))−1 dw (z − a)−1 dz

= 1

2πi
∫

Γ2

f(w) 1

2πi
∫

Γ1

(w − g(z))−1(z − a)−1 dz dw

= 1

2πi
∫

Γ2

f(w)(w − g(a))−1 dw

= f(g(a)).
◻

3.15. Corollary. [The Riesz Decomposition Theorem.] Let a ∈ A, a
unital Banach algebra, and suppose that ∆ is a non-trivial, relatively closed and
open subset of σ(a).

(i) There exists a non-trivial idempotent E(∆) in A which commutes with a;
(ii) If A ⊆ B(X) for some Banach space X, then E(∆)X and (I −E(∆))X are

complementary subspaces invariant under a.
(iii) Let a∆ = a∣E(∆)X. Then σ(a∆) = ∆. Moreover, for any function f which is

holomorphic on σ(a), we have f(a∆) = f(a)∣E(∆)X.

Proof.

(i) Consider an holomorphic function g such that g ≡ 1 on ∆ and g ≡ 0 on
σ(a) ∖ ∆. Let E(∆) = g(a). Then g2 = g and so E2(∆) = g2(a) = g(a) =
E(∆) is an idempotent. Note that E(∆) /= 0 since 1 ∈ σ(g(a)) = g(σ(a)).
Similarly, E(∆) /= I as 0 ∈ σ(g(a)) = g(σ(a)).

Since zg(z) = g(z)z, E(∆) commutes with a.
(ii) Let X be a Banach space and assume that A ⊆ B(X). Then E(∆)X =

ker (I −E(∆)) is closed, as is (I −E(∆))X = ker E(∆). Clearly

X = E(∆)X + (I −E(∆))X.
Moreover, if y ∈ E(∆)X ∩ (I −E(∆))X, then

y = E(∆)y = E(∆) (I −E(∆))y = 0.

Thus E(∆)X and (I −E(∆))X are complementary. Finally, let x ∈ E(∆)X.
Then ax = aE(∆)x = E(∆)ax ∈ E(∆)X. Therefore E(∆)X is invariant
under a, as is (I −E(∆))X.

(iii) First we show that σ(a∆) ⊆ ∆.

If λ /∈ ∆, let

h(z) = { (λ − z)−1 for z in a neighbourhood of ∆
0 for z in a neighbourhood of σ(a) ∖∆.
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Then h(z)(λ − z) = g(z). Thus h(a)(λ − a) = g(a) = E(∆). Now h(a)
leaves E(∆)X and (I−E(∆))X invariant (since h(a) commutes with g(a)).
If Rλ ∶= h(a)∣E(∆)X, then

Rλ(λ − a∆) = (λ − a∆)Rλ = IE(∆)X,

so that λ ∈ ρ(a∆), i.e. σ(a∆) ⊆ ∆.

Suppose now that λ ∈ ∆ ∩ ρ(a∆), so that for some b ∈ B(E(∆)X), we
have

b (λ − a∆) = (λ − a∆) b = IE(∆)X.

Let

k(z) = { (λ − z)−1 for z in a neighbourhood of σ(a) ∖∆
0 for z in a neighbourhood of ∆.

Then
k(a)(λ − a) = (λ − a)k(a) = I −E(∆).

Define r = k(a) + bE(∆). Then

r (λ − a) = k(a) (λ − a) + bE(∆) (λ − a)
= (I −E(∆)) + b (λ − a∆)E(∆)
= (I −E(∆)) +E(∆)
= I.

Similarly, (λ − a) r = I, and so λ ∈ ρ(a), a contradiction. We conclude that
σ(a∆) = ∆.

Finally, suppose that f is holomorphic on σ(a). Then for an eligible
system Γ of contours we obtain

f(a∆) = 1

2πi
∫

Γ
f(λ)(λ − a∆)−1 dλ

= 1

2πi
∫

Γ
f(λ)(λ − a)−1∣E(∆)X dλ

= 1

2πi
(∫

Γ
f(λ)(λ − a)−1 dλ) ∣E(∆)X

= f(a)∣E(∆)X.

◻
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Supplementary Examples

S3.1. Example. One of the most important questions in operator theory is the
question of whether every continuous linear operator T ∈ B(H) acting on an infinite-
dimensional, separable Hilbert space admits a non-trivial invariant subspace, that
is, a closed subspaceM ⊆H (other than the trivial spaces {0} andH itself) for which
m ∈M implies that Tm ∈M.

The Riesz Decomposition Theorem 3.15 shows that if T ∈ B(H) and σ(T ) is not
connected, then T immediately admits a non-trivial invariant subspace, namely the
range of the Riesz idempotent determined by that Theorem.

Thus it suffices to consider operators with connected spectrum. Even in the case
where σ(T ) = {0} is a singleton set, the answer is not known.

S3.2. Example. Let n ∈ N and suppose that J ∈ Mn(C) ≃ B(Cn) is a Jordan
cell relative to the standard orthonormal basis for Cn. Then Jn = 0, from which we
deduce that σ(J) = 0. Let α ∈ C and set T ∶= αIn + J , so that σ(T ) = {α}.

Suppose now that U is an open nbhd of σ(T ) and that f ∶ U → C is a holomorphic
function. Then f is analytic on U , implying that for some δ > 0, f admits a power
series representation centred at α on the disc B(λ, δ) ∶= {z ∈ C ∶ ∣z − λ∣ < δ}, say

f(z) =∑
k

ak(z − α)k for all z ∈ B(λ, δ).

It follows that

f(T ) =∑
k

ak(T − αIn)k =∑
k

akJ
k = a0In + a1J + a2J

2 +⋯ + an−1J
n−1.

We leave it to the interested reader to ponder how one goes from calculating
f(T ) for operators T = αIn +J as above to calculating f(X) for general elements of
X ∈ B(Cn).

S3.3. Example. Suppose that T ∈Mn(C) is a diagonalisable operator ; that is,
suppose that there exists an invertible operator S ∈ GLn(C) such that

D = S−1TS

admits a diagonal matrix D = diag(d1, d2, . . . , dn) relative to the standard orthonor-
mal basis for Cn. Let U be an open nbhd of σ(T ) = σ(D) = {dk}nk=1.

An innocuous-looking comment at the end of Paragraph 3.3 shows that

f(T ) = 1

2πi
∫

Γ
f(z)(zI − T )−1dz

= S ( 1

2πi
∫

Γ
f(z)(zI −D)−1dz)S−1

= Sf(D)S−1.

The calculation of f(D) is now simple; f(D) = diag(f(d1), f(d2), . . . , f(dn)). There
are details to fill in to justify the above statements, and these are left to the reader.
Once we have f(D), we clearly have f(T ).
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Appendix

A3.1. The Riesz-Dunford functional calculus made its first appearance in a pa-
per of Riesz [47]. In his case, he studied only compact operators acting on a Hilbert
space H, and then the only functions he considered were the characteristic functions
of an isolated point of the spectrum of the given operator. Indeed, alongside a num-
ber of related results by a number of authors, it was Dunford who presented the work
in its most complete form. Recently, Conway and Morrel [17] and again Conway,
Herrero and Morrel [16] have considered what might be termed a “converse” to the
Riesz-Dunford functional calculus.

A3.2. As we have seen, in the Riesz-Dunford functional calculus, one begins
with an element a of a unital Banach algebra A and considers the class F(a) of
functions f which are analytic on some open neighbourhood of the spectrum of a.
One then obtains an algebra homomorphism

τ ∶ F(a) → A
f ↦ f(a).

In the Conway, Herrero and Morrel approach, one begins with a subset ∆ of the
complex plane C, and the class S(∆) of operators T acting on a separable Hilbert
space H and satisfying σ(T ) ⊆ ∆.

The aim of their program is to determine f(S(∆)) = {f(T ) ∶ T ∈ S(∆)}, where
f ∶ ∆→ C is a fixed analytic function. As an example, suppose ∆ = D so that S(∆)
contains an appropriate scalar multiple of every bounded linear operator on H. If
f(z) = z2, then Cf(S(∆)) coincides with the set of all operators possessing a square
root. However, as noted in the Conway and Morrel paper [17], this proves beyond
the scope of present day operator theory, even for such simple functions as f(z) = zp
or f(z) = ez. Because of this, they study the norm closure in B(H) of the set S(∆).
This allows them to employ the elaborate machinery of the Similarity Theorem for
Hilbert space operators, developed by Apostol, Herrero, and Voiculescu [2]. This
theorem and its many consequences detail the structure of the closure of many
similarity invariant subsets of B(H). In particular, much of the analysis may be

applied to f(S(∆)), which is itself similarity invariant.

Examples of results found in [16] are:

● If f(S(∆)) = B(H), then f(S(∆)) = B(H).
● If ∆ = C and f(z) = z sin z or f(z) = Π∞

n=1(1−a/n2), then f(B(H)) = B(H).
● Let ∆ = {z ∈ C ∶ z /= 2} and f(z) = z2(2 − z). If U(= S∗) is the unilateral

forward shift operator (cf. Example 7.9 below), then U ⊕U ∈ f(S(∆)), but

U ∉ f(S(∆)). On the other hand, U ⊕ 0 ∈ f(S(∆)).



48 3. THE HOLOMORPHIC FUNCTIONAL CALCULUS

Exercises for Chapter 3

Exercise 3.1. Exponentials
Let A be a unital Banach algebra, and let a, b ∈ A, and exp(z) = ez, z ∈ C.

(a) If ab = ba, prove that exp(a) exp(b) = exp(a + b).
(b) Does this necessarily hold if ab ≠ ba?

Exercise 3.2. The functional calculus - an example

Let A =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

2 1 0
0 2 0
0 0 3

⎤⎥⎥⎥⎥⎥⎦
be two elements of M3(C).

Let

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 −4 0 0
0 4 −1 0 −4 2
0 0 6 0 0 −6
2 0 0 −2 1 0
0 2 −1 0 −2 2
0 0 3 0 0 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈M6(C).

(a) Let exp(z) = ez, z ∈ C. Find exp(T ).

Hint. S ∶= [1 2
1 1

] is invertible and

[1 2
1 1

] [x 0
0 y

] [−1 2
1 −1

] = [−x + 2y 2x − 2y
−x + y 2x − y ] .

(b) Let g(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if ∣z∣ < 1
2

0 if ∣z − 2∣ < 1
2

0 if ∣z − 3∣ < 1
2

. Find g(T ).

Exercise 3.3. Idempotents from the functional calculus
Let a and b be two elements of a unital Banach algebra A. Suppose that σ(a)

is a disjoint union of two non-empty compact sets σ0 and σ1. Let Γ be a system of
closed contours in C such that σk ∩ Γ∗ = ∅, k = 1,2 and IndΓ(z) = 1 for all z ∈ σ1;
IndΓ(z) = 0 for all z ∈ σ0.

Prove that

f ∶= 1

2πi
∫

Γ
(z1 − a)−1dz

is an idempotent in A. That is, f = f2.

Exercise 3.4. Square roots
If a ∈M2(C), does there exist b ∈M2(C) such that b2 = a? More generally, under

what circumstances does a ∈Mn(C) have a square root?
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Exercise 3.5. More square roots
Let H be a Hilbert space with orthonormal basis {en}∞n=1. Let S be the operator

satisfying Sen = en+1 for all n ≥ 1. (Extend S by linearity and continuity to all of
H.) Does there exist B ∈ B(H) such that B2 = S?

Exercise 3.6. Laurenttm series expansions
Let X be a Banach space and let G ⊆ C be an open set which contains an open

annulus
Ar1,r2(λ0) ∶= {z ∈ C ∶ r1 < ∣z − λ0∣ < r2}.

Prove that there exists a unique sequence (yn)n∈Z ⊆ X such that for all z ∈ Ar1,r2(λ0),
f(z) = ∑

n∈Z
(z − λ0)nyn.

(On Ar1,r2(λ0), the series is norm-convergent.)

Hint. Let ρ ∈ (r1, r2) be a real number and set Γ(θ) ∶= λ0 + ρe2πiθ, θ ∈ [0,1]. Show
that one can take

yn =
1

2πi
∫

Γ

f(z)
(z − λ0)n+1

dz, n ∈ Z.





CHAPTER 4

The spectrum

Ordinarily he is insane. But he has lucid moments when he is only
stupid.

Heinrich Heine

Basic theory

4.1. Spectrum relative to a subalgebra. Suppose that A and B are Banach
algebras with 1 ∈ A ⊆ B. For a ∈ A, we have have two notions of spectrum, namely:

σA(a) = {λ ∈ C ∶ (λ1 − a)−1 /∈ A}

and

σB(a) = {λ ∈ C ∶ (λ1 − a)−1 /∈ B}.
In general, it is clear that σB(a) ⊆ σA(a). Our present intention is to exhibit a
closure relation between the two spectra.

4.2. Example. Let B = C(T), where T = {z ∈ C ∶ ∣z∣ = 1} is the unit circle in the
complex plane. Let A = A(D) be the disk algebra defined in Example 2.5. By the
same Example, A ⊆ B.

Let f be the identity function f(z) = z, so that clearly f ∈ A. Then ∥f∥ = 1, so
that σA(f), σB(f) ⊆ D. Now if ∣λ∣ < 1, then the function gλ(z) = 1

λ−z /∈ A(D), and so
λ ∈ σA(f). Since the spectrum of an element is always compact and hence closed,
σA(f) = D.

In contrast, gλ ∈ B = C(T), so that σB(f) ⊆ T. If ∣λ∣ = 1, then gλ is clearly not
continuous on the circle, so that λ ∈ σB(f). We conclude that σB(f) = T.

This example proves to be prototypical of the phenomenon we wish to explore.

4.3. Definition. Let A be a Banach algebra. An element a ∈ A is said to be a
right topological divisor of zero if there exists a sequence (xn)n ⊆ A, ∥xn∥ = 1
for all n ≥ 1 such that

lim
n
xna = 0.

51
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Similarly, we say that a ∈ A is a left topological divisor of zero if there exists a
sequence (xn)n ⊆ A, ∥xn∥ = 1 for all n ≥ 1 such that

lim
n
axn = 0.

Finally, we say that a ∈ A is a joint topological divisor of zero if there exists a
sequence (xn)n ⊆ A, ∥xn∥ = 1 for all n ≥ 1 such that

lim
n

(axn + xna) = 0.

4.4. Theorem. Let A be a unital Banach algebra and let a ∈ ∂(A−1). Then a
is a joint topological divisor of zero.
Proof. Since a ∈ ∂(A−1), there exists a sequence (bn)n ⊆ A−1 such that limn bn = a.
Now we claim that the set {∥b−1

n ∥}∞n=1 is unbounded, for if ∥b−1
n ∥ ≤M for some M > 0

and for all n ≥ 1, then

∥b−1
n − b−1

m ∥ = ∥b−1
n (bm − bn)b−1

m ∥
≤ M2 ∥bm − bn∥.

Thus (b−1
n )n is a Cauchy sequence. Let c = limn b

−1
n . Then by the continuity of

inversion, c = a−1 and so a ∈ A−1. But A−1 is open, which contradicts the fact that
a ∈ ∂(A−1).

Next, by choosing a suitable subsequence of (bn)n and reindexing if necessary,
we may assume that ∥b−1

n ∥ ≥ n, n ≥ 1. Let xn = b−1
n /∥b−1

n ∥ for each n, and

∥axn∥ = ∥(a − bn)xn + bnxn∥
≤ ∥(a − bn)xn∥ + ∥b−1

n ∥−1.

Thus limn axn = 0, and similarly, limn xna = 0.

◻

As an immediate Corollary to this, we obtain the following.

4.5. Corollary. Let A be a Banach algebra and a ∈ A. If λ ∈ ∂(σ(a)), then
(a − λ) is a joint topological divisor of 0.

4.6. Proposition. Let A be a Banach algebra and suppose that a ∈ A is a joint
topological divisor of 0 in A. Then 0 ∈ σA(a).
Proof. Suppose that there exists b = a−1 ∈ A. Take (xn)n ∈ AN, ∥xn∥ = 1 for all
n ≥ 1, such that limn axn = 0. Then

∥xn∥ = ∥b axn∥ ≤ ∥b∥ ∥axn∥

so that limn ∥xn∥ = 0, a contradiction.

◻



BASIC THEORY 53

We note that if a ∈ A is a joint topological divisor of 0 in A, and if B is a Banach
algebra containing A, then a is a joint topological divisor of 0 in B, and so 0 ∈ σB(a)
as well.

4.7. Proposition. Let A and B be Banach algebras and suppose a ∈ A ⊆ B.
Then

(i) σB(a) ⊆ σA(a); and
(ii) ∂(σA(a)) ⊆ σB(a).

Proof.

(i) Immediate.
(ii) If λ ∈ ∂(σA(a)), then a − λ is a topological divisor of 0 in A and so a − λ is

not invertible in B, by Proposition 4.6.

◻

4.8. Remark. The conclusion of Proposition 4.7 is that the most that can
happen to the spectrum of an element a when passing to a subalgebra that contains
a is that we “fill in” the “holes” of the spectrum, that is, the bounded components
of the resolvent of a in the larger algebra.

4.9. Theorem. Let B be a Banach algebra and a ∈ B. Let Ω be a subset of ρB(a)
which has non-empty intersection with each bounded component of ρB(a). Finally,
let A be the smallest closed subalgebra of B containing 1, a, and (λ − a)−1 for each
λ ∈ Ω. Then σA(a) = σB(a).
Proof. Choose φ ∈ B∗ so that φ(x) = 0 for all x ∈ A. Define the function

hφ ∶ ρB(a) → C
z ↦ φ((z − a)−1)

so that hφ is holomorphic on its domain. We shall now show that hφ ≡ 0. Since this
is true for all φ ∈ B∗ that annihilates A, we can then invoke Corollary 1.19 to obtain
the desired result.

Now if ∣z∣ > spr(a), then

(z − a)−1 =
∞
∑
n=0

z−n−1an

converges uniformly and thus (z − a)−1 ∈ A. Hence hφ(z) ≡ 0 for all z, ∣z∣ > spr(a).
Thus hφ ≡ 0 on the unbounded component of ρB(a).

If λ ∈ Ω lies in a bounded component of ρB(a), then note that

(z − a) = (λ − a) (1 − (λ − z) (λ − a)−1).

Thus if ∣λ − z∣ < ∥(λ − a)−1∥−1, we have

(z − a)−1 =
∞
∑
n=0

(λ − z)n (λ − a)−n−1
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which converges in norm and therefore lies in A. As such, hφ ≡ 0 on an open
neighbourhood of λ and so hφ ≡ 0 on the entire component of ρB(a) containing λ.

Since Ω intersects every bounded component of ρB(a), hφ ≡ 0 on ρB(a). As
this is true for all φ ∈ B∗ which annihilates the closed subspace A, we conclude that
(z−a)−1 ∈ A for all z ∈ ρB(a). That is, ρA(a) = ρB(a), or equivalently, σA(a) = σB(a).

◻
It is worth pointing out that what we have shown is that A coincides with the

closed algebra generated by 1, a, and (z − a)−1 for all z ∈ ρB(a); in other words,
the algebra generated by the rational functions with poles outside of σB(a). This
algebra is often denoted by Rat(a) in the literature.

4.10. Definition. If B is a Banach algebra, then a subalgebra A of B is said
to be a maximal abelian subalgebra if it is commutative and it is not properly
contained in any commutative subalgebra of B.

4.11. Example. Let 2 ≤ n ∈ N and H = Cn. Fix an orthonormal basis {ek}nk=1
for H and let J ∈ B(Cn) ≃ Mn(C) be the Jordan cell relative to this basis; i.e. J is
the unique element of B(Cn) defined by Je1 = 0 and Jek = ek−1, 2 ≤ k ≤ n.

Then A ∶= Alg(J) = {∑n−1
k=0 αkJ

k ∶ αk ∈ C,0 ≤ k ≤ n − 1} is a maximal abelian
subalgebra of B(Cn). The verification of this is left to the reader.

4.12. Proposition. Let B be a unital Banach algebra, and suppose that A is a
maximal abelian subalgebra of B. Then σA(a) = σB(a) for all a ∈ A.
Proof. First observe that 1 ∈ A, for otherwise the algebra generated by 1 and A is
abelian and properly contains A, a contradiction.

Clearly σB(a) ⊆ σA(a). Suppose that λ ∈ ρB(a). Then for all c ∈ A, c (a − λ1) =
(a−λ1) c. If we let b = (a−λ1)−1 ∈ B, then multiplying this equation on the left and
the right by b yields b c = c b for all c ∈ A. Thus b ∈ A, as A is maximal abelian. In
other words, λ ∈ ρA(a), and we are done.

◻

The upper-semicontinuity of the spectrum

4.13. We now turn to the question of determining in what sense the map that
sends an element a of a Banach algebra A to its spectrum σ(a) ⊆ C is continuous.

To do this, we shall first define a new metric on the collection of compact subsets
of C, called the Hausdorff metric. Our usual notion of distance between two compact
sets A and B is

dist(A,B) ∶= inf{∣a − b∣ ∶ a ∈ A, b ∈ B}.
Of course, if A = {a} is a singleton , we simply write dist(a,B).

The problem (for our purposes) with this distance is the following. If we let
A = {0} and B = D, the closed unit disk, then dist(A,B) = 0. We are looking for a
notion of distance that indicates how far two subsets of C are from being identical.
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4.14. Definition. Given two compact subsets A and B of C, we define the
Hausdorff distance between A and B to be

dH(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b,A)}.

We remark that the Hausdorff distance between {0} and D is 1.

4.15. Definition. Let X and Y be topological spaces and let Φ ∶ X → P(Y ) be
a function, where P(Y ) denotes the power set of Y . The mapping Φ is said to be
upper-semicontinuous if for every x0 ∈ X and every neighbourhood U of Φ(x0)
in Y , there exists a neighbourhood V of x0 such that Φ(x) ⊆ U for all x ∈ V .

4.16. Theorem. [The upper-semicontinuity of the spectrum.] Let A be
a Banach algebra. Then the mapping

Φ ∶ A → P(C)
a ↦ σ(a)

is upper-semicontinuous.
Proof. We must show that if U is an open set in C containing σ(a), then there
exists δ > 0 such that ∥x − a∥ < δ implies σ(x) ⊆ U .

Suppose otherwise. Then by choosing δn = 1/n, n ≥ 1, we can find xn ∈ A with
∥xn − a∥ < δn and λn ∈ σ(xn) ∩ (C ∖ U). Since ∣λn∣ ≤ spr(xn) ≤ ∥xn∥ ≤ ∥a∥ + 1/n ≤
∥a∥ + 1, we know that the sequence (λn)n is bounded, and so by the Bolzano-
Weierstraß Theorem (by dropping to a subsequence if necessary), we may assume
that λ = limn λn exists.

Clearly λ ∉ U as λn ∉ U, n ≥ 1, and C ∖ U is closed. Thus λ − a ∈ A−1. Since
λ− a = limn→∞ λn − xn and A−1 is open, we must have λn − xn ∈ A−1 for some n ≥ 1,
a contradiction.

This completes the proof.

◻

It is worth noting that the map Φ above need not in general be continuous.
For example, it is possible to find a sequence (Qn)∞n=1 of Hilbert space operators
such that σ(Qn) = {0} for each n ≥ 1, converging to an operator T ∈ B(H) with
σ(T ) = {z ∈ C ∶ ∣z∣ ≤ 1}.

The above theorem, while basic, is of extreme importance in the theory of ap-
proximation of Hilbert space operators. While this result in itself is sufficient for
a large number of applications, sometimes we require a stronger result; one which
implies the upper-semicontinuity of the “parts” or components of the spectrum.

The theorem we have in mind is due to Newburgh (see Theorem 4.18 below), and
as a corollary we obtain a class of elements for which the spectrum is continuous, as
opposed to just semi-continuous. We begin with the following proposition.
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4.17. Proposition. Let a ∈ A, a unital Banach algebra, and let (an)n ⊆ A be a
sequence such that a = limn an. Let U ⊇ σ(a) be open and suppose

(i) σ(an) ⊆ U for all n ≥ 1;
(ii) f ∶ U → C is analytic.

Then limn f(an) = f(a).
Note: Condition (i) can always be obtained simply by applying Theorem 4.16 and
dropping to an appropriate subsequence.
Proof. Let V ⊆ C be an open subset satisfying σ(a) ⊆ V ⊆ V ⊆ U . Without loss of
generality, we may assume σ(an) ⊆ V for all n ≥ 1. Let Γ be a finite system of closed
contours satisfying

(a) IndΓ(λ) = 1 for all λ ∈ V ;
(b) {z ∈ C ∶ IndΓ(z) /= 0} ⊆ U .

Then f(a), f(an) are all well-defined. Moreover,

∥f(a) − f(an)∥ = ∥ 1

2πi
∫

Γ
f(z)(z − a)−1 − f(z)(z − an)−1 dz∥

= 1

2π
∥∫

Γ
f(z) ((z − a)−1 − (z − an)−1) dz∥

≤ 1

2π
∥Γ∥ ∥f∥Γ sup

z∈Γ
∥(z − a)−1 − (z − an)−1∥,

where ∥Γ∥ denotes the arclength of Γ, and ∥f∥Γ = sup{∣f(z)∣ ∶ z ∈ Γ}.
Since inversion is continuous and Γ is compact, the latter quantity tends to 0 as

n tends to infinity, and so we obtain

lim
n→∞

∥f(a) − f(an)∥ = 0.

◻

4.18. Theorem. [Newburgh.] Let A be a unital Banach algebra and a ∈ A.
Suppose that U and V are two disjoint open sets such that σ(a) ⊆ U ∪ V and that
σ(a) ∩U /= ∅. Then there exists δ > 0 such that ∥x − a∥ < δ implies σ(x) ∩U /= ∅.
Proof. By the upper-semicontinuity of the spectrum, there exists ε > 0 such that
∥x − a∥ < ε implies σ(x) ⊆ U ∪ V . Suppose that our assertion is false. Then there
exists a sequence (xn)n ⊆ A satisfying

(a) limn→∞ xn = a; and
(b) σ(xn) ⊆ V .

Consider the function f ∶ U ∪ V → C defined to be 1 on U and 0 on V . Then f is
clearly analytic on U ∪ V , and so by Proposition 4.17, limn ∥f(a) − f(xn)∥ = 0. But
f(xn) = 0 for all n ≥ 1, and 1 ∈ f(σ(a)) = σ(f(a)). Thus f(a) /= 0, a contradiction.
We conclude that the assertion holds.

◻
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It follows that if (an)n=1 is a sequence in a Banach algebra A converging to an
element a ∈ A, and if σ(an) is connected for each n ≥ 1, then σ(a) is connected.
While this is an easy consequence of Newburgh’s Theorem, it is a useful one.

4.19. Corollary. [Newburgh.] Suppose that A is a unital Banach algebra and
that σ(a) is totally disconnected. Then the map a↦ σ(a) is continuous at a.
Proof. Let ε > 0. Since σ(a) is totally disconnected, we can find a cover of σ(a)
consisting of disjoint open sets U1, U2, . . . , Un, each of which intersects σ(a) non-
trivially and has diameter less than ε. By the upper-semicontinuity of the spectrum,
there exists δ1 > 0 such that ∥x − a∥ < δ1 implies σ(x) ⊆ ∪nj=1Uj .

By Newburgh’s Theorem 4.18, there exists δ2 > 0 such that ∥x − a∥ < δ2 implies
that σ(x) ∩Uj /= ∅, 1 ≤ j ≤ n. Thus the Hausdorff distance

dH(σ(a), σ(x)) < ε
for all x ∈ A, ∥x − a∥ < min(δ1, δ2), implying that the map a ↦ σ(a) is indeed
continuous at a.

◻
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Supplementary Examples

S4.1. Example. Let H = `2 with orthonormal basis {en}n. Let {dn}n be a
dense subset of D, and define an operator D ∈ B(H)) via Den = dnen, n ≥ 1. (We let
the reader verify that such an operator exists and is unique.) We invite the reader
to check that σ(D) = D. (Unless we explicitly specify otherwise, when considering
an operator T ∈ B(H), the spectrum σ(T ) will always refer to the spectrum relative
to B(H).)

It can be shown that there exists a sequence (Mn)n of nilpotent operators (i.e.
Mkn
n = 0 for an appropriate choice of kn ∈ N) such that N = limnMn. By the Spectral

Mapping Theorem, σ(Mn) = {0} for all n ≥ 1.
From this we see that the map T ↦ σ(T ) is far from continuous. We should

definitely learn to appreciate the upper semicontinuity of the spectrum a bit more.

S4.2. Example. More generally, let K ⊆ C be an arbitrary non-empty compact
set, and let {dn}n be a countable (possibly finite if K is) dense subset of K. As in
the above example, let H = `2 with orthonormal basis {en}n. Define an operator
D ∈ B(H)) via Den = dnen, n ≥ 1. (Once again, e let the reader verify that such an
operator exists and is unique.) We invite the reader to check that σ(D) =K.

In other words, any compact subset of C serves as the spectrum of some operator
on H.

S4.3 Example. As we shall see in greater detail below, the set K(H) of compact
operators on a separable Hilbert space forms the only non-trivial ideal of B(H).
Ideals are generally thought of as being “small” in some sense. In this case, we shall
also discover that K(H) is the closure of the set F(H) of finite-rank operators on
H, and as such, this gives a measure of how small K(H) is.

Given T ∈ B(H), therefore, an operator T + K is referred to as a compact
perturbation of T , and is thought of as “affecting T mostly on a finite-dimensional
space”. The impact upon the spectrum of T , however, can still be huge. For example,
let H = `2(Z) with orthonormal basis {en}n∈Z. The map U defined by setting
Uen = en+1 for all n extends by linearity and continuity to a bijective isometry (i.e.
a unitary operator) on H. We invite the reader to verify that σ(U) = T.

If we set K = e1 ⊗ e∗0 , where for x, y ∈ H we define x ⊗ y∗(z) = ⟨z, y⟩x, then K
is a rank-one operator and U −K can be shown to have spectrum equal to the unit
disc D. (In fact, U −K is unitarily equivalent to S ⊕ S∗, where S is the unilateral
forward shift we shall encounter later.)
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Appendix

A4.1. Analysis of the spectrum and the functional calculus are key ingredients
in Single Operator Theory, where one is often interested in studying a class of
operators which may or may not possess an algebraic structure. For instance, on
may begin with the set of algebraic operators on H,

alg ∶= {T ∈ B(H) ∶ p(T ) = 0 for some polynomial p}.

The characterisation of the norm-closure of this set in B(H) was obtained in the
1970s by D. Voiculescu [52] in terms of spectral conditions. More precisely, he
showed that

alg = {T ∈ B(H) ∶ dim ker(T − λ) = codim ran(T − λ) ∀λ ∈ ρsF(T )}

Here, ρsF(T ) denotes the semi-Fredholm domain of T . It is defined as the set of
complex numbers for which the range of T is closed, and at least one of dim kerT
or codim ranT is finite.

A4.2. Another important notion of relative spectrum is that of the spectrum of
the image of an element in a quotient algebra. As we have seen in Proposition 2.17,
if K is a closed ideal of a Banach algebra A, then A/K is a Banach algebra with
respect to the quotient norm. Letting π denote the canonical projection map, it is
clear that if a ∈ A, then σA/K(π(a)) ⊆ σA(a).

One particular instance of quotient algebras deserves special mention. Recall
from Example 2.18 that the quotient algebra Q of B(H) by K(H) is referred to
as the Calkin algebra. If T ∈ B(H), and π is the canonical homomorphism from
B(H) to Q, then the spectrum of π(T ) is called the essential spectrum of T , and
is often denoted by σe(T ). In this connection, two of the most important results
concerning the spectrum are:

Theorem. [The Putnam-Schechter Theorem] Let H be a Hilbert space and
T ∈ B(H). Suppose λ ∈ ∂(σ(T )). Then either λ is isolated, or λ ∈ σe(T ).

Corollary. Let T ∈ B(H). Then σ(T ) = σe(T ) ∪ Ω, where Ω consists of some
bounded components of the resolvent of π(T ), and a sequence of isolated points in
ρ(π(T )) converging to σe(T ).

Proofs of the above results appear in Appendix A.

A4.3. The upper-semicontinuity of the spectrum and Newburgh’s Theorem are
very powerful and useful tools, especially in the theory of approximation of Hilbert
space operators. For example, in the 1970’s Paul Halmos asked: what is the norm-
closure in B(H) of the set

nil ∶= {M ∈ B(H) ∶Mk = 0 for some k ≥ 1}

of all nilpotent operators in B(H)?
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Using Newburgh’s Theorem, one sees that the spectrum of an operator T ∈ nil
must be connected. The fact that the invertible operators in B(H) form an open
set implies that 0 ∈ σ(T ).

If T = limnMn, where Mn ∈ nil for all n ≥ 1 (say Mkn
n = 0 for appropriately

chosen kn ∈ N) and if π ∶ B(H) → Q(H) is the canonical quotient map of B(H) into
the Calkin algebra, then π(T ) = limn π(Mn), and π(Mn)kn = π(Mkn

n ) = π(0) = 0,
and so π(T ) is a limit of nilpotent elements of the Calkin algebra. Applying the
above analysis to π(T ) shows that σe(T ) ∶= σ(π(T )) is connected and contains the
origin as well.

The question was finally answered in 1976 by C. Apostol, C. Foiaş, and D.
Voiculescu [4]. They obtained the result:

Theorem. [Apostol, Foiaş and Voiculescu] An operator T ∈ B(H) belongs to
the closure of the set of nilpotent operators if and only if

(a) σ(T ) is connected and contains {0};
(b) σe(T ) is connected and contains {0}; and
(c) dim ker(T − λ) = codim ran(T − λ) ∀λ ∈ ρsF(T ).

An earlier result due to D.A. Herrero [27] showed that a normal operator N
is a limit of nilpotent operators if and only if σ(N) is connected and contains {0}.

A4.4. There are other results concerning the continuity of the spectrum and
of the spectral radius of Banach algebra elements. In particular, Murphy [37] has
obtained the following results.

Suppose that K ⊆ C is compact, and A is a unital Banach algebra. Define
α(K) = sup{infλ∈C ∣λ∣ ∶ C a component of K} and r(K) = supλ∈K ∣λ∣. Then α(K) ≤
r(K). Let D be a diagonal operator on B(`2(N)); that is, if {en}∞n=1 denotes an
orthonormal basis for `2(N), then Den = dnen for some bounded sequence {dn}∞n=1

of complex numbers.

Proposition. [Murphy] The following statements are equivalent:

(i) Every element of every unital Banach algebra A with spectrum K is a point
of continuity of the function a↦ σA(a);

(ii) α(K) = r(K);
(iii) D is a point of continuity of the function T ↦ σB(H)(T ).

As for the spectral radius, let

K0 = {λ ∈K ∶ the component of λ in K is {λ}}.
Thus K =K0 if and only if K0 is totally disconnected.
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Proposition. [Murphy] The following statements are equivalent:

(i) Every element of every unital Banach algebra A with spectrum K is a point
of continuity of the function a↦ sprA(a);

(ii) K =K0;
(iii) D is a point of continuity of the function T ↦ sprB(H)(T );

(iv) For each ε > 0 and for each λ ∈ K, B(λ, ε) = {µ ∈ C ∶ ∣µ − λ∣ < ε} contains a
component of K.
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Exercises for Chapter 4

Exercise 4.1. Joint topological divisors of zero
Here’s a question to which I do not know the answer (in part because it’s just

occurred to me and I haven’t given it much thought). Suppose that A is a Banach
algebra and a ∈ A is both a left- and a right-topological divisor of zero. Is a a joint
topological divisor of zero?

The issue is that the sequences (xn)n and (yn)n from A such that

lim
n
xna = 0 = lim

n
ayn

could potentially be different.

Exercise 4.2. The spectrum is not continuous
Find an example of a Banach algebra A and a sequence (an)n ∈ AN converging

to a ∈ A such that

● σ(an) = {0} for all n ≥ 1, and
● σ(a) = D.

Hint. There may be several such examples, but one standard example consists of
choosing A = B(H) for H ≃ `2, and letting each an be a weighted shift (with a
cleverly chosen set of weights!). We shall define weighted shifts in Chapter XX, and
as such, it might be easier to wait until then before attempting this question.

Exercise 4.3. Continuity of the spectrum in Mn(C)
Let (Tk)k be a sequence in Mn(C) and suppose that T = limk Tk. Prove that

σ(T ) = limk σ(Tk), where the limit is taken with respect to the Hausdorff metric.
What can you say about the algebraic multiplicity of the eigenvalues of T relative

to σ(Tk)?

Exercise 4.4. The density of the set of invertible elements of Mn(C)
Prove that gln(C) is dense in Mn(C). (C∗-algebraists sometimes refer to this

property by saying that Mn(C) has topological stable rank equal to 1.

Exercise 4.5. Components of the spectrum
Find a Banach algebra A such that for each ε > 0, there exist elements a, b ∈ A

such that ∥a − b∥ < ε and

(a) σ(a) has only one component;
(b) σ(b) has infinitely many components.

Now find a Banach algebra B for which given any ε > 0, there do not exist elements
a and b of B satisfying the above two conditions.
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Exercise 4.6. Spectrum and direct sums
Let An ∈ Mkn(C), n ≥ 1. Suppose that there exists M > 0 such that ∥An∥ ≤ M

for all n ≥ 1.

(a) Is it true that σ(⊕∞n=1An) = ∪∞n=1σ(An)?
(b) Now suppose that the sequence (kn)n is bounded above. Does this make

any difference to the solution of (a)?





CHAPTER 5

Abelian Banach algebras

You can observe a lot by just watching.

Yogi Berra

The Gelfand Transform

5.1. In this chapter we focus our attention on those Banach algebras which are
abelian. In any algebra (normed, abelian or otherwise) it is of interest to study the
ideal structure. Banach algebras are no exception.

5.2. Definition. Let A be an abelian Banach algebra. An ideal J of A is said
to be modular (also called regular) if we can find an element e ∈ A such that
ex − x ∈ J for all x ∈ A.

Recall that given a Banach algebraA and an ideal I ofA, we use πJ to denote the
canonical algebra map from A onto A/J , and that when the ideal J is understood,
we abbreviate this to π.

Armed with this notation, the statement that J is a modular ideal of A is readily
seen to be equivalent to saying that the quotient algebra A/J admits an identity
element, namely

π(e) = e +J .

Clearly every proper ideal in a unital Banach algebra is modular.

5.3. Example. Let A = C0(R), the set of complex-valued continuous functions
on R vanishing at infinity. Define M = {f ∈ A ∶ f(x) = 0 if x ∈ [−1,1]}. It is readily
seen that A is a non-unital Banach algebra and M is an ideal of A.

Let e ∈ A be the function e(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if 2 < ∣x∣
2 − ∣x∣ if 1 ≤ ∣x∣ ≤ 2
1 if ∣x∣ ≤ 1.

We leave it to the reader to verify that e is an identity for A/M, and thatM is
therefore a regular ideal of A.

65
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5.4. Proposition. Let J be a proper regular ideal of an abelian Banach algebra
A. If e is an identity modulo J , then

inf
m∈J

∥e −m∥ ≥ 1.

Proof. First note that if J is closed, then A/J is a Banach algebra by Proposi-
tion 2.17. But then ∥πJ (e) = infm∈J ∥e −m∥ ≥ 1 by the submultiplicativity of the
quotient norm.

Now consider the case where J is not closed. Suppose ∥e −m∥ < 1 for some
m ∈ J . Then x = ∑∞n=1(e −m)n converges in A. But (e −m)x = ∑∞n=2(e −m)n, so

x = (e −m)x + (e −m)
= ex −mx + e −m;

thus e = x − ex +mx −m ∈ J . Since ea − a ∈ J for all a ∈ A, we conclude that a ∈ J
for all a ∈ A, i.e. A ⊆ J , a contradiction.

Thus infm∈J ∥e −m∥ ≥ 1.

◻

5.5. Definition. A proper ideal M of an algebra A is said to be maximal if
it is not contained in any ideal of A except itself, and the entire algebra A.

In other words,M is a maximal ideal of A ifM is a maximal element of the set
J ∶= {J ⊆ A ∶ J is an ideal}, partially ordered with respect to inclusion.

5.6. Examples.

(a) Let A = C0(R), and setM = {f ∈ A ∶ f(0) = 0}. ThenM is a maximal ideal
of A. This is clear since dim A/M = 1.

(b) Let k,n be integers satisfying 1 ≤ k ≤ n. Set K = {T = [tij] ∈ Tn(C) ∶ tkk = 0}.
Then K is a maximal ideal of A, again, because dimA/K = 1.

(c) The ideal K = {0} of Mn(C) is maximal because Mn(C) is simple.
(d) Culture. Although we do not yet have the tools to prove this, we mention

that if H is an infinite-dimensional, separable Hilbert space, then K(H) is
a maximal ideal of B(H). Indeed, it is the only non-zero, proper closed
ideal of B(H).

(e) Let

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 ⋱ ⋱ 0 0
⋮ ⋮ ⋱ ⋱ 0
0 0 0 ⋱ 0 1
0 0 0 ⋯ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈Mn(C).

Set A = Alg(J) = {p0I + p1J + p2J
2 +⋯ + pn−1J

n−1 ∶ pk ∈ C,0 ≤ k ≤ n − 1}.
Let K ∶= {p1J + p2J

2 + ⋯ + pn−1J
n−1 ∶ pk ∈ C,1 ≤ k ≤ n − 1}. Then A is

commutative and K is a maximal ideal of A.
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5.7. Corollary. Let A be an abelian Banach algebra. If J is a proper mod-
ular ideal of A, then J is contained in some maximal (modular) ideal M of A.
Furthermore, all maximal modular ideals of A are closed.
Proof. Let J ⊲ A be a proper modular ideal, and let e ∈ A denote the identity
modulo J . First we observe that if K is any proper ideal of A containing J , then
K is also modular. Indeed, clearly e also serves as an identity modulo K.

Consider the set

K = {K ⊲ A ∶ J ⊆ K and e /∈ K},

partially ordered with respect to inclusion. Then J ∈ K, so K ≠ ∅. Choose an
increasing chain C in J, say

C = {Kα}α∈Λ.

Let K = ∪α∈ΛKα. It is routine to verify that K ⊲ A, and of course e /∈ K, since e /∈ Kα
for all α.

It follows that K is an upper bound for C. By Zorn’s Lemma, there exists a
maximal element M in K, and J ⊆M. Clearly e /∈M since e /∈ K for any K ∈ J.
Thus M is a proper maximal ideal of A containing J .

As for the last statement, suppose that L is a maximal ideal of A, and let eL be
an identity modulo L. Then the norm closure of L is also seen to be an ideal of A.
By maximality, L = L or L = A. But by Proposition 5.4, infm∈L ∥eL −m∥ ≥ 1, and so
eL /∈ L. Thus L = L is closed.

◻

5.8. Proposition. Let A be a commutative, unital Banach algebra and let
a ∈ A. If a is not invertible, then a is an element of some maximal ideal M of A.
Proof. Now ⟨a⟩ = aA is an ideal of A. Since a is not invertible, ⟨a⟩ /= A. By
Corollary 5.7, a ∈ ⟨a⟩ ⊆M for some maximal ideal M.

◻

5.9. Definition. Let A be a Banach algebra. A non-zero complex linear func-
tional ϕ ∶ A → C is said to be multiplicative if ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A.
In other words, ϕ is a non-zero algebra homomorphism from A into C. The set of
all non-zero multiplicative linear functionals on A is denoted by ΣA, and is called
the spectrum of A.

Let ϕ○ = 0 denote the zero functional on A, so that ϕ○(a) = 0 for all a ∈ A. We
shall also require the notation Σ○

A = ΣA ∪ {ϕ○}.

5.10. Remark. Note that if A is a unital Banach algebra and ϕ ∈ ΣA, then
ϕ(1) = ϕ(12) = ϕ(1)2, and so ϕ(1) ∈ {0,1}. If ϕ(1) = 0, then ϕ(a) = ϕ(1a) =
ϕ(1)ϕ(a) = 0 for all a ∈ A, contradicting the fact that ϕ /= 0. Thus ϕ(1) = 1.
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5.11. Proposition. Let A be a Banach algebra and 0 ≠ ϕ be a multiplicative
linear functional on A. Then ϕ is bounded; in fact, ∥ϕ∥ = 1.
Proof. If 1 /∈ A, then we may consider

ϕ+ ∶ A+ → C
(λ, a) ↦ λ + ϕ(a),

which is a linear functional on A+, the unitization of A as defined in Remark 2.19.
It is not hard to verify that ϕ is bounded if and only if ϕ+ is. As such, we may
assume that 1 ∈ A.

Let M = ker ϕ and a ∈ A. Since ϕ ≠ 0, M is a proper ideal of A. Then
ϕ(a − ϕ(a)1) = 0, and a = ϕ(a)1 + (a − ϕ(a)1). Write λ = ϕ(a) and b = (a − ϕ(a)1),
so that λ ∈ C, b ∈M. Then

∥ϕ∥ = sup{ ∣ϕ(x)∣
∥x∥

∶ ∥x∥ /= 0}

= sup{ ∣ϕ(λ + b)∣
∥λ + b∥

∶ λ /= 0, b ∈ ker ϕ}

= sup{ ∣λ∣
∥λ + b∥

∶ λ /= 0, b ∈ ker ϕ}

= sup{ 1

∥1 + b′∥
∶ b′ ∈ ker ϕ}

= 1,

since otherwise ∥1 + b′∥ < 1 would imply that b′ is invertible, contradicting the fact
that b′ ∈M, a proper ideal of A.

◻

5.12. Proposition. Let A be an abelian Banach algebra. Then there is a
one-to-one correspondence between the spectrum ΣA of A, and the set of maximal
modular ideals of A.
Proof. Let M be a maximal modular ideal of A. Then A/M is a unital Banach
algebra with no proper ideals. Thus every non-zero element of A/M is invertible,
by Proposition 5.8. By the Gelfand-Mazur Theorem 2.37, there exists a unique
isometric isomorphism τ ∶ A/M→ C. The map

ϕM ∶ A → C
a ↦ τ(πM(a))

is easily seen to be a multiplicative linear functional, and ker ϕM =M. Moreover,
if M1 /= M2 are two maximal modular ideals of A, then ϕM1 /= ϕM2 , since their
kernels are distinct.

Conversely, if ϕ ∈ ∑A, let M = ker ϕ. Then C ≃ ϕ(A) ≃ A/ker ϕ = A/M, so M
is a maximal regular ideal, as C is unital and has no non-trivial ideals. Consider ϕM
defined as above. Since the isomorphism between A/M and C is unique, ϕM = ϕ.

◻
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Because of this result, ΣA is also referred to as the maximal ideal space of A.

5.13. Proposition. Let A be an abelian Banach algebra. Then ΣA is locally
compact in the weak∗-topology on the unit ball of A∗. If A is unital, then ΣA is in
fact compact.
Proof. Recall that Σ○

A = ΣA ∪{ϕ○}, where ϕ○ denotes the zero functional. Now Σ○
A

is clearly contained in the unit ball of A∗. Let (ϕα)α∈Λ be a net in Σ○
A such that

w∗ − limα∈Λϕα = ϕ ∈ A∗.
Then for all x, y ∈ A and λ ∈ C,

ϕ(λx + y) = lim
α
ϕα(λx + y)

= lim
α
λϕα(x) + ϕα(y)

= λϕ(x) + ϕ(y)

and

ϕ(xy) = lim
α
ϕα(xy)

= lim
α
ϕα(x)ϕα(y)

= ϕ(x)ϕ(y).

Thus ϕ ∈ Σ○
A. In particular, therefore, Σ○

A is compact, being a closed subset of
the weak∗-compact unit ball of A∗. Since the unit ball of A∗ is Hausdorff in the
weak∗-topology, {ϕ○} is closed in Σ○

A. Thus ΣA is a relatively open subset of the
weak∗-compact set Σ○

A, and so ΣA is locally compact in the weak∗-topology.

If A is unital, then {ϕ○} is isolated in Σ○
A since ϕ(1) = 1 for all ϕ ∈ ΣA while

ϕ○(1) = 0. Thus ΣA is closed in Σ○
A, and thus is weak∗-compact itself.

◻

We shall need the following Proposition to help prove Theorem 5.17 below.

5.14. Proposition. Let A be a non-unital, abelian Banach algebra, and let
A+ denote its unitisation, as defined in Remark 2.19. Then there exists a bijective
correspondence between ΣA+ and Σ○

A.
Proof. First observe that the map

ϕβ ∶ A → C
a ↦ β((a,0))

is a multiplicative linear functional. That is, ϕβ ∈ Σ○
A. Let

Θ ∶ ΣA+ → Σ○
A

β ↦ ϕβ.

We claim that Θ is a bijection.
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Now, if β ∈ ΣA+ , then β(0,1) = 1, by Remark 5.10. Thus, if β, γ ∈ ΣA+ and
ϕβ = Θ(β) = Θ(γ) = ϕγ , then for all (a, λ) ∈ A+, we have

β((a, λ)) = β((a,0) + (0, λ))
= ϕβ(a) + λ + ϕγ(a) + λ
= γ((a,0) + (0, λ))
= γ(a, λ).

In other words, β = γ and Θ is injective.

If ϕ ∈ Σ○
A, we may define βϕ ∈ ΣA+ by

βϕ(a, λ) = ϕ(a) + λ.

(That βϕ is a non-zero multiplicative linear functional is left as an exercise for the
reader.) Since Θ(βϕ) = ϕ, we see that Θ is surjective, which completes the proof.

◻

5.15. Definition. Let A be an abelian Banach algebra. Given a ∈ A, we define
the Gelfand Transform â of a as follows:

â ∶ ΣA → C
ϕ ↦ ϕ(a).

By definition of the weak∗-topology on ΣA, we have that â ∈ C(ΣA). If ε > 0, then
{ϕ ∈ ΣA ∶ ∣â(ϕ)∣ ≥ ε} is closed in Σ○

A, and hence it is compact. Thus â ∈ C0(ΣA).

5.16. Theorem. [The Gelfand Transform] Let A be an abelian Banach
algebra.

(a) The map

Γ ∶ A → C0(ΣA)
a ↦ â

is a contractive homomorphism, and
(b) Â = ran Γ separates the points of ΣA.

Proof.

(i) We have seen that â is continuous and vanishes at infinity. Now

∥Γ(a)∥ = ∥â∥
= sup

ϕ∈ΣA
∣â(ϕ)∣

= sup
ϕ∈ΣA

∣ϕ(a)∣

≤ ∥a∥.

Thus ∥Γ∥ ≤ 1. That Γ is indeed a homomorphism follows immediately from
the fact that each ϕ ∈ ΣA is linear and multiplicative.
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(ii) If ϕ /= ψ ∈ ΣA, then there exists a ∈ A such that ϕ(a) /= ψ(a). But then

â(ϕ) /= â(ψ), and so Â indeed separates the points of ΣA, as claimed.

◻

5.17. Theorem. Let A be an abelian Banach algebra, and let ΣA be its spec-
trum. Let Γ ∶ A→ C0(ΣA) be the Gelfand transform of A.

(a) If A is unital, then σA(a) = ran ΓA(a).
(b) If A is non-unital, then σA(a) = ran ΓA(a) ∪ {0}.
(c) In either case, spr(a) = ∥ΓA(a)∥.

Proof.

(a) If A is unital, then C0(ΣA) = C(ΣA). Thus

λ ∈ σA(a) ⇐⇒ (λ − a) /∈ A−1

⇐⇒ (λ − a) lies in a maximal ideal M of A
⇐⇒ ϕM(λ − a) = 0 where M is a maximal ideal of A
⇐⇒ λ − ϕM(a) = 0 where M is a maximal ideal of A
⇐⇒ λ − â(ϕM) = 0 where M is a maximal ideal of A
⇐⇒ λ ∈ ran â.

(b) Suppose that A is non-unital, and let A+ = A⊕C denote its unitisation, as
defined in Remark 2.19. By definition, σA(a) = σA+((a,0)).

By Proposition 5.14 and part (a) above,

σA+((a,0)) = ran ΓA+((a,0))
= {ϕ+((a,0)) ∶ ϕ+ ∈ ΣA+}
= {ϕ(a) ∶ ϕ ∈ Σ○

A}
= ran ΓA(a) ∪ {0}.

(c) In either case, ΓA(a) ∈ C0(ΣA), and so

∥ΓA(a)∥ = spr(ΓA(a))
= sup{∣λ∣ ∶ λ ∈ σ(ΓA(a))}
= sup{∣λ∣ ∶ λ ∈ σ(ΓA(a)) ∪ {0}}
= sup({∣λ∣ ∶ λ ∈ ran (ΓA(a)) ∪ {0}}
= sup{∣λ∣ ∶ λ ∈ σA(a) ∪ {0}}
= spr(a).

◻

The radical

5.18. The kernel of the Gelfand transform plays a particular role in the study
of homomorphims between Banach algebras.
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5.19. Definition. Let A be a commutative Banach algebra. Then the Jacob-
son radical of A is the kernel of the Gelfand transform. As such,

radA = ∩{ker ϕ ∶ ϕ ∈ ΣA}
= ∩{M ∶M a maximal modular ideal of A}.

We say that A is semisimple if radA = {0}.

5.20. Proposition. Let A be an abelian Banach algebra. Then radA = {a ∈ A ∶
spr(a) = 0} and the following are equivalent:

(a) A is semisimple, i.e. the Gelfand transform Γ ∶ A→ C0(ΣA) is injective;
(b) ΣA separates the points of A;
(c) the spectral radius is a norm on A.

Proof. First note that a ∈ radA if and only if Γ(a) = 0. But 0 = Γ(a) ∈ C0(ΣA) if
and only if spr(â) = 0, i.e. if and only if spr(a) = 0.

(a) implies (b). Suppose A is semisimple. Let a1 /= a2 ∈ A. Then 0 /= a1 − a2,
and so spr(a1−a2) /= 0 from above. Thus there exists 0 /= λ ∈ ran(Γ(a1−a2).
Let ϕ ∈ ΣA such that Γ(a1 − a2)(ϕ) = λ. Then Γ(a1)(ϕ) − Γ(a2)(ϕ) =
ϕ(a1 − a2) = λ /= 0, so that ΣA separates points.

(b) implies (a). Suppose that ΣA separates the points of A. Let a1 /= a2 ∈ A
and choose ϕ ∈ ΣA such that ϕ(a1) /= ϕ(a2). Then Γ(a1)(ϕ) /= Γ(a2)(ϕ),
so that Γ(a1 /= Γ(a2), and the Gelfand transform is injective.

(a) implies (c). Suppose that the Gelfand transform Γ is injective. In general,
we have ∥â∥ = spr(â) = spr(a). Then for all a, b ∈ A,
● spr(λa + b) = ∥Γ(λa + b∥ ≤ ∣λ∣∥Γ(a)∥ + ∥Γ(b)∥ = ∣λ∣spr(a) + spr(b).
● spr(ab) = ∥Γ(ab)∥ ≤ ∥Γ(a)∥ ∥Γ(b)∥ = spr(a) spr(b).
● spr(a) = ∥Γ(a)∥ ≥ 0.
● Finally, spr(a) = 0 if and only if ∥Γ(a)∥ = 0. But since Γ is injective,

this happens if and only if a = 0.
It follows that spr(⋅) is a norm on A.

(c) implies (a). Finally, suppose spr(⋅) is a norm on A. Then spr(a) = 0
implies a = 0, so that radA = {0}, and A is semisimple.

◻

5.21. Theorem. Let A and B be abelian Banach algebras and suppose B is
semisimple. Let τ ∶ A→ B be an algebra homomorphism. Then τ is continuous.
Proof. Let ϕ ∈ ∑B, the maximal ideal space of B. Then ϕ ○ τ is a multiplicative
linear functional on A, and so ∥ϕ ○ τ∥ = 1, implying that ϕ ○ τ is continuous.

The Closed Graph Theorem tells us that if X and Y are Banach spaces and
T ∶ X → Y is a linear map such that limn→∞ xn = 0 and limn→∞ Txn = y together
imply y = 0, then T is continuous.
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Suppose therefore that we are given a sequence (an)n ∈ AN, that limn→∞ an = 0,
and that limn→∞ τ(an) = b. Then for ϕ ∈ ∑B,

ϕ(b) = ϕ( lim
n→∞

τ(an))

= lim
n→∞

ϕ ○ τ(an)

= (ϕ ○ τ)( lim
n→∞

an)

= (ϕ ○ τ)(0)
= 0.

Thus b ∈ radB = {0}. By the Closed Graph Theorem, τ is continuous.

◻

5.22. Definition. A Banach algebra A has uniqueness of norm if all norms
on A making it into a Banach algebra are equivalent.

5.23. Theorem. Let A be an abelian Banach algebra. If A is semisimple, then
A has uniqueness of norm.
Proof. With A abelian and semisimple, let ∥⋅∥1 and ∥⋅∥2 denote two Banach algebra
norms on A. Consider the natural injection

ι ∶ (A, ∥ ⋅ ∥1) → (A, ∥ ⋅ ∥2)
a ↦ a.

Then clearly ι is an algebra isomorphism, and hence from Theorem 5.21, ι is con-
tinuous. By the Banach Isomorphism Theorem, ι is a topological isomorphism, and
so the two norms are equivalent.

◻

5.24. Corollary. Let A be a semi-simple abelian Banach algebra and α ∶ A→ A
be an algebra automorphism. Then α is also a homeomorphism.
Proof. Theorem 5.21 implies that both α and α−1 are continuous.

◻

Examples

5.25. Depending upon how big the radical of an abelian Banach algebra is
compared to the algebra itself, the Gelfand Transform might not yield very much
information at all.
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5.26. Example. Let n ∈ N, and consider the algebra A ⊆M2n(C), where

A = {[ λIn B
0 λIn

] ∶ B ∈Mn(C), λ ∈ C} .

Then A is commutative. Let ϕ ∈ ΣA. Then ϕ(I2n) = 1, and so ϕ(λI2n) = λ, λ ∈ C.
Also,

0 = ϕ(0)

= ϕ([ 0 B
0 0

]
2

)

= ϕ([ 0 B
0 0

])2

and so ϕ([ 0 B
0 0

]) = 0.

Thus ϕ([ λIn B
0 λIn

]) = λ for all λ ∈ C and B ∈ Mn(C). In other words, ϕ is

completely determined by the above conditions, and ΣA = {ϕ}, a singleton.

5.27. Let X be a compact, Hausdorff space. We wish to consider the spectrum
of the algebra C(X) of continuous functions on X. To do this, we first recall a
preliminary result from topology.

5.28. Proposition. Let X be a compact space and Y be a Hausdorff space.
Suppose that τ ∶X → Y is a bijective, continuous map. Then τ is a homeomorphism,
i.e., τ−1 is also continuous.

5.29. Theorem. Let X be a compact, Hausdorff space. Then ∑C(X) equipped
with its weak∗-topology as a subset of C(X)∗ is homeomorphic to X.
Proof. Let x ∈X, and consider the map

δx ∶ C(X) → C
f ↦ f(x).

It is easy to see that δx ∈ ∑C(X). Such maps are called evaluation functionals.
Note that the corresponding maximal ideal is Mx = ker δx = {f ∈ C(X) ∶ f(x) = 0}.
It is clear that given x /= y ∈ X, δy /= δx since C(X) separates the points of X. Thus
the map ∆ ∶ x↦ δx is injective. Our next goal is to show that it is surjective.

Let M be a maximal ideal of C(X). We shall show that there exists x ∈X such
that M =Mx, where Mx is defined as above.

Suppose that for any x ∈ X, there exists fx ∈M such that fx(x) /= 0. Since f
is continuous, we can find an open neighbourhood Ox of x such that y ∈ Ox implies
fx(y) /= 0. Then the family {Ox ∶ x ∈ X} is an open cover of the compact space X,
and as such, we can find a finite subcover {Oxi ∶ 1 ≤ i ≤ n}. Consider the function

g ∶= ∑ni=1 fxifxi ∈M. Then clearly g ≥ 0 and for any x ∈ X, there exists xi such that
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fxi(x) /= 0. Thus g(x) ≥ ∣fxi(x)∣2 > 0, and so g is in fact invertible! This contradicts
the fact that M is a maximal ideal, and thus is proper. It follows that there exists
x ∈ X such that f(x) = 0 for all f ∈M. But then M ⊆Mx, and so by maximality,
we conclude that M =Mx, and hence the map ∆ ∶ x↦ δx is surjective.

By Proposition 5.28, there remains only to show that ∆ is continuous. Let
(xα)α∈Λ be a net in X converging to the element x. Then (f(xα))α converges to
f(x) for each f ∈ C(X). But then (δxα(f))α converges to δx(f) for all f ∈ C(X),
and so (δxα)α converges to δx in the weak∗-topology on C(X)∗. That is, ∆ ∶ x↦ δx
is continuous, and our result is proved.

◻

5.30. Let X be a compact, Hausdorff space. In light of the homeomorphism
∆ ∶ X → ΣC(X) defined above, we typically view the Gelfand map on C(X) as the
identity map and suppress the map ∆ from our notation.

That is, we identify Γ ∶ C(X) → C(ΣC(X)) with the map Φ∆ ○ Γ, where Φ∆(g) =
g ○∆ for all g ∈ C(ΣC(X)). Then, for f ∈ C(X) and x ∈X,

(Φ∆ ○ Γ(f))(x) = Φ∆(δx(f)) = (Φ∆(δx))(f) = f(x),

so that Φ∆ ○ Γ is the identity function.

5.31. Corollary. Let X be a compact, Hausdorff space. Then C(X) has unique-
ness of norm.
Proof. The Gelfand map Γ is the identity map, so it is injective, and thus C(X) is
semisimple. We now apply Theorem 5.23.

◻

5.32. Let G be a locally compact abelian group equipped with a Haar measure
µ. It is well-known that if λ is any other Haar measure on G, then λ is a positive
multiple of µ. (See, for example, the book of Folland [23, Theorem 2.10, Theorem
2.20].) Moreover, since G is abelian, it is unimodular, from which it follows that
dµ(x−1) = dµ(x), as measures on G. Consider f, g ∈ L1(G,µ). Then for x ∈ G, we
have (a.e. - µ)

(f ∗ g)(x) = ∫ f(y)g(y−1x)dµ(y)

= ∫ f(xv)g(v−1)dµ(v) (v = x−1y)

= ∫ f(xz−1)g(z)dµ(z) (z = v−1)

= ∫ g(z)f(z−1x)dµ(z) (xz−1 = z−1x)

= (g ∗ f)(x).

Thus L1(G,µ) is abelian.



76 5. ABELIAN BANACH ALGEBRAS

To verify that the norm on L1(G,µ) is indeed a Banach algebra norm, consider

∥f∥1 ∥g∥1 = ∫ ∣f(y)∣ ∥g∥1dy

≥ ∫ ∣f(y)∣ ∫ ∣g(y−1x)∣dxdy

≥ ∫ ∫ ∣f(y) g(y−1x)∣dxdy

= ∫ ∫ ∣f(y) g(y−1x)∣dy dx

≥ ∫ ∣∫ f(y)g(y−1x)dy∣dx

≥ ∫ ∣(f ∗ g)(x)∣dx

= ∥f ∗ g∥1.

5.33. Definition. Given a locally compact abelian group G, we consider the set
Ĝ of continuous homomorphisms of G into T = {z ∈ C ∶ ∣z∣ = 1}. Such homomor-

phisms are called characters of G, and Ĝ is referred to as the dual group of G.

5.34. We leave it to the reader to verify that Ĝ is indeed a group. In fact,
Ĝ corresponds to the set of irreducible representations of G, which are always one
dimensional when G is abelian.

For the sake of convenience, let us write ΣG for ΣL1(G,µ), and dx for dµ(x).
Given ϕ ∈ Ĝ, we can define an element ϕ ∈ ΣG via

ϕ(f) = ∫
G
ϕ(x) f(x)dµ(x).

Indeed, for each f, g ∈ L1(G,µ),

ϕ(f ∗ g) = ∫ ϕ(x) (f ∗ g)(x)dx

= ∫ ϕ(x)∫ f(y) g(y−1x)dy dx

= ∫ ∫ f(y)g(z)ϕ(yz)dz dy (z = y−1x)

= ∫ ∫ f(y)ϕ(y)ϕ(z)g(z)dz dy

= (∫ f(y)ϕ(y)dy) (∫ ϕ(z)g(z)dz)

= ϕ(f)ϕ(g).

If ϕ1 /= ϕ2 ∈ Ĝ, then 0 /= ϕ1 − ϕ2 ∈ C0(G) ⊆ L∞(G,µ). Thus there exists g ∈ L1(G,µ)
such that ∫ g(x)(ϕ1 − ϕ2)(x)dx /= 0. In particular, therefore, if ϕ1 (resp. ϕ2) is the
element of ΣG corresponding to ϕ1 (resp. ϕ2) as above, then ϕ1(g) /= ϕ2(g), so that
the map ϕ↦ ϕ is injective.
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5.35. Theorem. Let G be a locally compact abelian group with Haar measure
µ. Then ΣG ≃ Ĝ.
Proof. From above, we see that Ĝ embeds injectively into ΣG. Next suppose that
ϕ ∈ ΣG. Since Φ ∈ L1(G,µ)∗ ≃ L∞(G,µ), there exists ϕ ∈ L∞(G,µ) such that

Φ(f) = ∫ f(x)ϕ(x)dx for all f ∈ L1(G,µ).

Choose f ∈ L1(G,µ) such that 0 /= Φ(f). Then for any g ∈ L1(G,µ),

Φ(f)∫ ϕ(y)g(y)dy = Φ(f)Φ(g)

= Φ(f ∗ g)

= ∫ ∫ ϕ(x)f(xy−1)g(y)dy dx

= ∫ Φ(Lyf)g(y)dy.

Thus ϕ(y) = Φ(Lyf)/Φ(f) a.e. . Redefine ϕ(y) = Φ(Lyf)/Φ(f) for every y, so
that ϕ is continuous. Then

ϕ(xy)Φ(f) = Φ(Lxyf)
= Φ(LxLyf)
= ϕ(x)Φ(Lyf)
= ϕ(x)ϕ(y)Φ(f),

and hence ϕ(xy) = ϕ(x)ϕ(y).
Finally, ϕ(xn) = ϕ(x)n for every n ≥ 1, and ϕ bounded implies that ∣ϕ(x)∣ ≤ 1,

while ϕ(x−n) bounded implies that ∣ϕ(x)∣ = 1 for all x ∈ G. Thus ϕ ∈ Ĝ, and so the
map ϕ↦ Φ is onto, as claimed.

The topology we consider on Ĝ is that of uniform convergence on compact sets.
Since Ĝ consists of continuous functions, this is the same as pointwise convergence,
under which the operations of multiplication and inversion are clearly continuous.
Although we shall not show it here, it can be demonstrated that this topology coincides
with the weak∗-topology on Ĝ inherited from L∞(G,µ).

But Ĝ∪{0} is the set of all homomorphisms from L1(G,µ) into C, which is closed
in the unit ball of L∞(G,µ), and hence is weak∗-compact, by Alaoglu’s Theorem.

Thus Ĝ must be locally compact, as {0} is closed.

◻

5.36. Theorem.

(a) Ẑ ≃ T, and thus ∑`1(Z) ≃ T;

(b) R̂ ≃ R, and thus ∑L1(R,dx) ≃ R;

(c) T̂ ≃ Z, and thus ∑L1(T,dm) ≃ Z, where dm represents normalised Lebesgue
measure on the unit circle.
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Remark: We shall content ourselves here with the algebraic calculation, and omit
the explicit determination of the underlying topologies, which are the natural topolo-
gies on the spaces involved.

Proof.

(a) For each α ∈ T, define ϕα ∈ Ẑ via ϕα(1) = α. Suppose ϕ ∈ Ẑ. If α = ϕ(1),
then α ∈ T, and ϕ(n) = ϕ(1)n = αn for all n ∈ Z. Thus ϕ = ϕα. It follows
that the map α ↦ ϕα is surjective. That it is injective is trivial.

(b) If ϕ ∈ R̂, then we have ϕ(0) = 1, so there exists a > 0 so that ∫
a

0 ϕ(t)dt /= 0.
Setting κ = ∫

a
0 ϕ(t)dt, we have

κϕ(x) = ∫
a

0
ϕ(t)dtϕ(x)

= ∫
a

0
ϕ(x)ϕ(t)dt

= ∫
a

0
ϕ(x + t)dt

= ∫
x+a

x
ϕ(t)dt.

It follows that ϕ is differentiable and

ϕ′(x) = lim
h→0

ϕ(x + h) − ϕ(x)
h

= lim
h→0

ϕ(x)(ϕ(h) − 1)
h

= ϕ(x)ϕ′(0).

Thus ϕ(x) = ecx, where c = ϕ′(0), and since ∣ϕ(x)∣ = 1 for all x, we find
that c = 2πib for some b ∈ R.

Conversely, for any b ∈ R, ϕb(x) = e(2πib)x determines an element of R̂.
Clearly the map b↦ ϕb is injective.

(c) Since T ≃ R/Z via the identification of x ∈ R/Z with α = e(2πi)x, the char-
acters of T are just the characters of R that vanish on Z. But ϕb(1) = 1

implies that e2πib = 1, and so b ∈ Z. Thus T̂ ≃ Z.

◻

5.37. Definition. Let A be a Banach algebra and a ∈ A. Then a is said to
generate A if the smallest closed subalgebra of A containing a is A itself.

The next theorem provides some justification for the term spectrum when refer-
ring to the set of non-zero multiplicative linear functionals on a Banach algebra.
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5.38. Theorem. Let A be a commutative unital Banach algebra and let a be a
generator for A. Then the mapping Γ(a) ∶ ΣA ↦ σ(a) is a homeomorphism.
Proof. We already know that Γ(a) ∈ C(ΣA) and that ran Γ(a) = σ(a). Since both
ΣA and σ(a) are compact and Hausdorff, it suffices to show that Γ(a) is injective.
We can then apply Proposition 5.28 to obtain the desired result.

Suppose that ϕ1, ϕ2 ∈ ΣA and that Γ(a)(ϕ1) = Γ(a)(ϕ2). Then ϕ1(a) = ϕ2(a).
Let B = {x ∈ A ∶ ϕ1(x) = ϕ2(x)}. Since ϕ1, ϕ2 are continuous, multiplicative and
linear, B is an algebra that contains 1 and a, and B is closed. Thus B = A and so
ϕ1 = ϕ2, proving that Γ(a) is injective, as required.

◻

5.39. Example. Consider the disk algebra A(D). Now it is a classical result
that A(D) is generated by 1 and f , where f(z) = z for all z ∈ D. (Indeed, this is
the solution to the Dirichlet Problem for the circle.) By Theorem 5.38, ΣA(D) is
homeomorphic to σA(D)(f). But as we have seen in Example 4.2, σA(D)(f) = {z ∈
C ∶ ∣z∣ ≤ 1}. We conclude that ∑A(D) = D (up to homeomorphism). Unsurprisingly,
the multiplicative linear functionals are the evaluation functionals at each point of
the disk.

5.40. Example. Let us revisit `1(Z). For a function f ∈ C(T), consider the

sequence {f̂(n)}n∈Z of Fourier coefficients of f given by

f̂(n) = 1

2π
∫

2π

0
f(eiθ) e−inθdθ.

Define the Wiener algebra

AC(T) = {f ∈ C(T) ∶ (f̂(n))n ∈ `1(Z)},

equipped with the norm ∥f∥ = ∑n∈Z ∣f̂(n)∣.
Clearly AC(T) is abelian. Let f and g lie in AC(T), so that

f(θ) = ∑
n∈Z

ane
inθ and g(θ) = ∑

n∈Z
bne

inθ.

Then ˆ(fg)(n) = 1
2π ∫

2π
0 f(θ) g(θ) e−inθ dθ. Next,

f(θ) g(θ) = (∑
k∈Z

ake
ikθ) (∑

n∈Z
bne

inθ)

= ∑
k∈Z
∑
n∈Z

akbne
i(k+n)θ

= ∑
k∈Z
∑
m∈Z

akbm−ke
imθ (m = n + k)

Thus

ˆ(fg)(n) = 1

2π
∫

2π

0
∑
k∈Z
∑
m∈Z

akbm−ke
i(m−n)θdθ.
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If m /= n, we get 0, and so

ˆ(fg)(n) = 1

2π
∫

2π

0
∑
k∈Z

akbn−ke
i0dθ

= ∑
k∈Z

akbn−k

= (ab)n,
where a = (an)n and b = (bn)n lie in `1(Z). It follow that the map

τ ∶ `1(Z) → AC(T)
(an)n ↦ ∑n∈Z aneinθ

is an isometric algebra isomorphism.
Suppose that ϕ is a non-zero multiplicative linear functional on AC(T). If

ϕ(eiθ) = λ, then ∣λ∣ = ϕ(eiθ)∣ ≤ ∥ϕ∥ ∥eiθ∥1 = 1. Also, ϕ(e−iθ) = ϕ((eiθ)−1) = 1
λ ,

and ∣ 1λ ∣ = ∣ϕ(e−iθ)∣ ≤ ∥ϕ∥ ∥e−iθ∥1 = 1. Thus ∣λ∣ = 1.
Conversely, if ∣λ∣ = 1, then

ϕ(∑
n∈Z

ane
inθ) = ∑

n∈Z
anλ

n

is an absolutely convergent, multiplicative evaluation functional, and ϕ(1) = 1.

We conclude again that ∑AC(T) = ∑Z = T. The argument with regards to the
topology follows as in Theorem 5.29. Namely, let {λα}α be a net in T with limα λα =
λ ∈ T. Let ϕλα , ϕα be the associated multiplicative linear functionals with ϕαλ(eiθ) =
λα, ϕλ(eiθ) = λ. Then limα λα = λ implies limα f(λα) = f(λ) for all f ∈ C(T), hence
limαϕλα(f) = ϕλ(f) for all f ∈ AC(T). Thus limαϕλα = ϕλ in the weak∗-topology
on ∑AC(T).

As an application of this result, we obtain the following:

5.41. Theorem. [Wiener’s Tauberian Theorem] If f ∈ AC(T) and f(z) /= 0

for all z ∈ T, then
1

f
has an absolutely convergent Fourier series.

Proof. By Theorem 5.17, σ(f) = σ(Γ(f)) = ran Γ(f). But if ϕ ∈ ∑AC(T), then ϕ = ϕλ
for some λ ∈ T, where ϕλ(f) = f(λ) is the evaluation functional corresponding to λ.
Thus

ran Γ(f) = {Γ(f)(ϕλ) ∶ ϕλ ∈ ΣAC(T)}
= {Γ(f)(ϕλ) ∶ λ ∈ T}
= {ϕλ(f) ∶ λ ∈ T}
= {f(λ) ∶ λ ∈ T}
= ran f.

Since 0 /∈ ran f , we get 0 /∈ σAC(T)(f), so 1/f has an absolutely convergent Fourier
series.

◻
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Supplementary Examples

S5.1. Example. Not every abelian Banach algebra admits maximal modular
ideals. For example, let Jn denote the Jordan cell in Mn(C) ≃ B(Cn), and let
A = {∑n−1

k=1 αkJ
k
n ∶ αk ∈ C,1 ≤ k ≤ n}. Then A is a (non-unital) abelian Banach

algebra.
The space J ∶= JnA = {JnA ∶ A ∈ A} is a maximal ideal of A (it has co-dimension

one), but it is not modular. Indeed, if E ∈ A, then EJn − Jn /∈ J .
For example, if n = 3, then E ∈ A implies that there exist α1, α2 ∈ C such that

E =
⎡⎢⎢⎢⎢⎢⎣

0 α1 α2

0 0 α1

0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

while K ∈ J implies that there exists β ∈ C such that

K =
⎡⎢⎢⎢⎢⎢⎣

0 0 β
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

But then

EJ3 − J3 =
⎡⎢⎢⎢⎢⎢⎣

0 1 α1

0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
/∈ J .

S5.2. Example. Here’s an alternative proof of the above result.
If A were to admit modular ideals, then it would also admit maximal modular

ideals, by Corollary 5.7. By Proposition 5.12, A would admit a non-zero multiplica-
tive linear functional.

Let ϕ ∈ ΣA. Then ϕ(Jn) ∈ σ(Jn) = {0}, so ϕ(Jn) = 0. Thus for A ∈ A, say
A = ∑n−1

k=1 αkJ
k
n , we find that

ϕ(A) =
n−1

∑
k=1

αkϕ(Jn)k = 0,

contradicting the fact that ϕ ≠ 0.

S5.3. Example. Essentially the same example may be dressed up to impress
people at a fancy dinner party as follows.

Let A(D) denote the disk algebra (thought of as functions on D). Let κ(z) = z,
z ∈ D, and define

B ∶= {κf ∶ f ∈ A(D)}.
It is reasonable straightforward to show that J is a closed ideal, hence a closed
subalgebra of A(D). (It corresponds to the set of functions g ∈ A(D) such that
g(0) = 0.) The set

J ∶= {κg ∶ g ∈ B}
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is a closed ideal of B, but it is not modular. (In fact, J corresponds to those elements
of A(D) such that f(0) = f ′(0) = 0.) We leave it to the reader to show that for any
function e ∈ B,

eκ − κ /∈ J .
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Appendix

A5.1. The notion of the Jacobson radical comes from Ring Theory. In this
general context, it is defined as follows.

Definition. Let R be a ring.

● A left R-module M is said to be simple if R ⋅M ≠ {0} and M has no
non-trivial submodules. Let M denote the set of simple left R-modules.

● The Jacobson radical J(R) of R is the set

J(R) ∶= ∩{r ∈ R ∶ r ⋅M = 0 for all M ∈M}.

Thus J(R) is the set of all elements ofR that annihilate all simple leftR-modules.

A5.2. Theorem. If R is a ring, then J(R) is a two-sided ideal of R.

Proof. Suppose that M is a simple left R-module and that j, j1, j2 ∈ J(R). Clearly
0 ∈ J(R) ≠ ∅, and for all m ∈M ,

(j1 − j2) ⋅m = j1 ⋅m − j2 ⋅m = 0 − 0 = 0.

Hence j1 − j2 ∈ J(R).

Let r ∈ R. Given m ∈M , note that m′ ∶= r ⋅m ∈M and thus

(rj) ⋅m = r ⋅ (j ⋅m) = r ⋅ 0 = 0,

while
(jr) ⋅m = j ⋅ (r ⋅m) = j ⋅m′ = 0.

Hence rj, jr ∈ J(R).

By the Ideal Test, J(R) is a two-sided ideal of R.

◻

A5.3. Let R be a ring and M be a simple left R-module. Then there exists
m ∈ M and r ∈ R such that r ⋅m ≠ 0. Thus R ⋅m is a non-zero submodule of M ,
whence R ⋅m =M . We say that m is cyclic element for R. In fact, every non-zero
element of M is cyclic for R. Indeed, let n ∈ M . If there exists r ∈ R such that
r ⋅ n ≠ 0, then the above argument shows that R ⋅ n =M , and thus n is cyclic.

Let Z ∶= {z ∈ R ∶ r ⋅ z = 0 for all r ∈ R}. Then Z is easily seen to be a left
R-module. By simplicity of M , Z ≠ M and hence Z = {0}. In other words, every
non-zero element of M is cyclic for R.

To see the connection between the above definition of the Jacobson radical and
the “Jacobson radical” we defined in Definition 5.19, we first extend our definition
of modularity to include one-sided ideals.

A5.4. Definition. Let R be a ring. A left ideal M of R is said to be modular
if there exists e ∈ R such that re − r ∈M for all r ∈ R.
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A5.5. Proposition.

(i) If R is a ring and M is a simple left R-module, then there exists a maximal
modular left ideal N of R such that M is isomorphic to R/N .

(ii) Conversely, if N is a maximal modular left ideal of R, then R/N is a simple
left R-module.

Proof.

(i) Note that if M ∈M is a simple left R-module, then there exists m ∈M and
r ∈ R such that r ⋅m ≠ 0. Thus R ⋅m is a non-zero submodule of M , whence
R ⋅m =M .

Let N ∶= {s ∈ R ∶ s ⋅m = 0}. Then N is a left-ideal of R, and so R/N is
a left R-module. Consider the left R-module map

Θ ∶ R/N → M
r +N ↦ r ⋅m.

(That this is indeed a well-defined left R-module map is left as an exercise
for the reader.) It is easy to see that ker Θ = {0 +N} is trivial, and that
Θ is surjective, proving that M ≃ R/N as left R-modules. If N is not
maximal, say N ⊂ L ⊂ R for some left ideal L of R (recall that ⊂ denotes
proper containment), then L/N is a non-trivial left ideal of R/N , and thus
Lx = Θ(L/N) is a non-trivial left R-submodule of M , contradicting the
simplicity of M .

To see that N is a modular left ideal, note that M = R ⋅m, and thus
there exists e ∈ R such that e ⋅m =m. But then for all r ∈ R,

r ⋅m = r ⋅ (e ⋅m) = (re) ⋅m,
so that (r − re) ∈ N .

(ii) Conversely, if N is a maximal modular left ideal of R, then clearly R/N is a
left R-module. Note that R ⋅ (R/N) ≠ {0+N}, since if e ∈ R is the element
for which re − r ∈ N for all r ∈ R, then r ⋅ (e +N) = re +N = r +N ≠ 0 +N
whenever r ∈ R ∖N . Furthermore, the left submodules of R/N correspond
to left ideals of R/N , which in turn correspond to left ideals of R which
contain N , of which there are only two, namely N , and R itself. Thus R/N
is a simple left R-module.

◻

A5.6. Our present goal is to show that if R is a ring, then J(R) is the intersec-
tion of all maximal modular left ideals of R. To do this, we need another definition,
which also provides a useful characterisation of J(R).
Definition. An element q of a ring R is said to be left quasi-regular if there
exists w ∈ R such that

w ◇ q ∶= w + q +wq = 0.

The element w is said to be a left quasi-inverse of q. A left ideal L of R is said
to be left quasi-regular if every element of L is left quasi-regular.



APPENDIX 85

A5.7. Such a definition may look rather arcane and mysterious, but the follow-
ing result tells us the concept we are trying to generalise from unital to non-unital
rings.
Proposition. Let R be a unital ring. An element q ∈ R is left quasi-regular if and
only if 1 + q is left-invertible in R.

Proof.

● Suppose that q is left quasi-invertible with left quasi-inverse w. Then

(1 +w)(1 + q) = 1 +w + q +wq = 1 +w ◇ q = 1.

Thus (1 + q) is left-invertible in R.
● Suppose that b ∈ R satisfies b(1 + q) = 1. Let w = b − 1. Then

w ◇ q = w + q +wq = b − 1 + q + bq − q = b(1 + q) − 1 = 0.

Thus q is left quasi-regular.

◻

The next two lemmas will give us the extra characterisation of J(R) we shall
need.

A5.8. Lemma. Let R be a ring, and define

J ∶= ∩{N ⊆ R ∶ N is a maximal modular left ideal}.

Then J is a left quasi-regular left ideal of R.

Proof. First note that if R does not admit any maximal modular left ideals, then
J = R is clearly a left quasi-regular left ideal of R.

Suppose therefore, that R does admit maximal modular left ideals.
That J is a left-ideal is clear, since it is the intersection of left-ideals. Let q ∈ J,

and consider the left ideal Kq ∶= {r + rq ∶ r ∈ R}. Our goal is to show that Kq = R.
For then there exists w ∈ R such that w+wq = −q, or equivalently, w◇q = 0, showing
that q is left quasi-regular. Since q ∈ J was arbitrary, we conclude that J is left
quasi-regular.

Suppose to the contrary that Kq ≠ R. Now Kq is not only a left-ideal of R, but
in fact it is a modular left-ideal of R, since for any s ∈ R, s − s(−q) = s + sq ∈ Kq.
By an easy application of Zorn’s Lemma, Kq is contained in a maximal modular
left-ideal N of R. Now q ∈ J ⊆ N , and thus rq ∈ N for all r ∈ R. But r + rq ∈Kq ⊆ N ,
and therefore r ∈ N for all r ∈ R, implying that R = N , contradicting the maximality
of N . Hence Kq = R.

◻

A5.9. Lemma. Let R be a ring. If V is a left quasi-regular left ideal of R,
then

V ⊆ J(R).
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Proof. If R does not admit any simple left R-modules, then J(R) = R and the
result is trivial. Suppose, therefore, that R does admit a simple left R-module.

We argue by contradiction. Suppose that there exists a simple left R-module M
such that V ⋅M ≠ 0. Choose m0 ∈M such that V ⋅m0 ≠ 0. Obviously m0 ≠ 0. Then
V ⋅m0 is a non-zero submodule of M , and by the simplicity of M , we must have
V ⋅m0 =M . In particular, −m0 = v ⋅m0 for some v ∈ V . Since V is left quasi-regular,
there exists w ∈ R such that

w ◇ v = 0.

Thus

0 = 0 ⋅m0 = (w ◇ v) ⋅m0 = (w + v +wv) ⋅m0 = w ⋅m0 + (−m0) +w(−m0) = −m0,

a contradiction. This concludes the proof.

◻

A5.10. Theorem. Let R be a ring. Then

J(R) = J ∶= ∩{N ∶ N is a maximal modular left ideal of R}.

Proof. As in Lemma A5.8, we set

J ∶= ∩{N ∶ N is a maximal modular left ideal of R}.
By that Lemma, J is a left quasi-regular left ideal of R. By Lemma A5.9, J ⊆ J(R).

Conversely, suppose that k ∈ J(R). Let N be a maximal modular left-ideal
of R, with distinguished element e ∈ R such that re − r ∈ N for all r ∈ R. By
Proposition A5.5, R/N is a simple left R-module. Now k ⋅R/N = {0+N}, implying
in particular that

0 +N = k ⋅ (e +N) = ke +N = k +N.
Thus k ∈ N . This shows that J(R) ⊆ J, completing the proof.

◻

A5.10. Theorem. Let R be a unital ring. Then

J(R) = {q ∈ R ∶ 1 + xqy is invertible for all x, y ∈ R}.

Proof. As we have just seen, J(R) = J is a left quasi-regular ideal of R.
Fix q ∈ J(R). Since q ∈ J(R) implies that xqy ∈ R for all x, y ∈ R, to show that

J(R) is contained in the set on the right-hand side of the stated equation, it suffices
to show that q ∈ J(R) implies that 1 + q is invertible.

By Proposition A5.7, we see that 1+ q is left-invertible. Choose w ∈ R such that
w(1+ q) = 1. Then w = 1−wq. But −wq ∈ J(R), because J(R) is an ideal of R, and
thus w = 1−wq is left-invertible, again by Proposition A5.7. But w is right-invertible
(with right-inverse 1+ q), and thus w is invertible. Hence 1+ q = w−1 is invertible as
well.
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Conversely, suppose that q ∈ R and 1 + xqy is invertible for all x, y ∈ R. Then
V ∶= Rq is a left quasi-regular left ideal of R, and thus by Lemma A5.9, V ⊆ J(R).
In particular, q ∈ J(R).

This completes the proof.

◻

A5.11. There is an apparent lack of symmetry in our choice of the definition of
J(R), namely: why did we choose left R-modules? As it turns out, we could just
have easily chosen right R-modules. The “right” Jacobson radical we would have
obtained would be the same as the “left” Jacobson radical we did obtain. This is
left to the exercises.

A5.12. Of course, if R is commutative, then left-ideals coincide with ideals, and
we see that

J(R) = ∩{N ∶ N is a maximal modular ideal of R}.
Applying this to (commutative) Banach algebras A, we see that

J(A) = rad (A).

A5.13. Theorem A5.10 is very useful in the Banach algebra context. If A is a
unital Banach algebra, then

J(A) = {q ∈ A ∶ 1 + xqy is invertible for all x, y ∈ A}.
It follows that for all x, y ∈ A, −1 /∈ σ(xqy). In particular, if 0 ≠ α ∈ C, then
−1 /∈ σ(−α−1q), whence α /∈ σ(q). Thus q ∈ J(A) implies that σ(q) = {0}, i.e. that q
is quasinilpotent.

It is not true, however, that every quasinilpotent element of A lies in the Ja-
cobson radical of A. An easy computation shows that if A = M2(C) ≃ B(C2), then
J(A) = {02}. Certainly A admits non-trivial quasinilpotent elements (for example -
an off-diagonal matrix unit will do).
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Exercises for Chapter 5

Exercise 5.1. Multiplicative linear functionals

(a) Determine all of the multiplicative linear functionals on `∞n .
(b) Determine all of the multiplicative linear functionals on c0.

Exercise 5.2. Multiplicative linear functionals II
Consider the disk algebra A(D).

(i) Show that f∗(z) = f(z) defines an isometric involution on A(D).
(ii) Show that not every multiplicative linear functional on A(D) is self-adjoint.

Exercise 5.3. Finitely-generated unital, abelian Banach algebras
Let A be a unital, abelian Banach algebra. Given a1, a2, . . . , an ∈ A, we define

the joint spectrum of the n-tuple (a1, a2, . . . , an) ∈ A(n) to be

σ(a1, a2, . . . , an) ∶= {α ∶= (ϕ(a1), ϕ(a2), . . . , ϕ(an)) ∶ ϕ ∈ ΣA}.
(a) Prove that λ = (λ1, λ2, . . . , λn) ∈ σ(a1, a2, . . . , an) if and only if there exist

bk ∈ A, 1 ≤ k ≤ n such that
n

∑
k=1

(λk1 − ak)bk = 1.

(b) Suppose that {a1, a2, . . . , an} generates A; that is, suppose that A is the
smallest unital subalgebra (of itself) that contains all of these elements.
Prove that the map

∆ ∶ ΣA → σ(a1, a2, . . . , an)
ϕ ↦ (ϕ(a1), ϕ(a2), . . . , ϕ(an))

is a homeomorphism.
(c) A compact subset K ⊆ Cn is said to be polynomially convex if for all

polynomials p ∈ C[x1, x2, . . . , xn] in n commuting variables and for all λ =
(λ1, λ2, . . . , λn) ∈ Cn,

∣p(λ1, λ2, . . . , λn)∣ ≤ sup{∣p(k1, k2, . . . , kn)∣ ∶ (k1, k2, . . . , kn) ∈K}
implies that (λ1, λ2, . . . , λn) ∈K.

In the case where n = 1, this is equivalent to say that K admits no
“holes”; that is, C ∖K has no bounded components.

Prove that if {a1, a2, . . . , an} generatesA, then σ(a1, a2, . . . , an) is poly-
nomially convex.
Hint. Suppose that (λ1, λ2, . . . , λn) /∈ K. By part (a) above, one can find
bk, 1 ≤ k ≤ n such that ∑nk=1(λk1− ak)bk = 1. Note that ∑nk=1(λk1− ak)bk ∈
A, and thus can be approximated by polynomials in (a1, a2, . . . , an).
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Exercise 5.4. Closed ideals and the radical
Let A be a unital, non-commutative Banach algebra.

(a) Prove that A/rad (A) is semisimple.
(b) Suppose that J is a closed ideal of A. Prove that rad (J ) = J ∩ rad (A).
(c) Would part (a) have worked with any ring, or did we need to consider a

Banach algebra? Similarly, if R is any ring and K ⊲ R is an ideal of R, is

J(K) =K ∩ J(R)?

Exercise 5.5. The “right” Jacobson radical of a ring R
In analogy to the discussion in the Appendix above, given a ring R, a right R-

module M is said to be simple if M ⋅R ≠ {0} and M has no non-trivial submodules.
We will (very temporarily) define the “right” Jacobson radical K(R) to be the
set

K(R) ∶= ∩{r ∈ R ∶M ⋅ r = 0 for all simple right R-modules}.

Prove that
K(R) = J(R).

For this reason, we do not talk of “left-” or “right-”Jacobson radicals, but only
of the Jacobson radical.





CHAPTER 6

The algebra of Banach space operators

Before I speak, I have something important to say.

Groucho Marx

Introduction.

6.1. As we have already seen there are myriads of examples of Banach algebras.
We begin our study with a very important subclass, namely the class of operator
algebras. We shall divide our analysis into the study of operators on general Banach
spaces and on Hilbert spaces. The loss of generality in specifying the underlying
space is made up for in the strength of the results we can obtain. We begin by
recalling a definition.

6.2. Definition. Let X be a Banach space. Then B(X) consists of those linear
maps T ∶ X → X which are continuous in the norm topology. Given T ∈ B(X), we
define the norm of T to be

∥T ∥ = sup{∥Tx∥ ∶ ∥x∥ = 1}.

It follows immediately from the definition that ∥Tx∥ ≤ ∥T ∥ ∥x∥ for all x ∈ X, and
that ∥T ∥ is the smallest non-negative number with this property.

6.3. Remark. We assume that the reader is familiar with the fact that B(X)
is a Banach space. To verify that it is indeed a Banach algebra, we need only verify
that the operator norm is submultiplicative, that is, that ∥AB∥ ≤ ∥A∥ ∥B∥ for all
operators A and B.

But

∥AB∥ = sup{∥ABx∥ ∶ ∥x∥ = 1}
≤ sup{∥A∥ ∥Bx∥ ∶ ∥x∥ = 1}
≤ sup{∥A∥ ∥B∥ ∥x∥ ∶ ∥x∥ = 1}
= ∥A∥ ∥B∥.

91
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Since B(X) is a Banach algebra, all of the results from Chapters 2, 3, and 4
apply. In particular, for T ∈ B(X), the spectrum of T is a non-empty, compact
subset of C. The function R(λ,T ) = (λI −T )−1 is analytic on ρ(T ), and we can (and
do!) define the operator f(T ) when f is analytic on a neighbourhood of σ(T ).

What we shall find, however, is that if A ⊆ B(X) is a Banach algebra, then
we can draw more information about A and its elements thanks to the nature of
bounded linear maps. The next proposition is a case in point: as opposed to merely
having an abstract definition of invertibility, we can provide alternate and at times
more useful characterisations of this property.

6.4. Proposition. Let X and Y be Banach spaces, and T ∈ B(X,Y). The
following are equivalent:

(a) T is invertible.
(b) T is bounded below and has dense range.
(b) T is a bijection.

Proof.

(a) implies (b). Suppose T is invertible. Let x ∈ X. Then x = T−1Tx, and so
∥x∥ ≤ ∥T −1∥ ∥Tx∥, i.e. ∥Tx∥ ≥ ∥T −1∥−1 ∥x∥ and T is bounded below. Since
T is onto, its range is trivially dense.

(b) implies (c). Suppose T is bounded below by, say, δ > 0. We shall first
show that in this case, the range of T is closed.

Indeed, suppose that there exists a sequence yn = Txn, n ≥ 1 and y
such that limn→∞ yn = y. Then δ∥xm − xn∥ ≤ ∥ym − yn∥, forcing {xn}∞n=1 to
be a Cauchy sequence. Let x = limn→∞ xn. By the continuity of T , we have
Tx = limn→∞ Txn = limn→∞ yn = y. We have shown that y ∈ ranT , and
hence that ranT is closed.

It follows that if T has dense range, as per our hypothesis, then T is
surjective.

As well, suppose that x ∈ ker T . Then δ∥x∥ ≤ ∥Tx∥ = 0, forcing x to be
zero, and T to be injective.

(c) implies (a). Suppose that T is a bijection. The Open Mapping Theo-
rem 1.21 then implies that the inverse image map T−1 is continuous, and
thus that T is invertible.

◻
In general, for T ∈ B(X), there are many subclassifications of the spectrum of T .

Condition (b) above leads to the following obvious ones.

6.5. Definition. Let X be a Banach space and T ∈ B(X). Then the point
spectrum of T is

σp(T ) = {λ ∈ C ∶ T − λI is not injective}.
These are the eigenvalues of T . The approximate point spectrum of T is the set

σa(T ) = {λ ∈ C ∶ T − λI is not bounded below}.
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The compression spectrum of T is

σc(T ) = {λ ∈ C ∶ T − λI does not have dense range}.

6.6. Remarks.

● If dimX <∞, then σp(T ) = σa(T ) = σc(T ) = σ(T ).
● If λ ∈ σa(T ), then for all n ≥ 1, there exists 0 /= xn ∈ X such that ∥(T −
λI)xn∥ ≤ 1

n∥xn∥. Let yn = xn/∥xn∥, n ≥ 1. Then ∥yn∥ = 1 for all n ≥ 1, and
(T − λI)yn → 0.

● σ(T ) = σa(T ) ∪ σc(T ) and in general, σp(T ) ⊆ σa(T ).

6.7. Example. Let µ be a finite, positive, regular Borel measure on a non-
empty set X, and suppose that f ∈ L∞(X,µ). (Here, as is common, we use function
notation despite the fact that elements of L∞(X,µ) are equivalence classes of func-
tions.)

Consider the linear map

Mf ∶ L2(X,µ) → L2(X,µ)
g ↦ fg.

(That Mf is well-defined is left as a routine exercise.) We refer to the operator Mf

as a multiplication operator with symbol f . Observe that

∥Mfg∥2
2 = ∥fg∥2

2 = ∫
X

∣fg∣2µ ≤ ∥f∥2
∞∫

X
∣g∣2dµ = ∥f∥2

∞ ∥g∥2
2,

whence ∥Mf∥ ≤ ∥f∥∞. For each n ≥ 1, set En ∶= {x ∈ X ∶ ∣f(x)∣ > ∥f∥∞ − 1
n}. (The

set En is of course defined up to a set of measure zero.) Then the characteristic
function χEn of En lies in L2(X,µ), and

∥MfχEn∥2
2 = ∫

X
∣fχEn ∣2dµ = ∫

En
∣f ∣2dµ ≥ ∫

En
(∥f∥2

∞)dµ ≥ (∥f∥2
∞) ∥χEn∥2

2,

and thus ∥Mf∥ ≥ ∥f∥∞. Combined with the above estimate, we see that

∥Mf∥ = ∥f∥∞.
That λI −Mf =Mλ1−f for all λ ∈ C is easy to verify.

Claim: σ(Mf) = ess ranf , the essential range of f .
Indeed, if λ ∈ ess ranf , then for each ε > 0, the set Eε ∶= {x ∈X ∶ f(x) ∈ B(λ, ε)}

has positive measure. As such, χEε ≠ 0 in L2(X,µ) and

∥(λI −Mf)χEε∥2
2 = ∫

Eε
∣λ − f ∣2dµ < ε2∥χEε∥2

2.

Since λI −Mf is not bounded below, λ ∈ σa(Mf) ⊆ σ(Mf).
Conversely, if λ /∈ ess ranf , then there exists δ > 0 such that Eδ defined as

above has measure equal to zero. If follows that ∣λ − f(x)∣ ≥ δ a.e.-µ. But then
h = (λ1 − f)−1 ∈ L∞(X,µ), and

Mh(λI −Mf) =MhMλ1−f =Mh(λ1−f) =M1 = I = (λ1 −Mf)Mh.
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That is, λ /∈ σ(Mf).
From this we see that σa(Mf) = σ(Mf). (As we shall see later, Mf is an example

of a normal operator in B(L2(X,µ)), and for any normal operator N acting on a
Hilbert space, σa(N) = σ(N).)

Suppose that λ ∈ σp(Mf). Then there exists a non-zero element g ∈ L2(X,µ)
such that

(λI −Mf)g = (λ1 − f)g = 0 a.e. − µ.

It then follows that the set E ∶= {x ∈ X ∶ f(x) = λ} (defined a.e.-µ) has positive
measure. That is, f is constant (a.e.-µ) on set of positive measure.

For example, the multiplication operator Mf ∶ L2([0,1], dm) → L2([0,1], dm)
where f(x) = x (a.e.-m), and where dm represents Lebesgue measure, has no eigen-
values, given that the function f(x) = x is not constant on any set of positive measure
in [0,1].

Banach space adjoints

6.8. Definition. Let X and Y be Banach spaces. Let T ∈ B(X,Y). We shall
now define an operator T ∗ ∈ B(Y∗,X∗), called the Banach space adjoint of T .

First, for x∗ ∈ X∗, we adopt the notation ⟨x,x∗⟩ = x∗(x). Then for y∗ ∈ Y∗,
define T ∗ so that

⟨x,T ∗(y∗)⟩ = ⟨Tx, y∗⟩.

That is, (T ∗y∗)(x) = y∗(Tx) for all x ∈ X, y∗ ∈ Y∗. It is not hard to verify that T ∗

is linear.

6.9. Proposition. Let X, Y, Z be Banach spaces, S, T ∈ B(X,Y), and let R ∈
B(Y,Z). Then

(a) for all α, β ∈ C, we have (αS + β T )∗ = αS∗ + β T ∗;
(b) (R ○ T )∗ = T ∗ ○R∗.

Proof. Let x ∈ X, y∗ ∈Y∗, and z∗ ∈ Z∗. Then

(a)

⟨x, (αS + β T )∗y∗⟩ = ⟨(αS + β T )x, y∗⟩
= y∗((αS + β T )x)
= αy∗(Sx) + β y∗(Tx)
= α⟨Sx, y∗⟩ + β⟨Tx, y∗⟩
= α⟨x, S∗y∗⟩ + β⟨x,T ∗y∗⟩.

Since this is true for all x ∈ X and y∗ ∈Y∗, we conclude that (αS + β T )∗ =
αS∗ + β T ∗.
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(b)

⟨x, (R ○ T )∗z∗⟩ = ⟨(R ○ T )x, z∗⟩
= ⟨R(Tx), z∗⟩
= ⟨Tx, R∗z∗⟩
= ⟨x,T ∗(R∗z∗)⟩
= ⟨T ∗ ○R∗z∗⟩.

Again, this shows that (R ○ T )∗ = T ∗ ○R∗.

◻

6.10. Theorem. Let T ∈ B(X,Y), where X and Y are Banach spaces. Then
∥T ∗∥ = ∥T ∥.
Proof.

For any y∗ ∈Y∗, we have

∥T ∗y∗∥ = sup{∣T ∗y∗(x)∣ ∶ x ∈ X, ∥x∥ = 1}
= sup{∣y∗(Tx)∣ ∶ x ∈ X, ∥x∥ = 1}
≤ sup{∥y∗∥ ∥Tx∥ ∶ x ∈ X, ∥x∥ = 1}
= ∥y∗∥ ∥T ∥.

Thus we see that ∥T ∗∥ ≤ ∥T ∥.
Next, let x ∈ X. By the Hahn-Banach Theorem, we can choose y∗ ∈Y∗ such that

y∗(Tx) = ∥Tx∥ and ∥y∗∥ = 1. Then

∥Tx∥ = y∗(Tx)
= ⟨Tx, y∗⟩
= ⟨x,T ∗y∗⟩
= (T ∗y∗)(x)
≤ ∥T ∗y∗∥ ∥x∥
≤ ∥T ∗∥∥x∥.

Thus ∥T ∥ ≤ ∥T ∗∥.
Combining this with the previous estimate, we have that ∥T ∗∥ = ∥T ∥.

◻

6.11. Proposition. Let X = Cn and A ∈ B(X) ≃ Mn. Then the matrix of the
Banach space adjoint A∗ of A with respect to the dual basis coincides with At, the
transpose of A.
Proof. Recall that X∗ ≃ X. We then let {ei}ni=1 be a basis for X and let {fj}nj=1

be the corresponding dual basis; that is, fj(ei) = δij , where δij is the Dirac delta
function. Let x ∈ X. Define λj = fj(x).
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Writing the matrix of A ∈ B(X) as [aij], we have

Aej = [aij]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
.
.
0
1
0
.
.
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1j

a2j

.

.
aj−1 j

ajj
aj+1 j

.

.
anj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
n

∑
k=1

akjek.

Thus aij = fi(Aej).
Now A∗ ∈ B(X∗) ≃Mn, and so we can also write the matrix for A∗ with respect

to {fj}nj=1. As above, we have

A∗fj =
n

∑
k=1

αkjfk.

Thus

αij = (A∗fj)(ei) = fj(Aei) = aji.
In particular, the matrix for A∗ with respect to {fj}nj=1 is simply the transpose of

the matrix for A with respect to {ej}nj=1.

◻

Keeping in mind that the Banach space adjoint generalises the notion of the
transpose of a matrix A ∈ Mn(C), and that the spectrum of the transpose of A
agrees with the spectrum of A, the next result is perhaps less surprising than it
otherwise could be. The proof, however, is not completely straightforward.

6.12. Proposition. Let X and Y be Banach spaces and let T ∈ B(X,Y). Then
T is invertible if and only if T ∗ is invertible.
Proof. First assume that T is invertible, i.e., that T−1 ∈ B(Y,X). Then IX∗ =
(IX)∗ = (T−1 ○ T )∗ = T ∗ ○ (T−1)∗.

Also, IY∗ = (IY)∗ = (T ○T−1)∗ = (T −1)∗ ○T ∗. Thus T ∗ is invertible and (T ∗)−1 =
(T−1)∗.

Now assume that T ∗ is invertible. Then ranT is dense, for otherwise by the
Hahn-Banach Theorem we can take y∗ ∈ Y∗ such that ∥y∗∥ = 1 and y∗∣(ranT ) = 0.

Then

(T ∗y∗)(x) = y∗(Tx) = 0

for all x ∈ X. Thus T ∗y∗ = 0 but y∗ /= 0, implying that T ∗ is not injective, a
contradiction.
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Moreover, T is bounded below. For consider: T ∗ invertible implies that T ∗∗ =
(T ∗)∗ is invertible from above. Thus T ∗∗ is bounded below. Recall that X embeds
isometrically isomorphically into X∗∗ via the map

X ≃ X̂ ⊆ X∗∗

x ↦ x̂

where x̂(x∗) = x∗(x) for all x∗ ∈ X∗. (Recall that T ∈ B(X,Y) and that T ∗∗ ∈
B(X∗∗,Y∗∗).)

Now T ∗∗(x̂) ∈Y∗∗, and

((T ∗)∗(x̂))(y∗) = x̂(T ∗y∗)
= (T ∗y∗)(x)
= y∗(Tx) for all y∗ ∈Y∗.

Thus

sup{∣(T ∗∗x̂)(y∗)∣ ∶ y∗ ∈Y∗, ∥y∗∥ = 1} = sup{∣y∗(Tx)∣ ∶ y∗ ∈Y∗, ∥y∗∥ = 1}.

In other words, ∥T ∗∗x̂∥ = ∥Tx∥. Since T ∗∗ is bounded below, say by δ > 0,

δ∥x∥ = δ∥x̂∥ ≤ ∥T ∗∗x̂∥ = ∥Tx∥.

In other words, T is also bounded below.

Finally, T bounded below and ranT dense together imply that T is invertible,
by Proposition 6.4.

◻

6.13. Corollary. Let X be a Banach space and T ∈ B(X). Then σ(T ) = σ(T ∗).

Compact operators acting on Banach spaces

6.14. Definition. Let X and Y be Banach spaces, and T ∈ B(X,Y). Then T is

said to be compact if T (X1) is compact in Y. The set of compact operators from
X to Y is denoted by K(X,Y), and if Y = X, we simply write K(X).

Recall that a subset K of a metric space L is said to be totally bounded if for
every ε > 0 there exists a finite cover {Bε(yi)}ni=1 of K with yi ∈K, 1 ≤ i ≤ n, where
Bε(yi) = {z ∈ L ∶ dist (z, yi) < ε}.
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6.15. Proposition. Let X and Y be Banach spaces, and T ∈ B(X,Y). The
following are equivalent:

(i) T is compact;

(ii) T (F ) is compact in Y for all bounded subsets F of X;
(iii) If (xn)n is a bounded sequence in X, then (Txn)n has a convergent subse-

quence;
(iv) T (X1) is totally bounded.

Proof. Exercise.

◻

6.16. Definition. Let X and Y be Banach spaces. Then F ∈ B(X,Y) is said to
be a finite-rank operator if dim F (X) is finite. The set of finite rank operators
from X to Y is denoted by F(X,Y).

6.17. Proposition. Let X and Y be Banach spaces. Then F(X,Y) ⊆ K(X,Y).
Proof. Suppose F ∈ F(X,Y). Then FX1 is closed and bounded in ranF , but ranF

is finite-dimensional in Y, as F is finite rank. Thus FX1 is compact in ranF , and
thus compact in Y as well. That is, F is a compact operator.

◻

6.18. Proposition. Let X and Y be Banach spaces and suppose that K ∈
K(X,Y). The following are equivalent.

(i) K(X) is closed in Y, and
(ii) K is a finite-rank operator.

Proof.

(i) implies (ii).
Suppose that K(X) is closed. Then K(X) is a Banach space and the

map

K0 ∶ X → K(X)
x ↦ Kx

is a surjection. By the Open Mapping Theorem 1.21, it is also an open
map. In particular, K0(X○

1) is open in K(X) and 0 ∈ K0(X○
1). Let G

be an open ball in K(X) centred at 0 and contained in K0(X○
1). Then

K0(X1) = K(X1) is compact, and also contains G. Thus G is compact in
K(X) and so dim K(X) is finite; i.e. K is a finite-rank operator.

(ii) implies (i).
K(X) is easily seen to be a submanifold of Y. Since finite-dimensional

manifolds are always closed, we find that dim K(X) < ∞ implies K(X) is
closed in Y.

◻
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6.19. Proposition. Let X be a Banach space. Then K(X) = B(X) if and only
if X is finite dimensional.
Proof. If dim X <∞, then B(X) = F(X) ⊆ K(X) ⊆ B(X), and equality follows.

If K(X) = B(X), then I ∈ K(X), so I(X1) = I(X1) = X1 is compact. In particular,
X is finite-dimensional.

◻

6.20. Theorem. Let X and Y be Banach spaces and suppose K ∈ K(X,Y).
Then K∗ ∈ K(Y∗,X∗).
Proof. Let ε > 0. Then K(X1) is totally bounded, so we can find x1, x2, . . . , xn ∈ X1

such that if x ∈ X1, then ∥Kx −Kxi∥ < ε/3 for some 1 ≤ i ≤ n. Let

R ∶ Y∗ → Cn
φ ↦ (φ(K(x1)), φ(K(x2)), . . . , φ(K(xn))).

Then R ∈ F(Y∗,Cn) ⊆ K(Y∗,Cn), and so R(Y∗
1) is totally bounded, where Y∗

1 is
the unit ball of Y∗. Thus we can find y∗1 , y

∗
2 , . . . , y

∗
m ∈ Y∗

1 such that if y∗ ∈ Y∗
1 , then

∥Ry∗ −Ry∗j ∥ < ε/3 for some 1 ≤ j ≤m. Now

∥Ry∗ −Ry∗j ∥ = max
1≤i≤n

∣y∗(K(xi)) − y∗j (K(xi))∣

= max
1≤i≤n

∣K∗(y∗)(xi) −K∗(y∗j )(xi)∣.

Suppose x ∈ X1. Then ∥Kx − Kxi∥ < ε/3 for some 1 ≤ i ≤ n, and ∣K∗(y∗)(xi) −
K∗(y∗j )(xi)∣ < ε/3 for some 1 ≤ j ≤m, so

∣K∗(y∗)(x) −K∗(y∗j )(x)∣ ≤ ∣K∗(y∗)(x) −K∗(y∗)(xi)∣ +
∣K∗(y∗)(xi) −K∗(y∗j )(xi)∣ +

∣K∗(y∗j )(xi) −K∗(y∗j )(x)∣
≤ ∥y∗∥ ∥Kx −Kxi∥ + ε/3 + ∥y∗j ∥ ∥Kx −Kxi∥
< ε/3 + ε/3 + ε/3 = ε.

Thus ∥K∗y∗ −K∗y∗j ∥ ≤ ε and so K∗(Y∗
1) is totally bounded. We conclude that

K∗ ∈ K(Y∗,X∗).
◻

For the remainder of this section, unless explicitly stated otherwise, X will denote
an infinite-dimensional Banach space.
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6.21. Theorem. Let X and Y be Banach spaces. Then K(X,Y) is a closed
subspace of B(X,Y).
Proof. Let α, β ∈ C and let K1, K2 ∈ K(X,Y). Let (xn)n be a bounded sequence
in X. Then K1 generates a convergent subsequence, say (K1(xn(j)))j . Similarly, K2

generates a convergent subsequence from (xn(j))j , say (K2(xn(j(i))))i.
Then ((αK1 +βK2)(xn(j(i))))i is a convergent subsequence in Y. From part (c)

of Proposition 6.15, αK1 + βK2 ∈ K(X,Y).
Now we show that K(X,Y) is closed. Suppose Kn ∈ K(X,Y) for n ≥ 1 and

limn→∞Kn = K ∈ B(X,Y). We shall show that K(X1) is totally bounded. First let
ε > 0, and choose N > 0 such that ∥KN −K∥ < ε/3.

Since KN(X1) is totally bounded, we can find {yi = KN(xi)}Mi=1 such that

{Bε/3(yi)}Mi=1 is a finite cover of KN(X1). Thus for all x ∈ X1,

∥KN(x) −KN(xj)∥ < ε/3 for some 1 ≤ j = j(x) ≤M.

Then

∥K(x) −K(xj)∥ = ∥K(x) −KN(x) +KN(x) −KN(xj) +KN(xj) −K(xj)∥
≤ ∥K −KN∥ ∥x∥ + ∥KN(x) −KN(xj)∥ + ∥KN −K∥ ∥xj∥

≤ ε
3
+ ε

3
+ ε

3
= ε.

Thus K(X1) is totally bounded and so K ∈ K(X,Y).
◻

6.22. Theorem. Let W, X, Y, and Z be Banach spaces. Suppose R ∈ B(W,X), K ∈
K(X,Y), and T ∈ B(Y,Z). Then TK ∈ K(X,Z) and KR ∈ K(W,Y).
Proof. Now

T ○K(X1) = T (K(X1))

⊆ T (K(X1)).

Since K(X1) is compact and T is continuous, T ○K(X1) is a closed subset of the

compact set T (K(X1)) = T (K(X1)), and so it is compact as well. Thus TK ∈
K(X,Z).

Next, note that

KR(W1) =K(R(W1)).
But R(W1) is bounded since R is, and so by Proposition 6.15, KR(W1) is compact.
Thus KR ∈ K(W,Y).

◻

6.23. Corollary. If X is a Banach space, then K(X) is a closed, two-sided ideal
of B(X).
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The Fredholm Alternative

6.24. A very familiar result from linear algebra states that every linear map
T on a complex vector space of dimension n ≥ 1 admits n eigenvalues (counted
according to algebraic multiplicity), and that for α ∈ C, T − αI is injective if and
only if it is surjective, in which case it is invertible.

As we have seen, the multiplication operator Mf on L2([0,1], dx), where f(x) =
x is injective, but it is not surjective and thus not invertible. Similarly, if H = `2 and
{en}n is an orthonormal basis for H, then the operator S ∈ B(H) defined by Se1 = 0
and Sen = n − 1 if n ≥ 2 is easily seen to be surjective but not injective.

The Fredholm Alternative (Theorem 6.32 below) shows that if K ∈ K(X) and if
0 ≠ λ ∈ C, then λI −K is injective if and only if λI −K is surjective. In other words,
we recover an analogue of the finite-dimensional result for all non-zero complex
numbers. The technique used to prove the Fredholm Alternative is also the key to
establishing the wonderful result that the spectrum of a compact operator acting on
a Banach space is a sequence (potentially finite) converging to zero.

6.25. Lemma. Let X be a Banach space and M be a finite dimensional subspace
of X. Then there exists a closed subspace N of X such that M ⊕ N = X.
Proof. Let {ei}ni=1 be a basis for M and let {fi}ni=1 be the dual basis to {ei}ni=1 (cf.
Proposition 6.11). Then we can extend {fi}ni=1 to {φi}ni=1 ⊆ X∗ by the Hahn-Banach
Theorem. We then let N = ∩ni=1 ker φi. It remains to check that N is the desired
space. Clearly it is closed.

If x ∈ X, then let λi = φi(x), 1 ≤ i ≤ n, and set y = ∑ni=1 λiei ∈ M. Let z = x − y
so that x = y + z. Then φi(z) = φi(x) − φi(y) = λi − λi = 0, 1 ≤ i ≤ n. Hence z ∈ N,
which shows that X =M +N.

If x ∈M∩N, write x = ∑ni=1 λiei. Since x ∈N, we have 0 = φj(x) = ∑ni=1 λiφj(ei) =
∑ni=1 λiδij = λj , 1 ≤ j ≤ n. Thus x = 0; that is, M ∩N = {0}, and so X =M⊕N.

◻

6.26. Proposition. Let X be a Banach space, and K ∈ K(X). Suppose 0 /= λ ∈
C. Then

(i) M = ker (λI −K) is finite dimensional;
(ii) R = ran (λI −K) is a closed subspace of X;
(iii) dim (X/R) = dim ker (λI −K∗) <∞.

Proof.

(i) Clearly M is a closed subspace of X, and hence a Banach space itself.
Consider

K0 ∶ M → X
x ↦ Kx (= λx).

Then K0 is compact. Moreover, K0(M) =M is closed. By Proposition 6.18,
M is finite-dimensional.



102 6. THE ALGEBRA OF BANACH SPACE OPERATORS

(ii) From above, M is closed and finite dimensional, and so we can find N ⊆ X,
a closed subspace such that X =M⊕N. Consider

T ∶ N → X
y ↦ (λI −K)y,

(i.e. T = (λI −K)∣N).
We claim that T is bounded below, for otherwise, there exists a sequence

(yn)n of norm-one vectors such that limn→∞ Tyn = limn→∞(λI −K)yn = 0.
Moreover, since K is compact, there exists a subsequence (yn(j))j such

that limj→∞Kyn(j) = z ∈ X exists. But then

lim
j→∞

(λI −K)yn(j) = lim
j→∞

λyn(j) − lim
j→∞

Kyn(j)

= lim
j→∞

λyn(j) − z

= 0,

and so λ−1z = limj→∞ yn(j). Moreover, z ∈N, since N is closed. Then

(λI −K)λ−1z = λ(λ−1z) −K(λ−1)z
= z −K( lim

j→∞
yn(j))

= z − z
= 0,

so that λ−1z and hence z ∈ ker (λI −K) =M. But z ∈M ∩N implies z = 0,
i.e.

0 = ∥λ−1z∥ = lim
j→∞

yn(j).

This contradicts the fact that ∥yn(j)∥ = 1 for all j ≥ 1. The conclusion must
be that T is bounded below.

As in the proof of Proposition 6.4, we find that ranT is closed. But
ranT = ran (λI −K), so that the latter is closed as well.

(iii) First note that

τ ∈ ker (λI −K∗) ⇐⇒ (λI −K∗)(τ)x = 0 for all x ∈ X
⇐⇒ τ((λI −K)x) = 0 for all x ∈ X
⇐⇒ τ ∣R = 0.

We define the map

Φ ∶ ker (λI −K∗) → (X/R)∗
τ ↦ Φ(τ),

where Φ(τ)(x +R) ∶= τ(x).
If x +R = y +R, then

Φ(τ)(x +R) −Φ(τ)(y +R) = τ(x) − τ(y)
= τ(x − y) (but x − y ∈R)
= 0,
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so that Φ(τ) is well-defined.
We wish to show that Φ is an isomorphism of ker (λI−K∗) onto (X/R)∗.

Since K is compact implies that K∗ is compact, using (i) above for K∗ will
then imply that ker (λI −K∗) is finite dimensional, so that (X/R)∗ will be
as well.

Suppose 0 /= τ ∈ ker (λI −K∗). Then, since τ ∣R = 0 and τ /= 0, we can
find x ∈ X/R such that τ(x) /= 0. Then Φ(τ)(x +R) = τ(x) /= 0, so that
Φ(τ) /= 0. In particular, Φ is injective.

If φ ∈ (X/R)∗ and π ∶ X → (X/R) is the canonical map, then define

φ ∈ X∗ via φ = φ ○ π. Clearly φ∣R = 0, so that φ ∈ ker (λI −K∗). Finally,

Φ(φ)(x +R) = φ(x)
= φ(π(x))
= φ(x +R)

so that Φ(φ) = φ, and hence Φ is surjective. Thus Φ is an isomorphism,
and so from above, we conclude that

dim (X/R) = dim (X/R)∗ = dim ker (λI −K∗)

is finite.

◻

6.27. Remark. The above proof actually shows that if X and Y are Banach
spaces, T ∈ B(X,Y), and ranT is closed, then

ker T ∗ ≃ (Y/ranT )∗.

Compactness was only used to show that this was finite in the case we were
considering.

6.28. Let X be a Banach space and T ∈ B(X). Then associated to T are two
linearly ordered sequences of linear manifolds:

Ca = {ker Tn}∞n=1 and Cd = {ranTn}∞n=1.

Definition. Let X be a Banach space and T ∈ B(X). If ker Tn /= ker Tn+1 for all
n ≥ 0, then T is said to have infinite ascent, and we write ascT =∞. Otherwise, we
set ascT = p, where p is the least non-negative integer such that ker T p = ker Tn, n ≥
p.

If ranTn /= ranTn+1 for all n ≥ 0, then T is said to have infinite descent, and
we write descT =∞. Otherwise, we set descT = q, where q is the least non-negative
integer such that ranT q = ranTn, n ≥ q.
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6.29. Lemma. Let X be a Banach space and K ∈ K(X). Suppose we can find
(λn)n ⊆ C and a sequence (Vn)n of closed subspaces of X satisfying:

(i) Vn ⊂ Vn+1 for all n ≥ 1, where ′′ ⊂′′ denotes proper containment;
(ii) KVn ⊆ Vn for all n ≥ 1;
(iii) (K − λn)Vn ⊆ Vn−1, for all n ≥ 1.

Then limn→∞ λn = 0. Moreover, the same conclusion holds if (Wn)n is a sequence
of closed subspaces of X satisfying:

(iv) Wn ⊃Wn+1 for all n ≥ 1, where ′′ ⊃′′ denotes proper containment;
(v) KWn ⊆Wn for all n ≥ 1;
(vi) (K − λn)Wn ⊆Wn+1, for all n ≥ 1.

Proof. Let zn ∈ Vn/Vn−1, ∥zn∥ = 1/2 and choose xn ∈ Vn such that xn = zn. Since
∥zn∥ = inf{∥xn + y∥ ∶ y ∈ Vn−1}, we can find yn ∈ Vn−1 such that if we let wn = xn + yn,
then wn = zn and 1/2 ≤ ∥wn∥ < 1.

Then wn ∈ Vn, so (K − λn)wn ∈ Vn−1. That is, Kwn = λnwn + vn−1 for some
vn−1 ∈ Vn−1.

If m < n,

∥Kwn −Kwm∥ = ∥λnwn + (vn−1 − λmwm − vm−1)∥
≥ inf{∥λnwn + y∥ ∶ y ∈ Vn−1}
= ∣λn∣ ∥wn∥
= ∣λn∣/2.

Suppose limn→∞ λn /= 0. Find (λn(j))j such that inf{∣λn(j)∣ ∶ j ≥ 1} = δ > 0.
Then (Kwn(j))j has no convergent subsequence, although (wn(j))j is bounded. This
contradicts the compactness of K. Thus limn→∞ λn = 0.

The second statement is proven in a similar fashion.

◻

6.30. Lemma. Let X be a Banach space, K ∈ K(X), and 0 /= λ ∈ C. Then
ran (λI −K)n is closed for all n ≥ 0.
Proof. Exercise.

◻

6.31. Theorem. Let K be a compact operator on a Banach space X and suppose
0 /= λ ∈ C. Then (λI −K) has finite ascent and finite descent.
Proof. Suppose that (K − λI) has infinite ascent. Then we can apply Lemma 6.29
with λn = λ for all n ≥ 1 and Vn = ker (K −λI)n, n ≥ 1 to conclude that limn→∞ λn =
λ = 0, a contradiction. Thus (K − λI) has finite ascent.

Similarly, if (K − λI) has infinite descent, then putting λn = λ and putting
Wn = ran (K−λI)n for all n ≥ 1 again implies that limn→∞ λn = λ = 0, a contradiction.
Thus (K − λI) has finite descent.

◻
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6.32. Theorem. [The Fredholm Alternative] Let X be a Banach space and
let K ∈ K(X). Suppose 0 /= λ ∈ C. Then (λI −K) is injective if and only if it is
surjective.
Proof. First assume that (λI −K) is surjective, and suppose that it is not injective.
Let Vn = ker(λI−K)n for each n ≥ 1. Each (λI−K)n is onto. Let 0 /= y ∈ ker (λI−K)
and let x ∈ X such that y = (λI −K)nx. Then x ∈ Vn+1 but x /∈ Vi, 1 ≤ i ≤ n. That
is, Vn is a proper subset of Vn+1 for all n ≥ 1. But (λI −K) has finite ascent, by
Theorem 6.31, a contradiction. Thus (λI −K) is injective.

Now assume that (λI − K) is injective. Let M = ran (λI − K). By Proposi-
tion 6.26, M is closed. Consider the operator

R ∶ X → M
x ↦ (λI −K)x.

Then R is bijective and so by Proposition 6.4, R is invertible. Moreover, R∗ ∶M∗ →
X∗ is invertible, and hence surjective.

Take x∗ ∈ X∗ and choose m∗ ∈M∗ such that R∗m∗ =m∗○R = x∗. We can extend
m∗ to a functional x∗m ∈ X∗ by the Hahn-Banach Theorem. Then for all x ∈ X,

((λI −K)∗x∗m)(x) = x∗m((λI −K)x)
= (m∗ ○R)x
= x∗(x).

Thus (λI −K)∗x∗m = x∗, showing that (λI −K)∗ is surjective. From the first half
of the proof, it follows that (λI −K)∗ is injective, and hence invertible. But then
(λI −K) is invertible, and therefore surjective.

◻

6.33. Corollary. Let X be an infinite-dimensional Banach space and K ∈ K(X).
Then σ(K) = {0} ∪ σp(K).

Note that the presence of 0 in the spectrum of K is unavoidable, since K lies in
the proper ideal K(X), and hence can not be invertible. Also, recall that eigenvectors
corresponding to distinct eigenvalues of a linear operator T ∈ B(X) are linearly
independent.

6.34. Theorem. Let X be an infinite dimensional Banach space and K ∈ K(X).
Then for all ε > 0, σ(K)∩{z ∈ C ∶ ∣z∣ > ε} is finite. In other words, σ(K) is a sequence
of eigenvalues of finite multiplicity, and this sequence must converge to 0.
Proof. Let ε > 0. Suppose σ(K) ∩ {z ∈ C ∶ ∣z∣ > ε} contains a sequence (λn)n with
λi /= λj , 1 ≤ i /= j < ∞. Let (vn)n be eigenvectors corresponding to (λn)n and for
each n ≥ 1, let Vn = span1≤k≤n{vk}.

Then (Vn)n and (λn)n satisfy the conditions of Lemma 6.29. We conclude from
that Lemma that limn→∞ λn = 0, a contradiction.

Thus σ(K) = {0} ∪ {λn}rn=1, where r is either finite or ℵ0. Moreover, each λn is
an eigenvalue of K, and limn→∞ λn = 0 when r is not finite.

◻
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Supplementary Examples

S6.1. Example. Let X = C([0,1]), and consider V ∈ B(X) given by

(V f)(x) = ∫
1

0
k(x, y)f(y)dy,

where

k(x, y) = { 0 if x < y,
1 if x ≥ y.

Then (V f)(x) = ∫
x

0 f(y)dy. This is an example of a Volterra operator. The
function k(x, y) is referred to as the kernel of the integral operator. This should
not be confused with the notion of a null space, also referred to as a kernel.

We wish to determine the spectrum of V . Now

(V 2f)(x) = (V (V f))(x)

= ∫
1

0
k(x, t) (V f)(t)dt

= ∫
1

0
k(x, t)∫

1

0
k(t, y) f(y)dy dt

= ∫
1

0
f(y)∫

1

0
k(x, t)k(t, y)dt dy

= ∫
1

0
f(y)k2(x, y)dy,

where k2(x, y) = ∫
1

0 k(x, t)k(t, y)dt is a new kernel. Note that

∣k2(x, y)∣ = ∣∫
1

0
k(x, t)k(t, y)dt∣

= ∣∫
x

y
k(x, t)k(t, y)dt∣

= (x − y) for x > y,

while for x < y, k2(x, y) = 0.
In general, since x − y < 1 − 0 = 1, we get

(V nf)(x) = ∫
1

0
f(y)kn(x, y)dy

kn(x, y) = ∫
1

0
k(x, t)kn−1(t, y)dt

∣kn(x, y)∣ ≤ 1

(n − 1)!
(x − y)n−1 ≤ 1

(n − 1)!
.
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Thus if we take ∥f∥ ≤ 1, then

∥V n∥ = sup
∥f∥=1

∥V nf∥

= sup
∥f∥=1

∥∫
1

0
f(y)kn(x, y)dy∥

≤ sup
∥f∥=1

∥f∥ ∣kn(x, y)∣

≤ 1/(n − 1)!.

Thus spr(V ) = limn→∞ ∥V n∥
1
n ≤ limn→∞(1/n!)

1
n = 0. In particular, σ(V ) = {0}.

Now let fn(x) = xn, 0 ≤ x ≤ 1. Then ∥fn∥∞ = 1. Also,

(V fn)(x) = ∫
x

0
fn(y)dy

= ∫
x

0
yndy

= yn+1

(n + 1)
∣x0

= xn+1

n + 1
.

As such, ∥V fn∥ = 1
n+1 , and so V is not bounded below. Hence 0 ∈ σa(V ).

Finally, let f ∈ C([0,1],C) be arbitrary. Then (V f)(0) = 0, and so

∥1 − V f∥∞ ≥ ∣1(0) − V f(0)∣ = 1.

Thus 0 ∈ σc(V ). It is a standard result that 0 /∈ σp(V ).

S6.2. Example. The following example is very similar to Example 6.7.
Let X = C([0,1],C). Let f ∈ X, and consider the bounded linear operator Mf

given by
Mf ∶ C([0,1],C) → C([0,1],C)

g ↦ fg.

Mf is referred to as “multiplication by f”. We leave it to the reader to verify
that

● λI −Mf =Mλ1−f for all λ ∈ C, and
● ∥Mf∥ = ∥f∥.

Claim: σ(Mf) = ranf = f([0,1]).
For if λ /∈ f([0,1]), then h = (λ1 − f)−1 is continuous and Mh(λI − Mf) =

MhMλ1−f =Mh(λ1−f) =M1 = I = (λI −Mf)Mh. In particular, λ /∈ σ(Mf).
Now suppose λ = f(t0) for some t0 ∈ [0,1]. Take

gn(t) = { 0 if ∣t − t0∣ > 1
n ,

1 − n∣t − t0∣ if t ∈ [t0 − 1
n , t0 +

1
n].

(See Figure 1 below.)
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Let ε > 0 and choose δ > 0 such that ∣f(t) − λ∣ < ε for all t ∈ (t0 − δ, t0 + δ).
Then, when 1

n < δ,

∥Mλ1−fgn∥ = ∥(λ1 − f)gn∥
≤ sup

∣t−t0∣< 1
n

∣λgn(t) − f(t)gn(t)∣

≤ sup
∣t−t0∣<δ

∣λ1 − f(t)∣ ∣gn(t)∣

≤ ε∥gn(t)∥∞
= ε.

Since ∥gn∥∞ = 1 for n ≥ 1, we see that λI −Mf is not bounded below. In other
words, λ ∈ σa(Mf).

Moreover, if λ = f(t0) for some t0 ∈ [0,1], then

∥1 − (λI −Mf)g∥ = ∥1 − (λ1 − f)g∥
≥ ∣1(t0) − (λ − f(t0))g(t0)∣
= 1.

Thus the range of λI −Mf is not dense; i.e. λ ∈ σc(Mf).

Suppose now that λ ∈ σp(Mf). Then (λI −Mf)g =Mλ1−fg = 0 for some non-zero
continuous function g. It follows that

(λ − f(t))g(t) = 0 for all t ∈ [0,1].

Since g /= 0, we can choose t0 ∈ [0,1] such that g(t0) /= 0. Since g is continuous,
there exists an open neighbourhood U of t0 such that g(t) /= 0 for all t ∈ U . But then
λ − f(t) = 0 for all t ∈ U . We conclude that if λ ∈ σp(Mf), then f must be constant
on some interval. We leave it to the reader to check that the converse is also true.

In particular, if we choose f(x) = x for all x ∈ [0,1] and write Mx for Mf (as is
usually done), then we see that

Mx ∶ C([0,1])→ C([0,1])

has no eigenvalues!
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Figure 1. The graphs of gn and of f .



110 6. THE ALGEBRA OF BANACH SPACE OPERATORS

Appendix

A6.1. In Chapter 2, we defined the notion of an abstract index group corre-
sponding to a Banach algebra A. The notion of the Fredholm index is very closely
related to this, although we shall not have the time to delve into this in these notes.

A6.2. Let X and Y be Banach spaces. An operator T ∈ B(X,Y) is said to be
Fredholm if:

(i) ranT is closed;
(ii) nulT = dim ker T is finite; and
(iii) nulT ∗ = codim ranT is finite.

Given T ∈ B(X,Y) a Fredholm operator, we define the Fredholm index of T
as follows:

indT = nulT − nulT ∗.

A6.3. Example. Let X be a Banach space, K ∈ K(X) and 0 /= λ ∈ C. Then
λI −K is Fredholm.

In fact, we shall now show that ind (λI − K) = 0. We shall then return to
Fredholm operators when we study K(H), the set of compact operators on a Hilbert
space H.

A6.4. Example. Let H be a separable Hilbert space with orthonormal basis
{en}∞n=1. Define an operator U ∈ B(H) via Uen = en+1 for all n ≥ 1. (We extend this
definition by linearity and continuity to all of H. U is referred to as the unilateral
forward shift. Then U is an isometry with range equal to the span of {en}∞n=2. As
such, the range of U is closed, the nullity of U is zero, and the codimension of the
range of U is 1. Hence U is a Fredholm operator of index −1. We shall return to
this example later.

A6.5. Lemma. Let X be a Banach space and M be a finite codimensional
subspace of X. Then there exists a finite dimensional subspace N of X such that
X =M⊕N. Moreover, dim N = dim (X/M).
Proof. Let {x1, x2, . . . , xn} be a basis for X/M, and choose {x1, x2, . . . , xn} ⊆ X
such that π(xj) = xj , 1 ≤ j ≤ n, where π ∶ X→ X/M is the canonical map.

Let N = span{x1, x2, . . . , xn} = span{x1, x2, . . . , xn}. If z ∈ M ∩N, then z ∈ N so
that z = ∑ni=1 λixi. But z ∈ M and so z = 0 = ∑ni=1 λixi. Thus λi = 0 for all i and
hence z = 0. In other words, M ∩N = {0}.

Now let x ∈ X. Then x = ∑ni=1 λixi and so x = ∑ni=1 λixi + y for some y ∈ M.
Therefore X =M +N, so that X =M⊕N.

◻

A6.6. If X and Y are Banach spaces and T ∈ B(X,Y) is Fredholm, then there
exists a closed subspace N of Y such that

Y = ranT ⊕N.

Moreover, dim N = codim ran T <∞.
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A6.7. Theorem. Let X be a Banach space, K ∈ K(X), and 0 /= λ ∈ C. Then

ind (λI −K) = 0.

Proof. Let M = ker (λI −K). Then dim M <∞ and so M has a closed complement
N ⊆ X such that M ⊕N = X. Let R = ran (λI −K). Then R is closed and finite
codimensional, so by Lemma A6.5, R has a closed complement S ⊆ X satisfying
R⊕S = X. Let n = min(dim M,dim S).

Choose φ1, φ2, . . . , φn linearly independent in (X/N)∗. Let π ∶ X → X/N be the

canonical map and define φi = φi ○ π so that φi ∈ X∗, 1 ≤ i ≤ n. Choose {fi}ni=1
linearly independent in S. We shall define Q ∈ K(X) via Qx = ∑ni=1 φi(x)fi, x ∈ X.

Then

K −Q ∈ K(X) and (λI − (K −Q)) = (λI −K) +Q

is either surjective (if n = dim S), or injective (if n = dim M). In either case, by the
Fredholm Alternative, it is bijective.

We conclude that dim M = dim S, so that nul (λI −K) = codim ran (λI −K),
or equivalently,

ind (λI −K) = 0.

◻

A6.8. We conclude this section by showing that although not all finite-co-
dimensional subspaces of a Banach space are closed, nevertheless, this is true for
operator ranges. In particular, this means that in order to know if an operator T is
Fredholm, one need only verify that the nullity and the co-dimension of the range
are finite.

A6.9. Proposition. Let X and Y be Banach spaces and let T ∈ B(X,Y).
Suppose that N is a closed subspace such that ranT ⊕N is closed in Y. Then ranT
is closed.
Proof. Define a norm on the space (X/ker T ) ×N by ∥(x,n)∥ = ∥x∥ + ∥n∥. Let T0

denote the operator

T0 ∶ (X/ker T ) ×N → ranT ⊕N
(x,n) ↦ Tx + n.

It is easy to check that T0 is well-defined, continuous, injective and that ranT0 is
ranT ⊕N. Since ranT ⊕N is closed, T0 is invertible. This means that we can find
δ > 0 such that ∥Tx + n∥ ≥ δ ∥(x,n)∥. That is, ∥Tx + n∥ ≥ δ (∥x∥ + ∥n∥).

If n = 0, we get ∥Tx∥ ≥ δ ∥x∥, and so the restriction T1 of T0 to (X/ker T ) is
bounded below. But then ranT1 = ranT is closed, as pointed out in Proposition 6.4.

◻
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A6.10. Corollary. If X is a Banach space, T ∈ B(X), and X/ranT is finite
dimensional, then ranT is closed.
Proof. By Lemma A6.5, there exists a finite-dimensional (and therefore closed)
subspace of X such that ranT ⊕N = X. Since X is obviously closed, we may now
apply the above Proposition A6.9 to conclude that ranT is closed, as desired.

◻
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Exercises for Chapter 6

Exercise 6.1. The spectral radius
Let X be a Banach space, and suppose that A,B ∈ B(X) commute. Prove that

spr(AB) ≤ spr(A) spr(B).

Exercise 6.2. Cesaro operators
Let X be a Banach space. An invertible operator T ∈ B(X) is said to be a Cesaro

operator if there exists a real number M > 0 such that

∥Tn∥ ≤M for all n ∈ Z.
Prove that if T is a Cesaro operator, then σ(T ) ⊆ T.

Exercise 6.3. Nilpotent and quasinilpotent operators
Let X be a Banach space and Q ∈ B(X). Prove that the following are equivalent:

(a) Q is nilpotent; that is, there exists k ≥ 1 such that Qk = 0; and
(b) Q is quasinilpotent and has finite descent.

Exercise 6.4. The holomorphic functional calculus and invariant sub-
spaces

Let X be a Banach space, and T ∈ B(X). Let Ω denote the (unique) unbounded
component of the resolvent ρ(T ) of T . Recall that a (closed) subspace Y of X is
said to be invariant for T if Ty ∈ Y for all y ∈ Y. We normally abbreviate this to
TY ⊆Y.

(a) Prove that Y is invariant for T if and only if Y is invariant for R(z, T ) for
all z ∈ Ω.

(b) Let Y be invariant for T , and denote by T ∣Y the restriction of T to Y.
Prove that Ω ⊆ ρ(T ∣Y), and that R(z, T ∣Y) = R(z, T )∣Y for all z ∈ Ω.

(c) If Ω = ρ(T ), prove that σ(T ∣Y) ⊆ σ(T ).

Exercise 6.5. The holomorphic functional calculus and invariant sub-
spaces

Using the notation from Exercise 6.4 above, suppose that Ω contains the open
annulus Ar1,r2(λ0), and that

R(z, T ) = ∑
n∈Z

(z − λ0)nTn

is the Laurenttm series expansion of the resolvent function (see Exercise 3.6). Prove
that if the closed subspace Y is invariant for T , then Y is invariant for each Tn,
n ∈ Z.





CHAPTER 7

The algebra of Hilbert space operators

He’s very clever, but sometimes his brains go to his head.

Margot Asquith

Introduction.

7.1. We now consider the special case where the Banach space under consider-
ation is in fact a Hilbert space, which we shall always typically denote by H. The
inner product on H will be denoted by ⟨⋅, ⋅⟩.

All of the results from the previous chapter of course apply to Hilbert space
operators. On the other hand, the identification of a Hilbert space with its dual
space (an anti-isomorphism) allows us to consider a new version of adjoints, based
upon the Riesz Representation Theorem.

7.2. Theorem. [The Riesz Representation Theorem] Let H be a Hilbert
space and ϕ ∈ H∗. Then there exists a vector y ∈ H such that ϕ(x) = ⟨x, y⟩ for all
x ∈H.

7.3. Theorem. Let H be a Hilbert space and let T ∈ B(H). Then there exists
a unique operator T ∗ ∈ B(H), called the Hilbert space adjoint of T , satisfying

⟨Tx, y⟩ = ⟨x,T ∗y⟩

for all x, y ∈H.
Proof. Fix y ∈H. Then the map

ϕy ∶ H → C
x ↦ ⟨Tx, y⟩

is a linear functional and so there exists a vector zy ∈H such that

ϕy(x) = ⟨Tx, y⟩ = ⟨x, zy⟩

for all x ∈ H. Define a map T ∗ ∶ H → H by T ∗y = zy. We leave it to the reader to
verify that T ∗ is in fact linear, and we concentrate on showing that it is bounded.

115
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To see that T ∗ is bounded, consider the following. Let y ∈ H, ∥y∥ = 1. Then
⟨Tx, y⟩ = ⟨x,T ∗y⟩ for all x ∈H, so

∥T ∗y∥2 = ⟨T ∗y, T ∗y⟩
= ⟨T T ∗y, y⟩
≤ ∥T ∥ ∥T ∗y∥ ∥y∥.

Thus ∥T ∗y∥ ≤ ∥T ∥, and so ∥T ∗∥ ≤ ∥T ∥.
T ∗ is unique, for if there exists A ∈ B(H) such that ⟨Tx, y⟩ = ⟨x,T ∗y⟩ = ⟨x,Ay⟩

for all x, y ∈ H, then ⟨x, (T ∗ −A)y⟩ = 0 for all x, y ∈ H, and so (T ∗ −A)y = 0 for all
y ∈H, i.e. T ∗ = A.

◻

7.4. Corollary. Let T ∈ B(H), where H is a Hilbert space. Then (T ∗)∗ = T . It
follows that ∥T ∥ = ∥T ∗∥.
Proof. For all x, y ∈H, we get

⟨x, (T ∗)∗y⟩ = ⟨T ∗x, y⟩
= ⟨y, T ∗x⟩
= ⟨Ty, x⟩
= ⟨x,Ty⟩,

and so (T ∗)∗ = T . Applying Theorem 7.3, we get

∥T ∥ = ∥(T ∗)∗∥ ≤ ∥T ∗∥ ≤ ∥T ∥,

and so ∥T ∥ = ∥T ∗∥.
◻

7.5. Proposition. Let H be a Hilbert space and T ∈ B(H). Then σ(T ) =
σ(T ∗)∗ ∶= {λ ∶ λ ∈ σ(T )}.
Proof. If λ /∈ σ(T ), let R = (λ − T )−1. For all x, y ∈H,

⟨x, y⟩ = ⟨R(λ − T )x, y⟩
= ⟨(λ − T )x,R∗y⟩
= ⟨x, (λ − T )∗R∗y⟩.

Thus (λ − T )∗R∗ = I, and similarly, R∗ (λ − T )∗ = I. But (λ − T )∗ = λ − T ∗, so that

R∗ = (λ − T ∗)−1 = [(λ − T )∗]−1. Thus ρ(T )∗ ⊆ ρ(T ∗).
Moreover, ρ(T ∗)∗ ⊆ ρ(T ∗∗) = ρ(T ). In other words, ρ(T ∗) ⊆ ρ(T )∗. We conclude

that σ(T ) = σ(T ∗)∗.
◻
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7.6. Remark. The above proof also shows that for a Hilbert space H and
A,B ∈ B(H), we have (AB)∗ = B∗A∗. The adjoint operator

∗ ∶ B(H)→ B(H)

is an example of an involution on a Banach algebra. Namely, for all α, β ∈ C and
A,B ∈ B(H), we obtain

(i) (αA)∗ = αA∗;
(ii) (A +B)∗ = A∗ +B∗; and
(iii) (AB)∗ = B∗A∗.
(iv) (A∗)∗ = A.
Involutions will appear again in our study of C*-algebras.

7.7. Proposition. Let H = Cn and T ∈ B(H) ≃ Mn. Then the matrix of T ∗

with respect to any orthonormal basis is the conjugate transpose of that of T .
Proof. Let {ei}ni=1 be an orthonormal basis for H. With respect to this basis, T
has a matrix [tij]1≤i,j≤n and T ∗ has a matrix [rij]1≤i,j≤n.

But tij = ⟨Tej , ei⟩ = ⟨ej , T ∗ei⟩ = ⟨T ∗ei, ej⟩ = rji, completing the proof.

◻

7.8. Proposition. Let H be a Hilbert space and T ∈ B(H). Then (ranT )⊥ =
ker T ∗. In particular, therefore:

(i) ranT = (ker T ∗)⊥;

(ii) for λ ∈ C, λ ∈ σc(T ) if and only if λ ∈ σp(T ∗);
(iii) ranT is not dense in H if and only if ker T ∗ /= 0.

Proof. Let y ∈H. Then

y ∈ ker T ∗ ⇐⇒ for all x ∈H, 0 = ⟨x,T ∗y⟩
⇐⇒ for all x ∈H, 0 = ⟨Tx, y⟩
⇐⇒ y ∈ (ranT )⊥.

◻

7.9. Example. Let H be a Hilbert space with orthomormal basis {en}∞n=1.
Define the operator S ∈ B(H) by first setting Sen+1 = en for all n ≥ 1 and Se1 = 0,
and then extending S by linearity and continuity to all of H.

S is then called the unilateral (backward) shift, and with respect to the
above basis for H, the matrix for S is:

[S] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .
0 ⋱ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



118 7. THE ALGEBRA OF HILBERT SPACE OPERATORS

It is easily verified that ∥S∥ = 1. As for the spectral radius of S, note that
∥Sn∥ ≤ ∥S∥n ≤ 1, while ∥Snen+1∥ = ∥e1∥ = 1, so that ∥Sn∥ ≥ 1. Hence spr(S) =
limn→∞ ∥Sn∥

1
n = 1.

Let λ ∈ C, ∣λ∣ = 1. Consider (λI − S). Let xn = (1/
√
n)∑ni=1 λ

iei. Then ∥xn∥ = 1
for all n ≥ 1, and

∥(λI − S)xn∥ = ∥(1/
√
n)λn+1en∥ = 1/

√
n.

Letting n tend to ∞ yields λ ∈ σa(S).
Now let λ ∈ C, 0 < ∣λ∣ < 1, and y = ∑∞i=1 λ

iei. Then

(λI − S)y =
∞
∑
i=1

λi+1ei −
∞
∑
i=1

λi+1ei

= 0.

As for λ = 0, e1 lies in the kernel of S, and hence of 0 − S. Hence σp(S) ⊇ {z ∈ C ∶
∣z∣ < 1}. In particular, λ ∈ σc(S∗), i.e. σc(S∗) ⊇ {z ∈ C ∶ ∣z∣ < 1}.
Note: An easy calculation which is left as an exercise shows that S∗en = en+1, n ≥ 1,
and hence

[S∗] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 ⋱ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, ranS = H, so ker S∗ = {0}. In fact, S∗ is an isometry! Finally, σ(S) =
{z ∈ C ∶ ∣z∣ ≤ 1} = σ(S∗).

7.10. Definition. Given an infinite dimensional, separable Hilbert space H
with orthonormal basis {en}∞n=1, a unilateral (forward) weighted shift W on
H is an operator satisfying Wen = wnen+1, n ≥ 1, where {wn}∞n=1 ∈ `∞(N) is called
the sequence of weights of W . The adjoint of a unilateral forward weighted shift is
referred to as a unilateral backward weighted shift.

A bilateral weighted shift is an operator V ∈ B(H) such that V fn = vnfn+1

for all n ∈ Z, where {fn}n∈Z is an orthonormal basis for H and {vn}n∈Z ∈ `∞(Z).

Weighted shifts are of interest because they provide one of the few tractable
classes of operators which exhibit a reasonably wide variety of phenomena typical
of more general operators. As such, they are an excellent test case for conjectures
about general operators.

In the case where all of the weights are constant and equal to 1, the shift in
question is referred to as the forward (backward, bilateral) shift. Technically speak-
ing, this is a misnomer, since one should also specify the orthonormal basis with
respect to which the shift acts. However, all such shifts are unitarily equivalent,
a concept we shall identify below, and as such are considered in some sense “equal”.
The terms unilateral shift and unweighted shift are also used, it usually being
clear from the context whether the shift is forward or backward.
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7.11. Definition. Let H be a Hilbert space, and N ∈ B(H). Then

(i) If N = N∗, N is said to be self-adjoint, or hermitian;
(ii) if N = N∗ and ⟨Nx,x⟩ ≥ 0 for all x ∈H, then N is said to be positive;
(iii) if N N∗ = N∗N , then N is said to be normal;
(iv) if N∗ = N−1, then N is said to be unitary; observe that all unitary opera-

tors are automatically normal.
(v) if N = N∗ = N2, then N is called an (orthogonal) projection.

7.12. Remark. Suppose that U ∈ B(H) is unitary. Since U is invertible, it
must be bijective. Moreover, given x and y in H, we find that

⟨Ux,Uy⟩ = ⟨U∗Ux, y⟩ = ⟨U−1Ux, y⟩ = ⟨Ix, y⟩ = ⟨x, y⟩.
In particular, unitaries preserve inner products, and therefore preserve both angles
and lengths. Indeed, they serve as the isomorphisms in the category of Hilbert spaces.

7.13. Example. Let H be a Hilbert space and let B denote the unweighted
bilateral shift. It is straightforward to verify that B is unitary. On the other hand, if
S denotes the backward shift, then S S∗−S∗ S = P , where P is a rank one projection.
Thus S is not normal.

7.14. Example. Let us return for a moment to Example 6.7. Let µ be a
finite, positive, regular Borel measure on a non-empty set X, and suppose that
f ∈ L∞(X,µ). Recall that we defined the corresponding multiplication operator Mf

via:
Mf ∶ L2(X,µ) → L2(X,µ)

g ↦ fg.

Given g, h ∈ L2(X,µ), we have

⟨g, (Mf)∗h⟩ = ⟨Mfg, h⟩

= ∫
X
(Mfg)hdµ

= ∫
X
(gf)hdµ

= ∫
X
g(fh)dµ

= ⟨g,Mfh⟩.

Thus M∗
f = Mf . But the MfM

∗
f = MfMf = M∣f ∣2 = MfMf = M∗

fMf , implying

that Mf is normal.

Mf will be self-adjoint precisely if Mf = Mf , and it is readily seen that this

happens if and only if f = f ; namely if f is real-valued. (All such statements are
meant to hold “almost-everywhere”-µ.)
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Mf will be positive if and only if ⟨Mfg, g⟩ ≥ 0 for all g ∈ H. But this happens
precisely when

∫
X
f(x) ∣g(x)∣2dµ ≥ 0

for all g ∈ L2(X,µ), which in turn is equivalent to the condition that f(x) ≥ 0 almost
everywhere in X.

Finally, Mf will be unitary if Mf = Mf
−1, which is equivalent to f = f−1. In

other words, ∣f(x)∣ = 1 almost everywhere in X.

7.15. Example. Let H = `2(N) and let D = diag {dn}∞n=1, where {dn}∞n=1 ∈
`∞(N). Suppose that {en}∞n=1 is the standard orthonormal basis for H, and that

Den = dn en for all n ≥ 1. Then ∥D∥ = supn≥1 ∣dn∣. Then D∗ = diag {dn}∞n=1, and it is
not hard to check that D is normal. In fact, D can be thought of as a multiplication
operator on an L2-space with respect to counting measure.

Furthermore, σp(D) = {dn}∞n=1, while σa(D) = σ(D) = {dn}∞n=1. Finally, σc(D) =
σp(D∗) = {dn}∞n=1.

Again, D is self-adjoint precisely when dn ∈ R for all n ≥ 1, D is positive if and
only if dn ≥ 0 for all n ≥ 1, and D is unitary if and only if ∣dn∣ = 1 for all n ≥ 1.

7.16. Lemma. Let H be a Hilbert space and N ∈ B(H). If N is normal, then
∥Nx∥ = ∥N∗x∥ for all x ∈H. In particular, therefore, ker N = ker N∗.
Proof. Let x ∈H. Then

∥Nx∥2 = ⟨Nx,Nx⟩
= ⟨N∗Nx,x⟩
= ⟨N N∗x,x⟩
= ⟨N∗x,N∗x⟩
= ∥N∗x∥2.

That is, ∥Nx∥ = ∥N∗x∥.
◻

7.17. Proposition. Let H be a Hilbert space and N ∈ B(H). If N is normal,
then σ(N) = σa(N).

Proof. Clearly σa(N) ⊆ σ(N) = σa(N) ∪ σc(N). Assume λ ∈ σc(N). Then λ ∈
σp(N∗), by Proposition 7.8. Let 0 /= x ∈ ker (N∗ − λ). Then x ∈ ker (N∗ − λ)∗ =
ker (N − λI) by the above Lemma. This means that λ ∈ σp(N) ⊆ σa(N). We
conclude that σ(N) ⊆ σa(N).

◻



COMPACT OPERATORS ACTING ON HILBERT SPACES. 121

Compact operators acting on Hilbert spaces.

7.18. The set of compact operators acting on a Hilbert space is more tractable
in general than the set of compact operators acting on an arbitrary Banach space.
One of the reasons for this is the characterization given below. Recall that the set
of finite rank operators acting on a Banach space X is denoted by F(X).

7.19. Theorem. Let H be a Hilbert space and let K ∈ B(H). The following are
equivalent:

(i) K is compact;
(ii) K∗ is compact;
(iii) There exists a sequence {Fn}∞n=1 ⊆ F(H) such that K = limn→∞ Fn.

Proof.

(i) ⇒ (iii) Let B1 denote the unit ball of H, and let ε > 0. Since K(B1) is
compact, it must be separable (i.e. it is totally bounded). ThusM = ranK
is a separable subspace of H, and thus possesses an orthonormal basis
{en}∞n=1.

Let Pn denote the orthogonal projection of H onto span{ek}nk=1. Set
Fn = PnK, noting that each Fn is finite rank. We now show that K =
limn→∞ Fn.

Let x ∈H and consider y =Kx ∈M, so that limn→∞ ∥Pny−y∥ = 0. Thus
limn→∞ ∥Fnx −Kx∥ = limn→∞ ∥Pny − y∥ = 0. Since K is compact, K(B1)
is totally bounded, so we can choose {xk}mk=1 ⊆ B1 such that K(B1) ⊆
∪mk=1B(Kxk, ε/3), where given z ∈H and δ > 0, B(z, δ) = {w ∈H ∶ ∥w− z∥ <
δ}.

If ∥x∥ ≤ 1, choose i such that ∥Kxi −Kx∥ < ε/3. Then for any n > 0,

∥Kx − Fnx∥
≤ ∥Kx −Kxi∥ + ∥Kxi − Fnxi∥ + ∥Fnxi − Fnx∥
< ε/3 + ∥Kxi − Fnxi∥ + ∥Pn∥ ∥Kxi −Kx∥
< 2ε/3 + ∥Kxi − Fnxi∥.

Choose N > 0 such that ∥Kxi − Fnxi∥ < ε/3, 1 ≤ i ≤ m for all n > N .
Then ∥Kx − Fnx∥ ≤ 2ε/3 + ε/3 = ε. Thus ∥K − Fn∥ ≤ ε for all n > N . Since
ε > 0 was arbitrary, K = limn→∞ Fn.

(iii) ⇒ (ii) Suppose K = limn→∞ Fn, where Fn is finite rank for all n ≥ 1. Note
that F ∗

n is also finite rank (why?), and that ∥K∗ − F ∗
n ∥ = ∥K − Fn∥ for all

n ≥ 1, which clearly implies that K∗ = limn→∞ F
∗
n , and hence that K∗ is

compact.
(ii) ⇒(i) Since K compact implies K∗ is compact from above, we deduce that

K∗ compact implies (K∗)∗ =K is compact, completing the proof.

◻
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We can restate the above Theorem more succinctly by saying that K(H) is the
norm closure of the set of finite rank operators on H. This is an extraordinarily
useful result.

7.20. Remark. Contained in the above proof is the following interesting ob-
servation. If K is a compact operator acting on a separable Hilbert space H, then
for any sequence {Pn}∞n=1 of finite rank projections tending strongly (i.e. pointwise)
to the identity, ∥K − PnK∥ tends to zero. By considering adjoints, we find that
∥K −KPn∥ also tends to zero.

Let ε > 0, and choose N > 0 such that n ≥ N implies ∥K − KPn∥ < ε/2 and
∥K − PnK∥ < ε/2. Then for all n ≥ N we get

∥K − PnKPn∥ ≤ ∥K −KPn∥ + ∥KPn − PnKPn∥
≤ ∥K −KPn∥ + ∥K − PnK∥ ∥Pn∥
< ε/2 + ε/2 = ε.

It follows that if H has an orthonormal basis indexed by the natural numbers,
say {en}∞n=1, then the matrix for K with respect to this basis comes within ε of
the matrix for PNKPN . In other words, K “virtually lives” on the “top left-hand
corner”.

Alternatively, ifH has an orthonormal basis indexed by the integers, say {fn}n∈Z,
and we let Pn denote the orthogonal projection onto span{ek}nk=−n, then the matrix
for K with respect to this basis can be arbitrarily well estimated by a sufficiently
large but finite “central block”.

7.21. Recall from Theorem 6.34 that if K ∈ B(H) is compact, then for all ε > 0,
the set {λ ∈ σ(K) ∶ ∣λ∣ ≥ ε} is finite. From this the next example easily follows.

7.22. Example. Let H be a separable Hilbert space with orthonormal basis
{en}∞n=1. Let {dn}∞n=1 be a bounded sequence and consider the diagonal operator
D ∈ B(H) defined locally by Den = dnen and extended to all of H by linearity and
continuity.

Then D ∈ K(H) if and only if limn→∞ dn = 0.

7.23. Example. Let H = L2([0,1], dx), and consider the function k(x, t) ∈
L2([0,1] × [0,1], dm), where dm represents Lebesgue planar measure. Then we
define a Volterra operator

V ∶ L2([0,1], dx) → L2([0,1], dx)
(V f)(x) = ∫

1
0 f(t)k(x, t)dt.

(The classical Volterra operator has k(x, t) = 1 if x ≥ t, and k(x, t) = 0 if x < t.)
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Now for f ∈ L2([0,1], dx) we have

∥V f∥2 = ∫
1

0
∣V f(x)∣2dx

= ∫
1

0
∣∫

1

0
f(t)k(x, t)dt∣

2

dx

≤ ∫
1

0
(∫

1

0
∣f(t)k(x, t)∣dt)

2

dx

≤ ∫
1

0
∥f∥2

2 ∫
1

0
∣k(x, t)∣2dtdx by the Cauchy-Schwartz Inequality

= ∥f∥2
2 ∥k∥2

2,

so that ∥V ∥ ≤ ∥k∥2.

Let A denote the algebra of continuous functions on [0,1] × [0,1] which can be
resolved as g(x, t) = ∑ni=1 ui(x)wi(t). Then A is an algebra which separates points,
contains the constant functions, and is closed under complex conjugation. By the
Stone-Weierstraß Theorem, given ε > 0 and h ∈ C([0,1] × [0,1]), there exists g ∈ A
such that ∥h − g∥2 ≤ ∥h − g∥∞ < ε. But since C([0,1] × [0,1]) is dense (in the L2-
topology) in L2([0,1] × [0,1], dm), A must also be dense (in the L2-topology) in
L2([0,1] × [0,1], dm).

Let ε > 0. For k as above, choose g ∈ A such that ∥k − g∥2 < ε. Define

V0 ∶ L2([0,1], dx) → L2([0,1], dx)
V0f(x) = ∫

1
0 f(t) g(x, t)dt.

From above, we find that ∥V − V0∥ ≤ ∥k − g∥2 < ε.
To see that V0 is finite rank, consider the following; first, g(x, t) = ∑ni=1 ui(x)wi(t).

If we setM = span 1≤i≤n{ui}, thenM is a finite dimensional subspace of L2([0,1], dx).
Moreover,

V0f(x) = ∫
1

0
f(t) g(x, t)dt

=
n

∑
i=1

(∫
1

0
f(t)wi(t)dt)ui(x),

so that V0f ∈M.
Thus V can be approximated arbitrarily well by elements of the form V0 ∈

F(L2([0,1], dx), and so V is compact.

7.24. Definition. Let X be a Banach space and T ∈ B(X). Then T is said to be
quasinilpotent if σ(T ) = 0. By the spectral mapping theorem ??, it is easily seen
that every nilpotent operator is automatically quasinilpotent.
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7.25. Example. Let V denote the classical Volterra operator defined in Exam-
ple 7.23 above. We shall show that V is quasinilpotent. (Note that we have seen
that the Volterra operator acting in B(C[0,1]) is quasinilpotent in Example S6.1.)

Since V ∈ K(H), we know that σ(V ) = {0}∪ σp(V ). Suppose 0 /= λ ∈ σp(V ), and
that f ∈ ker (λ − V ). Then

∣λ∣ ∣f(x)∣ = ∣∫
x

0
f(t)dt∣

≤ ∫
x

0
∣f(t)∣dt

≤ ∫
1

0
∣f(t)∣dt

≤ ∥f∥2 ∥1∥2

= ∥f∥2.

Then for 0 ≤ x ≤ 1,

∣f(x)∣ ≤ (1/∣λ∣) ∫
x

0
∣f(t1)∣dt1

≤ (1/∣λ∣) ∫
x

0
(1/∣λ∣) ∫

t1

0
∣f(t2)∣dt2dt1

≤ . . .

≤ (1/∣λ∣n+1) ∫
x

0
∫

t1

0
. . .∫

tn

0
∣f(tn+1)∣dtn+1dtn . . . dt1

≤ (1/∣λ∣n+1) ∫
x

0
∫

t1

0
. . .∫

tn

0
(∥f∥2/∣λ∣)dtn+1dtn . . . dt1

= (1/∣λ∣n+2) ∥f∥2 ∫
x

0
∫

t1

0
. . .∫

tn

0
1dtn+1dtn . . . dt1

≤ (1/∣λ∣n+2) ∥f∥2 x
n+1/(n + 1)! for all n ≥ 1.

Thus f(x) = 0 for all x ∈ [0,1], and hence f = 0. But then λ /∈ σp(V ). Therefore
σ(V ) = {0}, and so V is quasinilpotent as claimed.

The spectral theorem for compact, normal operators.

7.26. We now turn our attention to the first of three “spectral theorems” that
we shall prove for normal operators acting on a Hilbert space. The version that we
do now is the one which is most closely related to the Spectral Theorem for normal
matrices, which states that any normal matrix N acting on Cn can be diagonalised
with respect to some orthonormal basis. That is, there exists an orthonormal basis
{ek}nk=1 for Cn with respect to which the matrix [N] = [ni,j] = [⟨Nej , ei⟩] is diagonal.

7.27. Definition. Let H be a Hilbert space,M be a subspace of H, and suppose
that T ∈ B(H). Recall that M is called invariant for T provided that TM ⊆M.
We say that M is reducing for T if M is invariant both for T and for T ∗.
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7.28. Notation. Let H be a Hilbert space and M be a subspace of H. By
PM we shall denote the orthogonal projection of H onto M. We leave it as an
exercise for the reader to verify that M is invariant for T ∈ B(H) if and only if
(I − PM)TPM = 0.

7.29. Proposition. Let H be a Hilbert space, T ∈ B(H), and M be a subspace
of H. Then M is reducing for T if and only if both M and M⊥ are invariant for
T . When this is the case, we can write

T = T1 ⊕ T2 = [ T1 0
0 T2

]

with respect to the decomposition H =M⊕M⊥.
Furthermore, T is compact if and only if both T1 and T2 are compact, and T is

normal if and only if T1 and T2 are.
Proof. First suppose that M is reducing for T . Then (I − PM)T PM = 0. Since
T ∗M ⊆M, we also get (I −PM)T ∗ PM = 0, and so after taking adjoints, PM T (I −
PM) = 0. (Note that PM is self-adjoint.) It follows that both M and M⊥ are
invariant for T .

Now suppose that M and M⊥ are invariant for T , so that

(I − PM)T PM = 0 = PM T (I − PM).

By taking adjoints once more, (I − PM)T ∗ PM = 0, and so M is reducing for T .
The matrix form for T follows directly from these observations.

If T1 and T2 are compact, then they are limits of finite rank operators Fn and Gn
respectively, from which we conclude that T is a limit of the finite rank operators
Fn ⊕Gn. Thus T is compact.

If T is compact, then the compression of T to any subspace is compact, and so
both T1 and T2 are compact.

We leave it as an exercise to the reader to show that T ∗ = T ∗1 ⊕T ∗2 . Given this, it
is easy to see that T is normal if and only if 0 = [T,T ∗] = [T1, T

∗
1 ]⊕ [T2, T

∗
2 ], which

is equivalent to the simultaneous normality of T1 and T2.

◻

7.30. Proposition. Let H be a Hilbert space and N ∈ B(H) be normal. Then
ker N = ker N∗ is reducing for N .
Proof. That ker N = ker N∗ is the second half of Lemma 7.16. Now let x ∈ ker N .
Then N2x = N(Nx) = 0, and NN∗x = N∗Nx = 0. Thus ker N is invariant for both
N and N∗, and hence is reducing for N .

◻
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7.31. Proposition. Let H be a Hilbert space and N ∈ B(H). If N is normal
and λ /= µ ∈ σp(N), then ker (N − λI) is orthogonal to ker (N − µI).
Proof. Let x ∈ ker (N − λI) and y ∈ ker (N − µI). Then

λ⟨x, y⟩ = ⟨Nx, y⟩ = ⟨x,N∗y⟩ = ⟨x,µy⟩ = µ⟨x, y⟩.
Thus (λ − µ)⟨x, y⟩ = 0. Since λ − µ /= 0, we must have x ⊥ y.

◻

7.32. Proposition. Let H be a Hilbert space and N ∈ B(H). If N is normal,
then spr (N) = ∥N∥.
Proof. Consider first:

∥N2∥ = sup
∥x∥=1

∥N2x∥

= sup
∥x∥=1

∥N∗Nx∥

≥ sup
∥x∥=1

∣⟨N∗Nx,x⟩∣

= sup
∥x∥=1

⟨Nx,Nx⟩

= sup
∥x∥=1

∥Nx∥2

= ∥N∥2.

By induction, ∥N2n∥ ≥ ∥N∥2n for all n ≥ 1. The reverse inequality follows im-
mediately from the submultiplicativity of the norm in a Banach algebra. Thus
∥N2n∥ = ∥N∥2n for all n ≥ 1. By Beurling’s Spectral Radius Formula, Theorem 2.40,

spr (N) = lim
n→∞

∥N2n∥1/2n = ∥N∥.

◻

7.33. Corollary. Let H be a Hilbert space and N ∈ B(H). If N is normal and
σ(N) = {λ}, then N = λI.
Proof. Now σ(N − λI) = {0} by the Spectral Mapping Theorem. Since N − λI is
also normal, ∥N − λI∥ = spr (N − λI) = 0.

◻

7.34. Lemma. Let H be a Hilbert space and N ∈ B(H). Suppose N is compact
and normal and that {λi}ni=1 ⊆ σp(N). Let M = ⊕ni=1 ker (N − λiI). Then M is
a reducing subspace for N and if N1 = (I − PM)N ∣M⊥ ∈ B(M⊥), then σp(N1) =
σp(N)/{λi}ni=1.
Proof.

ThatM is reducing for N follows from the fact that each ker (N−λiI) is reducing
for N , 1 ≤ i ≤ n. Now N1 is both compact and normal by Proposition 7.29.

Suppose λ ∈ ρ(N). Then (N1−λI)−1 = (I−PM)(N−λI)−1∣M⊥ , so that λ ∈ ρ(N1).
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Let λ ∈ {λi}ni=1. Then ker (N −λI) ⊆M by definition. Thus N1 −λI is injective,
so that λ /∈ σp(N1). If λ ∈ σp(N)/{λi}ni=1, then ker (N − λI) is orthogonal to M,
so there exists 0 /= x ∈ ker (N − λI) and then (N1 − λI)x = (N − λI)x = 0. Hence
λ ∈ σp(N1).

We now have σp(N)/{λi}ni=1 ⊆ σp(N1) ⊆ σ(N)/{λi}ni=1.
Finally, if λ ∈ σp(N1), then there exists 0 /= x ∈M⊥ such that (N1 − λI)x = 0.

But then (N − λI)x = 0, so that λ ∈ σp(N), completing the proof.

◻

7.35. Proposition. Let H be a Hilbert space and N ∈ B(H). Suppose N is
compact and normal and that σp(N) = {λi}∞i=1. Then H = ⊕∞n=1 ker (N − λnI).
Proof. Let M = ⊕∞n=1 ker (N − λnI). As above, M is reducing for N . Let N1 =
PM⊥N ∣M⊥ , viewed as an element of B(M⊥). Then σp(N1) is empty, for if λ ∈ σp(N1),
then as in the previous lemma, we see that λ ∈ σp(N), and hence ker (N1 − λI) ⊆
ker (N − λI) ⊆M, a contradiction.

Since N1 is compact, σ(N1) = {0}, but 0 /∈ σp(N1) implies that N1 is injective.
On the other hand, N1 is also normal, so ∥N1∥ = spr (N1) = 0, and hence N1 = 0.
Since it is injective, we are forced to conclude thatM⊥ = {0}, completing the proof.

◻

.

7.36. Theorem. The spectral theorem for compact normal operators.
Let H be a Hilbert space and N ∈ B(H) be a compact, normal operator. Suppose
{λk}∞k=1 are the distinct eigenvalues of N and that PMk

is the orthogonal projection
of H onto Mk ∶= ker (N − λkI). Then PMk

PMj = 0 = PMj PMk
if j /= k, and

N =
∞
∑
k=1

λkPMk
,

where the series converges in the norm topology in B(H).
Proof. That PMk

PMj = 0 = PMj PMk
if j /= k is simply the statement that Mk is

orthogonal to Mj for j /= k, and this we saw in Proposition 7.31.
Recall also that limk→∞ λk = 0, by Theorem 6.34.
Consider n > 0, and N −∑nk=1 λkPMk

. If x ∈Mj for some 1 ≤ j ≤ n, then

(N −
n

∑
k=1

λkPMk
)x = Nx − λjx = 0.

Thus ⊕nk=1Mk ⊆ ker (N − ∑nk=1 λkPMk
). If x is orthogonal to ⊕nk=1Mk, then

PMk
x = 0, 1 ≤ k ≤ n, so that (N −∑nk=1 λkPMk

)x = Nx. Moreover, ⊕nk=1Mk reduces
N , so we let Nn = P ((⊕nk=1Mk)⊥)N ∣(⊕n

k=1
Mk)⊥ .

Then ∥N −∑nk=1 λkPMk
∥ = ∥Nn∥. Also, Nn is compact and normal by Proposi-

tion 7.29, and from Lemma 7.34,

σp(Nn) = {λn+1, λn+2, λn+3, . . .}.
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Thus ∥Nn∥ = spr (Nn) = supk>n ∣λk∣. In particular, limn→∞ ∥Nn∥ = 0, so that

lim
n→∞

n

∑
k=1

λkPMk
=

∞
∑
k=1

λkPMk
= N.

◻

7.37. Corollary. Let H be a Hilbert space and N ∈ B(H) be a compact, normal
operator. Then there exists an orthonormal basis {eα}α∈Λ for H such that each eα
is an eigenvector for N .
Proof. Let {λn}∞n=1 be the set of eigenvalues of N . For each n ≥ 1, choose an
orthonormal basis {e(n,β)}β∈Λn for ker (N − λnI). (Note that if λn /= 0, then the
cardinality of Λn is finite.) Then each e(n,β), β ∈ Λn, n ≥ 1 is an eigenvector for N
corresponding to λn, the e(n,β)’s are all orthogonal since all of the ker (N − λnI)’s
are. Finally, span{e(n,β)}β∈Λn, n≥1 = ⊕∞n=1 ker (N −λnI) =H by Proposition 7.35. Let
{eα}α∈Λ = {e(n,β)}β∈Λn, n≥1.

◻

7.38. Corollary. Let H be a Hilbert space and let N ∈ B(H). Then N is
compact and normal if and only if there exist an orthonormal set {fn}∞n=1 and a
sequence of scalars {βn}∞n=1 such that

(i) limn→∞ βn = 0;
(ii) Nfn = βnfn, n ≥ 1;
(iii) Nx = 0 if x ∈H, x orthogonal to span{fn}∞n=1.

Proof. Suppose the sets {fn}∞n=1 and {β}∞n=1 as above exist. Then N is seen to be
compact, using the arguments of Theorem 7.2. We leave it as an exercise for the
reader to prove that N is normal.

Now if N is normal and compact, let {eα}α∈Λ be an orthonormal basis for H
consisting of eigenvectors of N , the existence of which is guaranteed by the preceding
Corollary. Let {fn}∞n=1 be the subset of {eα}α∈Λ comprised of those vectors whose
corresponding eigenvalues {βn}n≥1 are different from zero. That {fn}n≥1 is at most
countable follows from the fact that σp(N) is countable, and nul (N − λnI) <∞ for
all 0 /= λn ∈ σp(N).

Clearly Nfn = βnfn for all n ≥ 1, and limn→∞ βn = 0 from the argument above
combined with the fact that σp(N) is a sequence tending to zero when N is com-

pact. Finally, (span{fn}∞n=1)
⊥ = ker (N −0I) = ker N , from which condition (iii) also

follows.

◻
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Supplementary Examples

S7.1. Despite there being a plethora of Hilbert space operators (the space B(H)
is non-separable if H is infinite-dimensional), nevertheless, very few classes of oper-
ators are well-understood. The best understood class (other than scalar operators)
is the class of normal operators. We have established the Spectral Theorem for
compact, normal operators. In Chapter 13.21, we shall establish a more general
version of the Spectral Theorem that holds for arbitrary normal operators acting on
a separable Hilbert space.

Let us describe a (small) selection of classes of Hilbert space operators whose
existence has attracted the attention of researchers.

S7.3. Example. An operator R ∈ B(H) is said to be subnormal if it is the
restriction of a normal operator N to an invariant subspace. That is, there exists
a Hilbert space K which contains H, and a normal operator N ∈ B(K) such that
H is invariant for N and R = N ∣H. In operator-matrix notation, relative to the
decomposition K =H⊕H⊥, we have

N = [R N2

0 N4
] .

As a concrete example, the unilateral forward shift S is subnormal, being (unitarily
equivalent to) the compression of the bilateral shift B (which satisfies Ben = en+1

for all n ∈ Z, where {en}n∈Z is an onb for K = `2(Z)) to the invariant subspace
H = span{en}n≥1.

We mention only one result about this class, namely: S. Brown has shown [9]
that every subnormal operator admits a non-trivial invariant subspace. We refer the
interested reader to the monograph [15] for an introduction to subnormal operators.

S7.3. Example. Let H be a separable, infinite-dimensional Hilbert space. An
operator B ∈ B(H) is said to be block-diagonal if there exists an increasing se-
quence (Pn)n of finite-rank projections which converges strongly to the identity
(i.e. for all x ∈H, x = limn Pnx) and which satisfies PnB = BPn for each n ≥ 1.

If we set P0 = 0 and Hn ∶= ran (Pn − Pn−1), n ≥ 1, then each Hn is finite-
dimensional H = ⊕nHn and relative to this decomposition, B = ⊕nBn, where Bn ∈
B(Hn).

We say that an operator Q ∈ B(H) is quasidiagonal if there exists a sequence
(Pn)n as above such that

lim
n

∥PnB −BPn∥ = 0.

It was shown by Halmos [26] that the set (QD) of quasidiagonal operators is the
norm-closure in B(H) of the set of block-diagonal operators.

There are still a number of interesting open questions about quasidiagonal op-
erators. One which is dear to your humble author’s heart is the following: suppose
that Q ∈ B(H) is quasidiagonal and quasinilpotent. Is Q a limit of block-diagonal
nilpotent operators? It is known that Q is a limit of nilpotent operators (due to the
large body of work by C. Apostol, C. Foiaş and D. Voicluescu), and as just noted,
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Q is a limit of block-diagonal operators. What is not known is whether one can
choose the sequence to consist of operators which are simultaneously block-diagonal
and nilpotent. (We mention in passing that Herrero [28] has provided an example
of a block-diagonal operator B which is a limit of nilpotent operators in B(H), but
which is not a limit of block-diagonal nilpotent operators.)

S7.4. Example. Let H be a separable, infinite-dimensional Hilbert space. An
operator T ∈ B(H) is said to be triangular if there exists an onb B = {en}n≥1

for H such that the matrix of T relative to B is upper-triangular. In other words,
⟨Tej , ei⟩ = 0 if i > j. Equivalently, T is triangular if there exists an increasing
sequence (Pn)n of finite-rank projections which converges strongly to the identity
in the sense above and which satisfies TPn = PnTPn for each n ≥ 1.

We say that R ∈ B(H) is quasitriangular if there exists a sequence (Pn)n as
above such that

lim
n

∥TPn − PnTPn∥ = 0.

Once again, it was shown by Halmos [26] that the set (QT ) of quasitriangular
operators is the norm-closure in B(H) of the set of triangular operators.

Of course, when H is finite-dimensional, every operator in B(H) is upper-
triangularisable with respect to some onb for H. As it happens, the set of qua-
sitriangular operators is nowhere dense in B(H).

The set of quasitriangular operators was crucial to the characterisation by Apos-
tol, Foiaş and Voiculescu of the norm-closure of the set of nilpotent operators in
B(H). (See Section A4.3.) Indeed, the following deep result gives a wonderfully
useful way of verifying whether or not an operator is quasitriangular. We first re-
mind the reader that if T ∈ B(H), then

ρsF (T ) = {z ∈ C ∶ π(T − λI) is invertible in the Calkin algebra}
is the semi-Fredholm domain of T .

Theorem. [Apostol, Foiaş, and Voiculescu] [3] Let H be a separable, infinite-
dimensional Hilbert space and T ∈ B(H). The following are equivalent:

(i) T is quasitriangular.
(ii) ind (T − αI) ≥ 0 for all α ∈ ρsF (T ).
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Appendix

A7.1. The notion of a Fredholm operator was introduced in Appendix 6.28,
where it was shown that if K is a compact operator acting on a Banach space X and
if λ is a non-zero scalar, then λI −K is Fredholm of index zero. We now wish to
consider Fredholm operators acting on a Hilbert space. We shall establish the fact
that the Fredholm operators are precisely the operators which are invertible modulo
the compact operators, and that the index function serves to classify components of
the set of invertible elements in the Calkin algebra .

A7.2. Recall that an operator T acting on a Hilbert space H is said to be
Fredholm if

(i) ranT is closed;
(ii) nulT is finite; and
(iii) codim ranT is finite.

As before, when T is Fredholm we may define the Fredholm index of T to be

indT = nulT − codim ranT.

From Remark 6.27, we see that when T is Fredholm, we may replace codim ranT
by nulT †, where T † now denotes the Banach space adjoint of T , as opposed to the
Hilbert space adjoint of T , which we denote by T ∗. The distinction is important,
since it is not a priori obvious that we may replace codim ranT by nulT ∗. On the
other hand, since ranT is closed, we obtain the decomposition H = ranT ⊕(ranT )⊥,
and so

codim ranT = dim (H/ranT ) = dim (ranT )⊥.

Since (ranT )⊥ = ker T ∗, it follows that nulT ∗ = codim ranT = nulT †, and so, as in
the Banach space setting, we retrieve the equation

indT = nulT − nulT ∗.

A7.3. Let H be a separable Hilbert space and let {en}∞n=1 be an orthonormal
basis for H. Let S ∈ B(H) denote the unilateral shift operator acting on this basis
as defined in Example 7.9. That is, Sen+1 = en if n ≥ 1, and Se1 = 0.

Then ranS =H, so that ranS is closed. Also, ker S = span{e1}, so that nulS = 1.
Finally, ker S∗ = {0}, so that nulS∗ = 0. Thus S is Fredholm and

indS = nulS − nulS∗ = 1 − 0 = 1.

Note also that S∗ is Fredholm as well, and that

indS∗ = nulS∗ − nulS∗∗ = nulS∗ − nulS = −indS = −1.

Finally, Sn and (S∗)n are both Fredholm as well, and indSn = n = −ind (S∗)n
for each n ≥ 1.
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A7.4. Let H be a Hilbert space and K ∈ K(H). As we have seen, if 0 /= λ ∈ C,
then λI −K is Fredholm of index zero. It follows that so is any operator of the form
T +L where T is invertible and L is compact. Indeed, T +L = T (I − (−T −1L)). The
verification of the index is left to the reader.

It follows that if S is the unilateral forward shift, then S is not of the form T +L
for any T invertible and L compact.

A7.5. Proposition. Suppose H is a Hilbert space and T ∈ B(H) is Fredholm.
Then T ∣(ker T )⊥ is bounded below.

Proof. Suppose x, y ∈ (ker T )⊥. Then 0 = Tx − Ty = T (x − y) implies x − y ∈ ker T
and hence x = y. In particular, the map

T0 ∶ (ker T )⊥ → ranT
x ↦ Tx

is a 1-1, onto map, and thus it is invertible. Let R ∶ ranT → (ker T )⊥ denote the
inverse of T0. Then for x ∈ (ker T )⊥,

∥x∥ = ∥RT0x∥ = ∥RTx∥
≤ ∥R∥ ∥Tx∥

and so ∥Tx∥ ≥ ∥R∥−1 ∥x∥.
Thus T is bounded below on (ker T )⊥, as claimed.

◻

A7.6. Let H be a Hilbert space. Recall that the Calkin algebra Q(H) =
B(H)/K(H) is the quotient of B(H) by the closed, two-sided ideal of compact op-
erators, and as such, Q(H) is a Banach algebra.

A7.7. Our present goal is to establish a relationship between the set of Fredholm
operators acting on a Hilbert spaceH, and the set of invertible elements in the Calkin
algebra. In fact, the relation we wish to establish is equality !

We record here a couple of facts which will prove useful:

● (A(H))−1 is open in A(H).
● The involution on B(H) naturally gives rise to an involution in the Calkin

algebra. Given t ∈ A(H), t = π(T ) for some T ∈ B(H). We then set
t∗ = π(T ∗). If R ∈ B(H) and π(R) = t, then K = R − T ∈ K(H). Thus
K∗ = R∗−T ∗ ∈ K(H), and so π(R∗) = π(T ∗), from which it follows that our
involution is indeed well-defined. We then have that A(H) and (A(H))−1

are self-adjoint. Indeed, for t ∈ (A(H))−1, (t∗)−1 = (t−1)∗.

A7.8. Theorem. [Atkinson’s Theorem.] Let H be a Hilbert space and
T ∈ B(H). Let π ∶ B(H)→ Q(H) denote the canonical quotient map from B(H) into
the Calkin algebra. The following are equivalent.

(i) T ∈ B(H) is Fredholm.
(ii) t ∶= π(T ) is invertible in Q(H).
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Proof. Suppose T is Fredholm. Then ranT is closed, nulT is finite and nulT ∗ =
codim ranT is finite. Let us once again decompose

H = ker T ⊕ (ker T )⊥
= ranT ⊕ (ranT )⊥.

As in the proof of Proposition A7.5, we see that

T0 ∶ (ker T )⊥ → ranT
x ↦ Tx

is invertible. Let R0 ∶ ranT → (ker T )⊥ denote the inverse of T0, and define R ∈ B(H)

via Rx = { R0x if x ∈ ranT
0 if x ∈ (ranT )⊥.

Then RTx = (I − P (M))x, where M = ker T , and TRx = (I − P (N ))x, where
N = (ranT )⊥. Since both P (M) and P (N ) are finite rank, we obtain:

π(R)π(T ) = π(RT ) = π(I) = π(TR) = π(T )π(R),

and so t = π(T ) is invertible with inverse r = π(R).
Next, suppose that t = π(T ) ∈ A(H) is invertible. Then there exists r ∈ A(H)

with rt = 1 = π(I) = tr, and choosing R ∈ B(H) with π(R) = r, we get

RT = I +K1, TR = I +K2

for some K1, K2 ∈ K(H).
Since nul (I+K1) <∞ by Proposition 6.26, nulT <∞. Since ranT ⊇ ran (I+K2)

and codim ran (I +K2) <∞ by Proposition 6.26, codim ranT <∞.
By Corollary A6.10, ranT is closed, and so we are done.

◻

A7.9. We now wish to consider some of the stability properties of Fredholm
operators and the index function. We mention that most, if not all, of the following
results are true for Fredholm operators acting on a Banach space. On the other
hand, certain arguments simplify when looking at Hilbert spaces, and we have made
use of these simplifications. For the most general results, we refer the reader to the
book of Caradus, Pfaffenberger and Yood [11].

A7.10. Lemma. Let H be a Hilbert space and T ∈ B(H) be Fredholm. If R is
invertible, then

indTR = indRT = indT.

Proof. Exercise.

◻
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A7.11. Lemma. Let H be a Hilbert space and T ∈ B(H). If T is Fredholm
and indT = 0, then there exists a finite rank operator F such that T +F is invertible.

Proof. As we saw in Theorem A7.8, we can decompose H in two ways, namely:

H = ker T ⊕ (ker T )⊥
= ranT ⊕ (ranT )⊥.

Since indT = 0 by hypothesis, nulT = codim ranT . Let {ek}nk=1 and {fk}nk=1 be
orthonormal bases for ker T and (ranT )⊥ respective and let F ∈ B(H) be defined
via Fek = fk, 1 ≤ k ≤ n, Fz = 0 if z is orthogonal to ker T . Then F is clearly finite
rank. We claim that T + F is bijective, and hence invertible.

If 0 /= x ∈H, then x = x1+x2, where x1 ∈ ker T, x2 ∈ (ker T )⊥, and ∥x1∥+∥x2∥ /= 0.
If x1 /= 0, then

(T + F )x = Tx + Fx
= Tx2 + Fx1

and 0 /= Fx1 ∈ (ranT )⊥ forces (T + F )x /= 0. If x2 /= 0, then (T + F )x = Tx2 + Fx1

and 0 /= Tx2 ∈ (ranF )⊥ forces (T + F )x /= 0.
In either case, we see that T + F is injective.

Now choose y ∈ H and decompose y as y = y1 + y2 where y1 ∈ ranT and y2 ∈
(ranT )⊥. Choose x1 ∈ (ker T )⊥ such that Tx1 = y1 and x2 ∈ ker T such that Fx2 = y2.
Then

(T + F )(x1 + x2) = T (x1 + x2) + F (x1 + x2)
= Tx1 + Fx2

= y1 + y2

= y.

Thus T is surjective, and therefore bijective, completing the proof.

◻

A7.12. Theorem. Let H be a Hilbert space and T ∈ B(H) be Fredholm. If
K ∈ K(H), then

ind (T +K) = indT.

Proof. Suppose indT = 0. Then there exists F finite rank such that T + F is
invertible. Moreover, T +K = (T + F ) + (K − F ) and K − F ∈ K(H). Thus

T +K = (T + F )(I + (T + F )−1(K − F )),

and so by Lemma A7.10, ind (T +K) = 0 = indT.
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Suppose next that indT = n > 0. Letting S denote the forward unilateral shift,
ind (T ⊕ Sn) = indT + indSn = 0. If K ∈ K(H), then K ⊕ 0 ∈ K(H⊕H), and

[ T 0
0 Sn

] + [ K 0
0 0

] = [ T +K 0
0 Sn

] .

From above, ind ((T +K) ⊕ Sn) = 0 = ind (T +K) + indSn = ind (T +K) − n. Thus
ind (T +K) = n = indT .

If indT = n < 0, then indT ∗ = −n > 0. From above, for all K ∈ K(H),

ind (T ∗ +K∗) = −n = −ind (T +K),

and so ind (T +K) = n = indT.

◻

A7.13. Theorem. Let H be a Hilbert space and suppose that T, R ∈ B(H) are
Fredholm. Then

indTR = indT + indR.

Proof. First suppose that indT = n > 0 and indR = m > 0. Let S denote the
unilateral forward shift. Then

ind [ T 0
0 Sn

] = 0 = ind [ R 0
0 Sm

] .

Thus there exists K ∈ K(H⊕H) such that [ T 0
0 Sn

] +K is invertible.

By Lemma A7.10,

0 = ind [ R 0
0 Sm

] = ind([ T 0
0 Sn

] +K)([ R 0
0 Sm

]) ,

and by Theorem A7.13, this is equal to

ind [ T 0
0 Sn

] [ R 0
0 Sm

] = ind [ TR 0
0 Sn+m

] .

Thus 0 = ind (TR) + indSn+m = indTR + (−n −m), and so ind (TR) = n +m =
indT + indR.

The cases where n < 0 (resp. m < 0) are handled similarly using (S∗)n (resp.
(S∗)m) instead of Sn (resp. Sm), and Theorem A7.13 if necessary.

◻

A7.14. Notation. Let Fred(H) = π−1(A(H)−1) denote the set of Fredholm
operators, and for each n ∈ Z, set

Fredn(H) = {T ∈ Fred(H) ∶ indT = n}.
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A7.15. Theorem. Let H be a Hilbert space. Then for each n ∈ Z, Fredn(H)
is open. In particular, therefore, ind(⋅) is a continuous function on Fred(H).

Proof. Of course, since π ∶ B(H) → A(H) is continuous, we see that Fred(H) =
π−1((A(H)−1) is open. Suppose n ∈ Z.

Let T ∈ Fredn(H). Since Fred(H) is open, there exists ε1 > 0 such that ∥U∥ < ε1

implies T + U ∈ Fred(H). Moreover, by Atkinson’s Theorem A7.8, there exists
R ∈ B(H) (in fact, R ∈ Fred−n(H)) such that TR = I +K for some K ∈ K(H). Note
that

(T +U)R = TR +UR
= (I +K) +UR
= (I +UR) +K.

Now take ε2 = 1/∥R∥. If ∥U∥ < ε2, then I + UR is invertible in B(H). By Theo-
rem A7.12, we conclude that if ∥U∥ < min(ε1, ε2), then (T + U)R = (I + UR) +K
satisfies

ind (T +U)R = ind (I +UR) +K
= ind (I +UR)
= 0

= ind (T +U) + indR

= indT + indR.

Thus ind (T + U) = indT and so T + U ∈ Fredn(H). In other words, Fredn(H) is
open.

◻

A7.16. The astute reader may recall that the same word index appeared when
we discussed the abstract index group A−1/A−1

0 of a Banach algebra A. The same
reader might now be asking if there is any relationship between the two notions of
index. In fact, there is.

Let A = B(H)/K(H) denote the Calkin algebra. We defined the abstract index
group of A to be

ΓA = A−1/A−1
0 ,

where A−1
0 denotes the connected component of the identity in A−1.

Consider the map

γ ∶ A−1 → (Z,+)
π(T ) ↦ ind(T ).

That γ is well-defined follows from Theorem A7.12, for if π(T ) = π(R) ∈ A−1, then
T and R are Fredholm operators and T = R+K for some K ∈ K(H). Applying that
Theorem shows that

γ(π(T )) = ind(T ) = ind(R +K) = ind(R) = γ(π(R)).
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Now by Theorem A7.13,

γ(π(R)π(T )) = γ(π(RT )) = indRT = indR + indT = γ(π(R)) + γ(π(T )),

proving that γ is a group homomorphism. As noted in Example A7.3, indSn =
−n = −ind (S∗)n for all n ≥ 1, and ind I = 0, so that γ is a surjective map. Thus
Z ≃ A−1/ker γ, where ker γ = {π(T ) ∶ T ∈ Fred0(H)}.

The last piece in the puzzle consists of showing that ker γ = A−1
0 . Unfortunately,

we do not yet have the tools to do this. But by the end of the course, we shall.

A7.17. Theorem 7.19 shows us that in a Hilbert space H, every compact oper-
ator K is a norm limit of finite rank operators Fn. Since F(H) ⊆ K(H), it follows

that K(H) = F(H).
In the Banach space setting, the inclusion F(X) ⊆ K(X) remains valid. The

question of whether the reverse inclusion holds remained open for some time, and
was referred to as the Finite Approximation Problem. In 1973, Per Enflo [21]
resolved this question by constructing an example of a Banach space X and a compact
operator on X which cannot be approximated by finite rank operators.

One of the most famous open problems in Operator Theory today is the Invariant
Subspace Problem.

● Given H, a Hilbert space, and T ∈ B(H), does there exist a closed subspace
M of H such that M /= {0}, H and TM ⊆M?

Such a space is called a non-trivial invariant subspace for T . It is a standard exercise
that if T ∈ B(H) and H is not separable, then we can decompose H = ⊕α∈ΛHα, where
each Hα is a separable, reducing subspace for T . Also, if H is finite dimensional,
every operator can be upper triangularised, and thus has invariant subspaces. As
such, the proper context in which to examine the Invariant Subspace Problem is in
separable, infinite dimensional Hilbert spaces.

While the answer is not known in general, many results have been obtained.
One of the strongest results is a generalisation of a result of Lomonosov [34] from
1973.

A7.18. Theorem. [Lomonosov’s Theorem.] Let H be a Hilbert space and
T ∈ B(H) be a non-scalar operator. Suppose there exists 0 /= K ∈ K(H) such that
TK =KT . Then there exists a closed subspaceM of H which is hyperinvariant for
T , that is: M is a non-trivial invariant subspace for every operator that commutes
with T .

A7.19. Corollary. Every compact operator on H has a non-trivial hyperin-
variant subspace.



138 7. THE ALGEBRA OF HILBERT SPACE OPERATORS

A7.20. A natural question that arises from this theorem is whether or not every
operator in B(H) commutes with a non-scalar operator which in turn commutes with
a non-zero compact operator. In other words, does Lomonosov’s Theorem solve the
Invariant Subspace Problem? That the answer is no was first shown by D.H. Hadwin,
E.A. Nordgren, H. Radjavi, and P. Rosenthal [24].

Results are known for other classes of operators as well. For example, we saw
the next result of S. Brown [9] in Example S7.3.

A7.21. Theorem. [Brown.] Every subnormal operator possesses a non-
trivial invariant subspace.

A slightly more recent result is the following.

A7.22. Theorem. [Brown, Chevreau, Pearcy [10].] Let H be a Hilbert
space and T ∈ B(H). Suppose that

● ∥T ∥ ≤ 1; and
● σ(T ) ⊇ T = {z ∈ C ∶ ∣z∣ = 1}.

Then T has a non-trivial invariant subspace.

A7.23. The corresponding question has been answered (negatively) for Banach
spaces. In particular, in 1984, C.J. Read [45] gave an example of a Banach space
X and a bounded linear operator T on X such that X and {0} are the only closed
subspaces of X which are invariant for T . In the paper [46] from 1985, he modified
the construction to produce a bounded linear operator T ∈ B(`1) such that T does
not have any non-trivial invariant subspace. The question remains open for reflexive
Banach spaces.

A7.24. As we have seen, the Invariant Subspace Problem for Hilbert spaces has
remained open for over 80 years. In the past 10 years, however, an entirely new and
exciting approach has been put forward with the work of A. Popov and A. Tcaciuc,
as well as further work by A. Tcaciuc on his own.

A7.25. Definition. Let H be an infinite-dimensional separable Hilbert space,
and T ∈ B(H). A subspace M of H is said to be almost-invariant for T if there
exists a finite-dimensional subspace F of H such that TM ⊆M+F . IfM is almost-
invariant for T , then the minimum dimension of a space F for which TM ⊆M+F
is called the defect ofM. We say thatM is a half-space if dimM = dimM⊥ =∞.

(One can extend the notion of a half-space to the Banach space setting as follows:
a subspace Y of a Banach space X is a half-space if dim Y = dim X/Y =∞.)

Consider the following absolutely beautiful results. They come as close to solving
the Invariant Subspace Problem as one can come without actually solving it. What
is most amazing is that (in the first instance) it applies to all Hilbert space operators.
So far, all of the positive results (other than Lomonosov’s) applies to comparitively
small classes of operators.
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A7.26. Theorem. [Popov and Tcaciuc [41].] Let H be an infinite-
dimensional separable Hilbert space, and T ∈ B(H). Then T admits an almost-
invariant half-space of defect equal to 1.

A7.27. It is not hard to see that a half-space M is invariant for T if and
only if there exists a finite-rank operator F such that M is invariant for T + F .
Moreover, one can choose F to have rank equal to the defect of M, and thus the
above result states that every operator admits a rank-one perturbation with an
invariant half-space. (That every operator admits a rank-one perturbation with an
invariant subspace is trivial; the issue here is that the invariant subspace in question
has infinite dimension and co-dimension!) In some cases, Popov and Tcaciuc were
even able to control the norm of the operator F . A new and quite spectacular result
of Tcaciuc extends this to all Banach spaces and all operators.

Theorem. [Tcaciuc [51].] Let X be a complex Banach space and T ∈ B(X).
Given ε > 0, there exists F ∈ B(X) of rank at most one and ∥F ∥ < ε such that T +F
admits an invariant half-space.

A7.28. If one considers reducing rather than invariant subspaces, then one can
also obtain approximate results. A major result of D. Voiculescu’s [53] known as
his non-commutative Weyl-von Neumann Theorem implies that given T ∈ B(H) and
ε > 0, there exist an isometric, involution preserving map ρ from C∗(π(T )), the
closed Banach algebra generated by π(T ) and π(T ∗) in the Calkin algebra, into

some B(Hρ), a unitary operator U ∈ B(H⊕H(∞)
ρ ) and K ∈ K(H) with ∥K∥ < ε such

that
T = U∗(T ⊕ ρ(π(T ))(∞))U +K.

It follows that every operator is a limit of operators with non-trivial reducing sub-
spaces.

On the other hand, P. Halmos [25] has shown that the set of irreducible operators
(i.e. those with no non-trivial reducing subspaces) is dense in B(H).

What is not known, and what remains a very interesting open problem, is
whether or not every Hilbert space operator T admits a half-space which is almost
invariant both for T and T ∗.

A7.28. The spectral theorem for compact normal operators shows that every
such operator can be diagonalised. As such, it mimics the finite-dimensional result.
For general normal operators on an infinite dimensional Hilbert space, this fails mis-
erably. For instance, if Mx is the multiplication operator acting on L2([0,1], dx),
where dx represents Lebesgue measure, then we have seen that Mx is normal, but
has no eigenvalues. It follows immediately from this observation that Mx can not be
diagonalisable. A wonderful result known as the Weyl-von Neumann-Berg/Sikonia
Theorem [6] shows that once again, the result is true up to a small compact pertur-
bation. More precisely, we have:
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Theorem. [The Weyl-von Neumann-Berg/Sikonia Theorem.] Let H be an
infinite dimensional separable Hilbert space and N ∈ B(H) be normal. Then, given
ε > 0, there exists U ∈ B(H) unitary, K ∈ K(H) satisfying ∥K∥ < ε and D ∈ B(H)
diagonal such that

N = U∗DU +K.
Moreover, D can be chosen to have the same spectrum and essential spectrum (see
Appendix A) as N .

A7.29. Using this, we are now in a position to give a very simple proof of
Halmos’ result on the density of the irreducible operators. This proof is due to
H. Radjavi and P. Rosenthal [43]. Let us agree to say that an operator D ∈ B(H)
is diagonalisable if there exists a unitary operator U such that the matrix of U∗DU
with respect to the standard orthonormal basis is diagonal.

Theorem. [Radjavi and Rosenthal.] Let T ∈ B(H) and ε > 0. Then there
exists K ∈ K(H) with ∥K∥ < ε such that T +K is irreducible.

Proof. By the Weyl-von Neumann-Berg/Sikonia Theorem, there exists a self-
adjoint operator D whose matrix is diagonal with respect to an orthonormal basis
{en}∞n=1 such that

∥D − (T ∗ − T )/2∥ < ε
4
.

Then there is a self-adjoint operator D1 diagonal with respect to {en}∞n=1 such
that all of the eigenvalues of D1 are distinct and ∥D −D1∥ < ε

4 . Now let D2 be any
self-adjoint compact operator within ε/2 of (T − T ∗)/2i whose matrix with respect
to {en}∞n=1 has all entries different from 0 (such operators exist in profusion - why?).
Then the operator D1 + iD2 is within ε of T . Also, D1 + iD2 is irreducible, since the
invariant subspaces of D1 are the subspaces spanned by subcollections of {en}∞n=1,
and none of these are invariant under D2 except {0} and H.

◻
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Exercises for Chapter 7

Exercise 7.1. Compact operators as limits of finite-rank operators
Suppose that X is a Banach space and H is a Hilbert space. Prove that if

K ∶ X→H is compact, then K is a limit of finite-rank operators from X into H.

Exercise 7.2. Adjoints of operator matrices
Suppose that Hk is a complex Hilbert space, 1 ≤ k ≤ n, and that T ∈ B(⊕nk=1Hk)

admits an operator-matrix form
T = [Ti,j],

where Ti,j = PHiT ∣Hj , 1 ≤ i, j ≤ n. Then

T ∗ = [T ∗j,i].
(This was used in Proposition 7.29.)

Exercise 7.3. Spectrum of operator matrices

Suppose T = [ A B
0 D

] as an operator on H⊕H.

(i) Is σ(A) ⊆ σ(T )?
(ii) Is σ(D) ⊆ σ(T )?
(iii) What can be said about the sets of eigenvalues of A and D with respect to

those of T?
(iv) Is σ(T ) ⊆ σ(A) ∪ σ(D)?

Exercise 7.4. Injective with dense range
Find an operator T ∈ B(H) such that T is injective, the range of T is dense, but

T is not invertible.

Exercise 7.5. Distance to the set of invertible elements
Let S be the unilateral shift opeator acting on a Hilbert space H. Show that

the distance from S to the set of invertible operators on H is exactly 1.

Exercise 7.6. Polynomially compact operators
An operator T ∈ B(H) is said to be polynomially compact if there exists a

non-zero polynomial p ∈ C[x] such that p(T ) ∈ K(H).
Describe the spectrum of a polynomially compact operator.

Exercise 7.7. Distance to the compact operators
What is the distance from the unilateral shift S ∈ B(H) to the set K(H) of

compact operators?
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Exercise 7.8. Weighted shift operators
Let H be a Hilbert space with orthonormal basis {en}∞n=1. Let {wn}∞n=1 ∈ `∞(N)

and define
W ∶ H → H

en ↦ wnen+1

for each n ≥ 1. Extend W by linearity and continuity to all of H. Such an operator
is called a unilateral forward weighted shift with weight sequence {wn}∞n=1.

(i) Calculate ∥W ∥.
(ii) Calculate σ(W ) in the case where wn = 1 for all n. This particular operator

is called the unilateral shift.
(iii) Calculate spr(W ) in general.
(iv) When is W nilpotent?
(v) When is W compact?
(vi) If W is compact, compute σ(W ).

(vii) When is W quasinilpotent? (Recall that T ∈ B(H) is quasinilpotent if
σ(W ) = {0}.)

(viii) Find a unilateral weighted shift W of norm 1 such that W is quasinilpo-
tent but not nilpotent. Is it possible to find one that is nilpotent but not
quasinilpotent?

Exercise 7.9. Similarity and unitary equivalence
Two operators A,B ∈ B(H) are said to be unitarily equivalent if there exists

U ∈ B(H) unitary such that A = U∗BU . We say that A and B are similar if there
exists an invertible operator R ∈ B(H) such that A = R−1BR.

(a) Prove that unitary equivalence and similarity define equivalence relations
on B(H).

(b) Give necessary and sufficient conditions for two diagonal operators to be
unitarily equivalent.

(c) Give necessary and sufficient conditions for two diagonal operators to be
similar.

(d) Prove that two injective unilateral weighted shifts W with weight sequence
(wn)n and V with weight sequence (vn)n are unitarily equivalent if and
only if ∣wn∣ = ∣vn∣ for all n ≥ 1.

Is the same true for injective bilateral shifts?

Exercise 7.10. Weighted shift operators II
Which weighted shifts (bilateral or unilateral) are:

(i) normal?
(ii) self-adjoint?
(iii) unitary?
(iv) essentially unitary?
(v) essentially normal?
(vi) essentially self-adjoint?
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Exercise 7.11. Hilbert-Schmidt operators
Suppose H is a Hilbert space with orthonormal basis {en}∞n=1. Let T ∈ B(H) and

suppose that the matrix of T with respect to this basis is [tij] Finally, suppose that

∥T ∥2 ∶=
⎛
⎝∑i, j

∣tij ∣2
⎞
⎠

1
2

<∞.

(i) Show that ∥T ∥ < ∥T ∥2.
(ii) Show that T ∈ K(H).
(iii) The set of all operators T for which ∥T ∥2 is finite is called the Hilbert-

Schmidt class and is sometimes denoted by C2(H). Show that C2(H) is a
proper subset of K(H).





CHAPTER 8

Representations of Banach algebras

He was happily married – but his wife wasn’t.

Victor Borge

Definitions and Examples

8.1. The notion of representations is ubiquitous in mathematics, and the theory
of Banach algebras is no exception. The guiding philosophy is that we have many
techniques to study operators acting on a Banach space X that are not available to
us in general Banach algebras. For example, we have seen that an operator T ∈ B(X)
is invertible if and only if it is bounded below and has dense range. If T ∈ A for
some unital Banach subalgebra of B(X), this offers us a necessary (but not sufficent)
condition for verifying that T ∈ A−1.

8.2. Definition. Let A be a Banach algebra and X be a Banach space. A
representation of A on X is a non-zero homomorphism ϕ ∶ A→ B(X).

Unsurprisingly, our main focus will be on continuous representations.

8.3. Definition. Let A be a Banach algebra and X be a Banach space. We
say that X is a left Banach A-module if X is a left A-module and there exists a
constant κ > 0 such that for all a ∈ A, x ∈ X we have:

∥a ● x∥X ≤ κ ∥a∥A ∥x∥X.

8.4. Remark. Note that if % ∶ A → B(X) is a continuous representation of A,
then X is imbued with a left Banach A-module structure over A, namely: given
x ∈ X and a ∈ A, we may define a ● x ∶= %(a)x ∈ X. That this is a left A-module
structure is routine, and given a ∈ A, x ∈ X we see that

∥a ● x∥X = ∥%(a)x∥X ≤ ∥%∥ ∥a∥A ∥x∥X.

Setting κ ∶= ∥%∥ (or κ = 1 if % = 0) shows that this is indeed a left Banach A-module
structure.

145
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Conversely, suppose that X is a left Banach A-module, with constant κ > 0 as
above. Given a ∈ A, define a map %(a) ∶ X → X via %(a)x = a ● x. It is not hard to
see that %(a) is linear, and the inequality

∥%(a)x∥X = ∥a ● x∥X ≤ κ∥a∥A ∥x∥X

implies that ∥%(a)∥ ≤ κ∥a∥.
It is equally straightforward to verify that the map % ∶ A → B(H) defined by

a ↦ %(a) is an algebra homomorphism, and the inequality above shows that ∥%∥ ≤
κ <∞, so that % is a continuous representation of A on X.

We have just argued that continuous representations of A on Banach spaces and
left Banach A-modules are two sides of the same coin: that is, they are two ways of
viewing the same object.

8.5. Example. Let A be a Banach algebra. With X ∶= A, we may define a
representation

λ ∶ A → B(A)
a ↦ La,

where Lax = ax for all x ∈ A. Clearly ∥La∥ ≤ ∥a∥, so that λ is a contractive
representation of A.

8.6. Example. In Example 7.14 we saw that if µ is a finite, positive, regular
Borel measure on a non-empty set X, then for each f ∈ L∞(X,µ) we may define the
multiplication operator Mf ∈ B(L2(X,µ)) via Mfg = fg for all g ∈ L2(X,µ).

We leave it to the reader to verify that the map

% ∶ L∞(X,µ) → B(L2(X,µ))
f ↦ Mf

defines an isometric representation of L∞(X,mu) on L2(X,µ). In fact, this represen-

tation has an extra property, namely: %(f∗) = %(f) =Mf =M
∗
f for all f ∈ L∞(X,µ).

We normally say that % is a ∗-representation. Of course, most Banach algebras
do not admit an involution. We shall have more to say about this later when we
examine C∗-algebras.

8.7. Suppose that % ∶ A → B(X) is a continuous representation of a Banach
algebra A on a Banach space X. Let

Y ∶= span %(A)X = span{%(a)x ∶ a ∈ A, x ∈ X}.

It is not hard to see that Y is a closed subspace of X, and that %(a)Y ⊆ Y for all
a ∈ A. That is, Y is invariant for %(A) ⊆ B(X).

In trying to study any mathematical object, it is worthwhile to break it up into
“simpler components”. The next definition tells us what we mean by this in the
context of representations of Banach algebras.
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8.8. Definition. Let % ∶ A→ B(X) be a continuous representation of a Banach
algebra A on a Banach space X. We say that % is algebraically irreducible if
0 ≠ x ∈ X implies that

%(A)x ∶= {%(a)x ∶ a ∈ A} = X.

Equivalently, % is algebraically irreducible if the only A-invariant linear manifolds
in X are {0} and X.

We say that % is topologically irreducible if 0 ≠ x ∈ X implies that

%(A)x ∶= {%(a)x ∶ a ∈ A}
is dense in X. Equivalently, % is topologically irreducible if the only closed A-
invariant linear subspaces in X are {0} and X.

8.9. The Cohen-Hewitt Factorisation Theorem below will give us some greater
insight into the relationship between algebraically irreducible and topologically irre-
ducible representations of certain Banach algebras. But first we turn our attention
to a theorem of Jacobson.

Jacobson’s Density Theorem

8.10. Suppose that % ∶ A→ B(X) is an algebraically irreducible representation of
a Banach algebra A on a Banach space X. Then %(A) is (by definition) transitive.
That is, for all 0 ≠ x ∈ X and all y ∈ X there exists a ∈ A such that %(a)x = y.

Our goal is to extend this result by showing that for each n ≥ 1, %(A) is in
fact n-transitive; that is, given linearly independent vectors x1, x2, . . . , xn ∈ X and
arbitrary vectors y1, y2, . . . , yn ∈ X, we can find a ∈ A such that %(a)xk = yk, 1 ≤ k ≤ n.

8.11. Lemma. Let A be a Banach algebra, X be a Banach space, and % ∶ A →
B(X) be a continuous, algebraically irreducible representation of A. Suppose that
T ∶ X→ X is a non-zero linear map commuting with %; that is,

T%(a)x = %(a)Tx for all x ∈ X, a ∈ A.
Then T = λI for some λ ∈ C.
Proof. If Tx0 = 0 for some 0 ≠ x0 ∈ X, then

{0} = %(A)(Tx0) = T (%(A)x0) = TX,
contradicting the fact that T is non-zero. Thus T is injective.

Since T ≠ 0, there exists x1 ∈ X such that Tx1 ≠ 0. In particular, x1 ≠ 0. Then

TX = T (%(A)x1) = %(A)(Tx1) = X,

implying that T is surjective.
Combining these two facts, we deduce that T is bijective, hence invertible (as a

linear but not necessarily continuous linear map).
Let D ∶= {D ∶ X → X ∶ D is linear and D commutes with %}. It is easy to see

that D is an algebra over C which contains all scalar operators, and the argument
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above shows that every non-zero element of D is invertible. Since the only division
algebra over C is (isomorphic to) C itself, we conclude that D ∶= {αI ∶ α ∈ C}.

◻

8.12. Proposition. Let A be a Banach algebra, X be a Banach space, and
% ∶ A→ B(X) be a continuous representation of A. Let 0 ≠ x ∈ X. If % is algebraically
irreducible, then

M ∶= {a ∈ A ∶ %(a)x = 0}
is a maximal left ideal of A.
Proof. ThatM is a left ideal of A is routine and is left as an exercise for the reader.

Suppose that K ⊆ A is a left ideal of A which contains M properly. Thus
there exists k ∈ K ∖M, whence %(k)x ≠ 0. Since % is algebraically irreducible,
%(A)(%(k)x) = X, and thus there exists an element a ∈ A such that %(a)%(k)x = x.
Set e ∶= ak ∈ K.

Given b ∈ A, observe that %(be−b)x = %(b)%(e)x−%(b)x = 0, and so be−b ∈M ⊆ K.
But e ∈ K implies that be ∈ K, and thus b = be−(be−b) ∈ K. Since b ∈ A was arbitrary,
A ⊆ K, and thus M is maximal.

◻

8.13. Lemma. Let A be a Banach algebra and suppose that % ∶ A → B(X) is a
continuous, algebraically irreducible representation of A on the Banach space X. Let
x1, x2 ∈ X be two linearly independent vectors. Then there exists a0 ∈ A such that
%(a0)x1 = 0 ≠ %(a0)x2.
Proof. We argue by contradiction. Suppose to the contrary that %(a)x1 = 0 implies
that %(a)x2 = 0. Let Mk ∶= {a ∈ A ∶ %(a)xk = 0}, k = 1,2. Then M1 ⊆ M2.
By Proposition 8.12 above, M1 and M2 are maximal left ideals of A, and thus
M1 =M2.

The fact that neither of x1, x2 is zero implies that %(A)x1 = X = %(A)x2. Con-
sider the map

T ∶ X → X
%(a)x1 ↦ %(a)x2.

We claim that T is a well-defined linear map that commutes with %.
Indeed, if %(a1)x1 = %(a2)x1, then %(a1 − a2)x1 = 0, so a1 − a2 ∈ M1 = M2,

implying that

T%(a1)x1 = %(a1)x2 = %(a2)x2 = T%(a2)x1.

That is, T is well-defined.
Also, for all α ∈ C,

T (α%(a1)x1 + %(a2)x1) = T (%(αa1 + a2)x1)
= %(αa1 + a2)x2

= α%(a1)x2 + %(a2)x2

= αT%(a1)x1 + T%(a2)x1,
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proving that T is linear.
Next, for all b ∈ A,

%(b)T%(a)x1 = %(b)%(a)x2

= %(ba)x2

= T%(ba)x1

= T%(b)%(a)x1,

so that %(b)T = T%(b); i.e. T commutes with %.
By Lemma 8.11 above, T = λI for some λ ∈ C. But then

λ%(a)x1 = T%(a)x1 = %(a)x2 for all a ∈ A,

and thus

%(a)(λx1 − x2) = 0 for all a ∈ A.
Since % is algebraically irreducible, we conclude that x2 = λx1, contradicting our
hypothesis that x1, x2 are linearly independent vectors. This concludes the proof.

◻

The next Lemma is adapted from [8].

8.14. Lemma. Let A be a Banach algebra and suppose that % ∶ A → B(X) is
a continuous, algebraically irreducible representation of A on the Banach space X.
Let 2 ≤ n ∈ N and x1, x2, . . . , xn ∈ X be linearly independent. Then there exists b ∈ A
such that %(b)xn ≠ 0 = %(b)xk, 1 ≤ k < n.
Proof. We shall argue by induction. The case n = 2 is handled by Lemma 8.13
above.

Suppose that 3 ≤ N ∈ N and that the result holds whenever n < N . We prove
that the result holds for n = N .

Now x2, x3, . . . , xN are N − 1 linearly independent vectors in X, so by our in-
duction hypothesis, there exists a1 ∈ A such that %(a1)xk = 0, 2 ≤ k ≤ N − 1 and
%(a1)xN ≠ 0.

● If %(a1)x1 = 0, then we set b = a1 and we are done.
● If %(a1)x1 and %(a1)xN are linearly independent, then by Lemma 8.13,

we can find a2 ∈ A such that %(a2)%(a1)x1 = 0 ≠ %(a2)%(a1)xN . Setting
b = a2a1, we find that %(b)xk = 0, 1 ≤ k ≤ N − 1, while %(b)xN ≠ 0, and we
are done.

We have reduced the problem to the case where there exists α ∈ C such that
α%(a1)x1 = %(a1)xN .

Observe that the set {αx1 − xN , x2, x3, . . . , xN−1} is linearly independent. By
the induction hypothesis, we can find a3 ∈ A such that %(αx1 − xN) ≠ 0 = %(a3)xk,
2 ≤ k ≤ N − 1.

● If %(a3)x1 = 0, then we also have that %(a3)xN ≠ 0. If we set b = a3, then
we are done.
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● If %(a3)x1 ≠ 0 and {%(a3)x1, %(a3)xN} is linearly independent, then we can
find a4 ∈ A such that %(a4a3)x1 = 0 ≠ %(a4a3)xN . We may then set b = a4a3

and we are done.

We have reduced the problem to the case where %(a3)x1 ≠ 0 and {%(a3)x1, %(a3)xN}
is linearly independent.

● If %(a3)xN = 0, then we set b = a3. We then have %(b)x1 ≠ 0 = %(b)xk,
2 ≤ k ≤ N . By interchanging the roles of x1 and xN , we are done.

We have reduced the problem to the case where there exists some µ ∈ C such that
µ%(a3)x1 = %(a3)xN , so that

%(a3)(µx1 − xN) = 0 ≠ %(a3)(λx1 − xN).
From this it follows that µ ≠ λ. But then %(a3)x1 ≠ 0 implies that there exists a5 ∈ A
such that

%(a5)%(a3)x1 = %(a1)x1.

Let b = a1 −a5a3. An easy calculation shows that %(b)xk = 0, 1 ≤ k ≤ N −1, while
%(b)xN ≠ 0.

◻

8.15. Theorem. [The Jacobson Density Theorem.] Let A be a Banach
algebra and suppose that % ∶ A → B(X) is a continuous, algebraically irreducible
representation of A on the Banach space X. If N ∈ N, x1, x2, . . . , xN ∈ X are linearly
independent and y1, y2, . . . , yN ∈ X, then there exists d ∈ A such that %(d)xn = yn,
1 ≤ n ≤ N .

In other words, %(A) is N -transitive.
Proof. For each 1 ≤ k ≤ N , choose ak ∈ A such that %(ak)xk ≠ 0 while %(ak)xn = 0,
1 ≤ n ≠ k ≤ N . Since % is algebraically irreducible, we can find bn ∈ A, 1 ≤ n ≤ N
such that %(bnan)xn = yn.

Let d = ∑Nk=1 bkak. Then, for each 1 ≤ n ≤ N ,

%(d)xn =
N

∑
k=1

%(bk)%(ak)xn = %(bn)%(an)xn = yn.

◻

The Cohen-Hewitt factorisation theorem

8.16. We have seen that every non-unital Banach algebra A embeds isometri-
cally into its unitisation Ã. Without this embedding, there is in general no element
– or collection of elements – that can serve to replace the notion of the missing iden-

tity element. For example, if A = {[0 z
0 0

] ∶ z ∈ C}, then ab = 0 for all a, b ∈ A, which

is about as far from being unital as one can hope for. Many other such examples
can be produced. We now examine Banach algebras which might fail to be unital,
but which nevertheless admit “the next best thing” to an identity element. This
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will have many important consequences for the algebra. We shall only consider the
one major theorem mentioned above.

8.17. Definition. Let A be a Banach algebra. A net (eλ)λ in A is said to be
a bounded left approximate identity for A if there exists a real number µ > 0
such that ∥eλ∥ ≤ µ for all λ ∈ Λ and for each a ∈ A,

lim
λ

∥eλa − a∥ = 0.

When this is the case, we shall refer to (eλ)λ as a µ-bounded left approximate iden-
tity.

8.18. Remark. Not every Banach algebra admits a bounded left approxi-
mate identity, let alone a left approximate identity (i.e. a net (eλ)λ for which
limλ ∥eλa − a∥ = 0 for all a ∈ A, regardless of whether or not (eλ)λ is bounded).

Suppose, however that A is a Banach algebra that does admit a bounded left
approximate identity. For every representation % ∶ A→ B(H), we then find that

lim
λ

∥%(eλ)%(a)x − %(a)x∥ = 0

for all x ∈ X, and thus limλ ∥%(eλ)y − y∥ = 0 for all y ∈ span%(A)X. In particular, if
% is topologically irreducible, then

lim
λ

∥%(eλ)x − x∥ = 0.

8.19. Suppose that % ∶ A → B(X) is a continuous representation of a Banach
algebra A on a Banach space X. Recall that the unitisation of A is the space
Ã = C⊕A equipped with the norm ∥(α,a)∥Ã ∶= ∣α∣ + ∥a∥A.

We leave it to the reader to verify that the map

%u ∶ Ã → B(X)
(α,a) ↦ αI + %(a)

is a continuous representation of Ã on X. This will come in very handy below.

8.20. Our proof is based upon that of Kisyński [33]. There is another (similar)
proof by Mortini [36] that is also worth looking at, though the form of Cohen’s
Theorem he proves is slightly different from the one presented below. Both owe
much to the original proofs of Cohen [12] and of Hewitt [29].

8.21. Lemma. Let A be a Banach algebra and (eλ)λ∈Λ be a µ-bounded left
approximate identity for A. Suppose that X is a Banach space and that % ∶ A→ B(X)
is a continuous representation of A.

Suppose furthermore that

● y ∈ span%(A)X;

● b = β1 + b0 ∈ Ã is invertible (here β ∈ C and b0 ∈ A);
● 0 < η < 1

µ+1 ; and

● δ > 0.
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Then there exist λ ∈ Λ such that if

g = (β − ηβ)1 + (b0 + ηβeλ) ∈ Ã,
then g is invertible and

∥%(g−1)y − %(b−1)y∥ < δ.

Proof. For each λ ∈ Λ, define

gλ = (β − ηβ)1 + (b0 + ηβeλ) = b + hλ,
where hλ = ηβ(eλ − 1) ∈ Ã.

Clearly it suffices to prove that

(i) there exists λ0 ∈ Λ such that gλ ∈ (Ã)−1 for all λ ≥ λ0, and
(ii) limλ ∥%u(g−1

λ )y − %u(b−1)y∥X = 0.

Write b−1 = β−11 + r for some r ∈ A, and note that gλ = (1 + hλb−1)b. Now

hλb
−1 = ηβ(eλ − 1)(β−11 + r)

= η(eλ − 1)1 + ηβ(eλ − 1)r,
whence

∥hλb−1∥ ≤ η ∥eλ − 1∥Ã + ∣ηβ∣∥eλr − r∥A.
Now η < 1

µ+1 . Choose 0 < θ such that η∥eλ − 1∥Ã < θ < 1. Since limλ eλr = r, we

see that there exists λ0 ∈ Λ such that λ ≥ λ0 implies

∥hλb−1∥ < θ.
It then follows that 1 + hλb−1 is invertible in Ã, and that

∥(1 + hλb−1)−1∥ ≤ (1 − θ)−1 for all λ ≥ λ0.

From this we deduce that for λ ≥ λ0,

∥g−1
λ ∥ = ∥b−1(1 + hλb−1)−1∥ ≤ ∥b−1∥Ã(1 − θ)

−1.

This proves item (i) above.

As for (ii), if λ ≥ λ0, then

g−1
λ − b−1 = g−1

λ (b − gλ)b−1

= −g−1
λ hλb

−1

= −ηβg−1
λ (eλ − 1)b−1.

This implies that for all λ ≥ λ0,

∥%u(g−1
λ )y − %u(b−1)y∥X = ∥%u(−ηβg−1

λ (eλ − 1)b−1)y∥X
= ∣ηβ∣ ∥%u∥ ∥g−1

λ ∥ ∥%(eλ)%u(b−1)y − %u(b−1)y∥X
≤ (1 − θ)−1∣ηβ∣ ∥%u∥ ∥b−1∥Ã ∥%(eλ)%u(b−1)y − %u(b−1)y∥X.

From this (ii) certainly follows, which completes the proof of the lemma.

◻
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8.22. Theorem. [The Cohen-Hewitt Factorisation Theorem.] Let A
be a Banach algebra and suppose that (eλ)λ is a µ-bounded left approximate identity
for A. Let X be a Banach space and % ∶ A→ B(X) be a continuous representation of
A. Then

%(A) ●X ∶= {%(a)x ∶ a ∈ A, x ∈ X}
is a closed subspace of X.

Moreover, given y ∈ span%(A)X and ε > 0, there exist x ∈ %(A)y satisfying
∥x − y∥ < ε and b ∈ A such that %(b)x = y.
Proof. First let us choose a positive, strictly decreasing sequence (tn)∞n=0 such that

● t0 = 1;
● limn tn = 0; and

● 0 < ηn ∶= 1 − tn
tn−1

< 1

µ + 1
for all n ≥ 1.

For each n ≥ 1, set pn ∶= tn−1 − tn > 0. Now tn = (1 − ηn)tn−1, so pn = ηntn−1 and

∑n pn = 1. In particular, limn pn = 0.
(As noted by Kisyński, the exact form of the sequence is not essential; Cohen

choose a constant 0 < η < 1
µ+1 and set tn = (1− η)n, n ≥ 1. Thus ηn = η for all n ≥ 1.)

Let y ∈ span%(A)X. By Lemma 8.21, given ε > 0 there exists a sequence (gn)∞n=0

of invertible elements in Ã such that g0 = 1 and for all n ≥ 0,

(a) gn = tn1 + dn for some dn ∈ A;
(b) ∥dn − dn−1∥A ≤ µpn; and
(c)

∥%u(g−1
n )y − %u(g−1

n−1)y∥ < ε pn.
It follows from item (b) above that if m > n are positive integers, then

∥dm − dn∥ ≤
m

∑
k=n+1

∥dk − dk−1∥ ≤
m

∑
k=n+1

µpk.

Combining this with the fact that each pn > 0 and ∑n pn = 1, we see that (dn)n
is convergent in A, and since limn tn = 0, we see that there exists b ∈ A such that

lim
n

∥gn − b∥Ã = 0.

Moreover,

∥b∥A = ∥∑
n

dn − dn−1∥A ≤ µ ∑
n

pn = µ.

Suppose that xn ∶= %u(g−1
n )y, n ≥ 0. Then limn ∥xn − x∥X = 0 for some x ∈ X such

that

∥x − y∥ = ∥x − x0∥X ≤ ∑
n≥1

∥xn − xn−1∥X ≤ ε∑
n≥1

pn = ε.

But then y = %u(gn)xn, n ≥ 0 and thus by continuity,

y = %u(b)x = %(b)x.
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By Remark 8.18, y = limλ %(eλ)y ∈ %(A)y, and thus – writing g−1
n = t−1

n 1 + hn for
all n ≥ 0 – we have

xn = %u(g−1
n )y = t−1

n y + %(hn)y ∈ %(A)y.
Hence

x = lim
n
xn ∈ %(A)y.

◻

8.23. Remark. In fact, it can be shown that b = ∑n pneλn for an appropriate
choice of λn ∈ Λ.

8.24. Corollary. Let A be a Banach algebra and suppose that A admits a
bounded left approximate unit. Then

A2 ∶= {ab ∶ a, b ∈ A} = A.

Proof. Let X = A and consider the left regular representation %(a)x = ax for all
a ∈ A, x ∈ X = A. By the Cohen-Hewitt Factorisation Theorem (with (eλ)λ as our
bounded left approximate identity for A),

%(A) ●X = {%(a)x ∶ a ∈ A, x ∈ X}
is a closed subspace of X.

But for all x ∈ X = A, we have that x = limλ eλx = limλ %(eλ)x ∈ %(A) ●X, so that
x = %(a)b for some b ∈ A; i.e. x = ab.

◻
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Supplementary Examples

S8.1. Example. If G is a locally compact abelian group with Haar measure
µ, it’s known that L1(G,µ) is a Banach algebra under convolution, and if G is not
discrete, then L1(G,µ) has a bounded approximate identity (though it doesn’t have
an identity element).

S8.2. Example. Let H be an infinite-dimensional Hilbert space, and let

Λ ∶= {F ⊆H ∶ F is a finite-dimensional subspace}.
We may partially order Λ by containment: F1 ≤ F2 if F1 ⊆ F2.

For each F ∈ Λ, let PF denote the orthogonal projection of H onto F . Then
(PF )F ∈Λ is a bounded approximate identity for K(H), the set of compact operators
on H.

When H is separable, we can do better. Let {en}n be an onb for H and let Pn
denote the orthogonal projection of H onto span{ek ∶ 1 ≤ k ≤ n}, n ≥ 1. Then (Pn)n
is a countable, bounded approximate unit for K(H).

S8.3. Example. The space (`1(Z), ∥ ⋅ ∥1) is also a Banach algebra using point-
wise multiplication. That is, given x = (xn)n and y = (yn)n, we may define x ● y ∶=
(xnyn)n. Then `1(Z) is clearly a Banach space, an algebra, and

∥x ● y∥1 = ∥(xnyn)n∥1 ≤ (sup
n

∣xn∣) ∥y∥1 ≤ ∥x∥1 ∥y∥1.

Thus it is a Banach algebra. It is a worthwhile exercise for the reader to prove
that `1(Z) does not admit a bounded approximate identity using this multiplication.
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Appendix

A8.1. In the next Chapter, we shall begin the study of C∗-algebras. As we
shall eventually prove, any such algebra A is (up to isometric ∗-isomorphism - the
canonical isomorphism in this category) a self-adjoint Banach subalgebra of B(H)
for some Hilbert space H. We shall also demonstrate that every C∗-algebra admits
a bounded approximate identity. Indeed, we shall see that the elements (Xλ)λ ⊆ A ⊆
B(H) of the bounded approximate identity may be chosen to be positive of norm
at most one, and that the net is increasing in the sense that λ1 ≤ λ2 implies that
Xλ2 −Xλ1 is a positive operator.

A8.2. The class of C∗-algebras will also be shown to enjoy the property that if
the identity map % on a C∗-algebra A of B(H) is topologically irreducible, then it is
in fact algebraically irreducible. This is a result known as Kadison’s Transitivity
Theorem. Thus the Jacobson Density Theorem may be applied to A to show that
A is (so-called) N -transitive for all N .
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Exercises for Chapter 8

Exercise 8.1. Sinclair’s Theorem.
Let A be a Banach algebra and suppose that % ∶ A → B(X) is a continuous,

algebraically irreducible representation of A on the Banach space X. Prove that if
N ∈ N, x1, x2, . . . , xN ∈ X are linearly independent and y1, y2, . . . , yN ∈ X are also
linearly independent, then there exists a ∈ A−1 such that %(a)xn = yn, 1 ≤ n ≤ N .

Hint. Let N = span{x1, x2, . . . , xN , y1, y2, . . . , yN}. It follows from basic linear alge-
bra that we can find T ∈ B(N ) invertible such that Txn = yn, 1 ≤ n ≤ N . Moreover,
T = exp(R) for some R ∈ B(N ) (why?).

Choose a basis B ∶= {x1, x2, . . . , xN , z1, . . . , zK} for N and choose a ∈ A such
that %(a)w = Rw for all w ∈B. Prove that %(a)k and Rk coincide on N for all k ≥ 1.





CHAPTER 9

C∗-algebras: An introduction

I don’t have to tell you folks about scuba diving. So, that’ll save some
time.

Emo Philips

Definitions and examples.

9.1. In this chapter we turn our attention to an important class of Banach alge-
bras known as C∗-algebras. After introducing the notion of an involution on a Ba-
nach algebra, we shall see that the C∗-equation (defined below) imposes an incredible
amount of structure upon an involutive Banach algebra in which it holds. Our main
goal will be to prove that every C∗-algebra admits an isometric ∗-representation, a
result known as the Gelfand-Naimark Theorem. Before getting there, however, we
shall consider the basic structure of these algebras, and we shall obtain an extension
of the holomorphic functional calculus for normal elements of C∗-algebras (to be
defined below).

9.2. Definition. Let A be an algebra. Then an involution on A is a map

∗ ∶ A → A
a ↦ a∗

satisfying

(i) (a∗)∗ = a for all a ∈ A;

(ii) (αa + βb)∗ = αa∗ + βb∗ for all a, b ∈ A, α, β ∈ C;
(iii) (ab)∗ = b∗a∗ for all a, b ∈ A.

If A carries an involution, we say that A is an involutive algebra, or a *-algebra.
A subset F of A is said to be self-adjoint if x ∈ F implies x∗ ∈ F .

A homomorphism τ ∶ A → B between two involutive algebras is said to be a
*-homomorphism if τ respects the involution. That is, τ(a∗) = (τ(a))∗ for all
a ∈ A.

Finally, a Banach *-algebra is an involutive Banach algebra A whose involu-
tion satisfies ∥a∗∥ = ∥a∥ for all a ∈ A.

159
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9.3. Remarks.

● If A is an involutive algebra, we say that an element h ∈ A is self-adjoint
if {h} is self-adjoint, namely h = h∗.

● Observe that if A is a unital involutive algebra with unit eA, then for all
a ∈ A we have (e∗A a) = (a∗ eA)∗ = (a∗)∗ = a = (eA a∗)∗ = (ae∗A). Thus
eA = e∗A, since the unit must be unique.

● The condition that a homomorphism τ from an involutive Banach algebra
A to an involutive Banach algebra B be a *-homomorphism is equivalent
to the condition τ(h) = τ(h)∗ whenever h = h∗. To see this, note that if
this condition is met, then given a ∈ A, we may write a = h + i k, where
h = (a + a∗)/2 and k = (a − a∗)/2i. Then h = h∗, k = k∗, and τ(a∗) =
τ(h− i k) = (τ(h)+ iτ(k))∗ = τ(a∗), implying that τ is a *-homomorphism.
The other direction is clear.

9.4. Example. Let A = (C, ∣ ⋅ ∣). Then ∗ ∶ λ↦ λ defines an involution on C.

9.5. Example. Consider the disk algebra A(D). For each f ∈ A(D), define

f∗(z) = f(z) for each z ∈ D. Then the map ∗ ∶ f ↦ f∗ defines an involution on
A(D), under which it becomes a Banach ∗-algebra.

9.6. Example. Recall from Remark 7.6 that the map that if H is a Hilbert
space, then the map that sends a continuous linear operator T to its Hilbert space
adjoint T ∗ is an isometric involution. Thus B(H) is a Banach ∗-algebra.

Suppose dimH = 2, and identify B(H) with M2. Let S ∈ B(H) be the invertible

operator S = [ 1 1
0 1

]. Then S−1 = [ 1 −1
0 1

]. Consider the map

AdS ∶ B(H) → B(H)
T ↦ S−1 T S

.

Then AdS is a multiplicative homomorphism of B(H), but it is not a ∗-homomorphism.
For example,

AdS [ 1 − i 2 − i
3 − i 4 − i ] = [ −2 −4

3 − i 7 − 2i
] ,

while

(AdS [ 1 + i 3 + i
2 + i 4 + i ])

∗

= [ −1 2 − i
−2 6 − 2i

] .

On the other hand, if U ∈ B(H) is unitary, then it is not hard to verify that AdU
does define a ∗-automorphism.

9.7. Example. Let Tn denote the algebra of n × n upper triangular matrices,
viewed as a Banach subalgebra of B(Cn) equipped with the operator norm. We can
define an involution on Tn via the map: [tij]∗ = [t(n+1)−j (n+1)−i].

We leave it as an exercise for the reader to prove that this involution is isometric,
and thus Tn becomes a Banach ∗-algebra with this involution.
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9.8. Definition. A C∗-algebra A is an involutive Banach algebra which satis-
fies the C*-equation:

∥a∗a∥ = ∥a∥2 for all a ∈ A.
A norm on an involutive Banach algebra which satisfies this equation will be

called a C*-norm.

9.9. Remark. First observe that if B is an involutive Banach algebra and
∥b∗ b∥ ≥ ∥b∥2 for all b ∈ B, then ∥b∥2 ≤ ∥b∗∥ ∥b∥, which implies that ∥b∥ ≤ ∥b∗∥. But
then ∥b∗∥ ≤ ∥(b∗)∗∥ = ∥b∥, so that ∥b∥ = ∥b∗∥. In particular, B is a Banach ∗-algebra.

Moreover, ∥b∥2 ≤ ∥b∗b∥ ≤ ∥b∗∥ ∥b∥ = ∥b∥2, showing that the norm on B is a C*-
norm.

Finally, if B is a non-zero unital C∗-algebra with unit eB, then

∥eB∥ = ∥e2
B∥ = ∥e∗B eB∥ = ∥eB∥2,

and hence ∥eB∥ = 1.

9.10. Example. It is always useful to have counterexamples as well as exam-
ples. To that end, consider the following:

(i) The disk algebra A(D) is not a C∗-algebra with the involution f∗(z) = f(z).
Indeed, if f(z) = i z + z2, then f∗(z) = −i z + z2. Thus

∥f∗ f∥ = sup
∣z∣=1

∣z4 + z2∣ = 2,

while

∥f∥2 ≥ ∣f(i)∣2 = 4.

(ii) Tn is not a C∗-algebra with the involution defined in Example 9.7. To
see this, note that if E1n denotes the standard (1, n) matrix unit, then
E∗

1n = E1n, so that ∥E∗
1nE1n∥ = ∥E2

1n∥ = ∥0∥ = 0, while ∥E1n∥ = 1, as is
readily verified.

(iii) Recall that `1(Z) is a Banach algebra, where for f, g ∈ `1(Z), we defined
the product via convolution:

(f ∗ g)(n) = ∑
k∈Z

f(n − k) g(k)

and

∥f∥1 = ∑
k∈Z

∣f(k)∣.

Consider the involution f∗(n) = f(−n). Let g ∈ `1(Z) be the element defined
by: g(n) = 0 if n /∈ {0,1,2}; g(0) = −i = g(2), and g(1) = 1. We leave it to
the reader to verify that ∥g∗ g∥1 = 5, while ∥g∥1 = 3. Again, this is not a
C∗-norm.
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9.11. Example. Let X be a locally compact, Hausdorff space. Consider

(C0(X), ∥ ⋅ ∥∞). For f ∈ C0(X), define f∗(x) = f(x) for each x ∈ X. Then C(X)
is a C∗-algebra. The details are left to the reader.

This C∗-algebra is unital precisely when X is compact.

9.12. Example. Let H be a Hilbert space. As we have just recalled, B(H) is
an involutive Banach algebra using the Hilbert space adjoint as our involution. We
now check that equipped with this involution, B(H) verifies the C*-equation.

Let T ∈ B(H). Then ∥T ∗T ∥ ≤ ∥T ∥2 from above. For the reverse inequality,
observe that

∥T ∥2 = sup
∥x∥=1

∥Tx∥2

= sup
∥x∥=1

⟨Tx,Tx⟩

= sup
∥x∥=1

⟨T ∗Tx,x⟩

≤ sup
∥x∥=1

∥T ∗T ∥ ∥x∥2

= ∥T ∗T ∥.

Thus B(H) is a C∗-algebra. By considering the case where H = Cn is finite
dimensional, we find that Mn equipped with the operator norm and Hilbert space
adjoint is a C∗-algebra.

9.13. Remark. Suppose that A is a C∗-algebra and that B is a norm-closed,
self-adjoint subalgebra of A. Then the C*-equation is trivially satisfied for all b ∈ B,
because it is already satisfied in A, and the norm is inherited from A. It follows that
B is also a C∗-algebra.

In particular, if a ∈ A and A is unital, then we denote by C∗(a) the unital
C∗−algebra generated by a. It is the smallest unital, norm-closed, self-adjoint
subalgebra of A containing a, that is, it is the intersection of all C∗-subalgebras of
A containing a, and it is easily seen to coincide with the closure of

{p(a, a∗) ∶ p ∈ C[x, y]},

where C[x, y] denotes the set of all polynomials in two non-commuting variables x
and y with complex coefficients.

We shall also define the set C○(a) to be the non-unital C∗-algebra generated
by a.

It coincides with the closure of

{p(a, a∗) ∶ p ∈ C○[x, y]},

where C○[x, y] denotes the set of all polynomials in two non-commuting variables x
and y with complex coefficients but without constant term; equivalently, p(0,0) = 0.
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9.14. Example. More generally, if A is any C∗-algebra, and if X ⊆ A, we
denote by C∗(X) the unital C∗-subalgebra of A generated by X. This of course only
makes sense if A is unital. As before, it is the intersection of all C∗-algebras of A
containing X. We write C○(X) to denote the smallest non-unital C∗-subalgebra of
A that contains X. This makes sense even if A is non-unital.

9.15. Example. Let H be a Hilbert space. Then K(H) is a closed, self-adjoint
subalgebra of B(H), and thus K(H) is a C∗-algebra. K(H) is not unital unless H
is finite-dimensional.

9.16. Example. Let {Aα}α∈Λ be a family of C∗-algebras indexed by a set Λ.
It is elementary to verify that

A = {(aα)α∈Λ ∶ aα ∈ Aα, α ∈ Λ, sup
α

∥aα∥ <∞}

is a C∗-algebra, where the involution is given by (aα)∗ = (a∗α), and the norm is given
by ∥(aα)∥ = supα ∥aα∥.

Let K = {(aα) ∈ A ∶ for all ε > 0, {α ∈ Λ ∶ ∥aα∥ ≥ ε} is finite}. Then K is a
C∗-algebra; in fact, K is a closed, self-adjoint ideal of A.

In particular, if {kn}∞n=1 ⊆ N, then A = ⊕∞n=1Mkn is a C∗-algebra under this norm.
Setting kn = 1 for all n ≥ 1 shows that `∞ is a C∗-algebra, and that c0 is a closed,
self-adjoint ideal in `∞.

9.17. Example. More generally, let µ be a finite regular Borel measure on the
measure space X. Then L∞(X,µ) is a C∗-algebra with the standard norm. As in

the case of C(X), the involution here is f∗(x) = f(x) for all x ∈X.

In fact, we can think of L∞(X,µ) as a commutative C∗-subalgebra of B(L2(X,µ))
as follows. Recall from Example 6.7 for each ϕ ∈ L∞(X,µ), we define the multipli-
cation operator

Mϕ ∶ L2(X,µ) → L2(X,µ)
f ↦ ϕf.

In Example 8.6, we showed that the map

% ∶ L∞(X,µ) → B(L2(X,µ))
f ↦ Mf

is an isometric ∗-representation. That is, an isometric ∗-homomorphism of L∞(X,µ)
into B(H) for some Hilbert space H (which happens to be L2(X,µ) in this case).
We then identify L∞(X,µ) with its image under this map %, and use the same
notation for both algebras. Since % preserves products, the image algebra is clearly
also abelian.

We shall write M∞(X,µ) to denote the range of %, so that

M∞(X,µ) = {Mf ∶ f ∈  L∞(X,µ)} ⊆ B(L2(X,µ)).
Thus L∞(X,µ) is isometrically ∗-isomorphic to M∞(X,µ). Since isometric ∗-
isomorphisms are the isomorphisms in the category of C∗-algebras, the above iden-
tification of L∞(X,µ) with M∞(X,µ) is natural.



164 9. C∗-ALGEBRAS: AN INTRODUCTION

9.18. Example. LetH be a Hilbert space and F ⊆ B(H) be a self-adjoint family

of operators on H. Consider the commutant F′

of F defined as:

F
′

= {T ∈ B(H) ∶ TF = FT for all F ∈ F}.

We claim that F′

is a C∗-algebra.
That it is an algebra is an easy exercise. If (Tn)n ⊆ F ′

and if limn→∞ Tn = T ∈
B(H), then for any F ∈ F, we have T F = limn→∞ Tn F = limn→∞ F Tn = F T . Hence

T ∈ F′

, and so F′

is closed in B(H). Finally, if T ∈ F′

and F ∈ F, then F ∗ ∈ F
by assumption. Thus T F ∗ = F ∗ T . Taking adjoints, we obtain T ∗ F = F T ∗, and
therefore T ∗ ∈ F′

, proving that F ′

is a closed, self-adjoint subalgebra of B(H). By
Remark 9.13, it is a C∗-algebra.

9.19. It is difficult to overstate the importance of the C∗-equation. Hold on,
that’s a bit hyperbolic. What we mean by that is that this equation is really im-
portant. That is, they are really important to the study of operator theory and
operator algebras, and to those disciplines (I’m talking to you, Physics) that rely
heavily upon operator theory and operator algebras. If you are alone in a cage with
a starving lion, a new hair-do and your wits, you will most likely be excused for not
having the C∗-equation be one the first things that spring to your mind, and your
estimation of their general usefulness will undoubtedly not be of the impossible to
overstate variety. But if you are invited to talk about your hobbies at a pyjama
party at Angela Merkel’s house, well, the sky’s the limit. (The C∗-equation is not
unlike eigenvalues and spectrum in this regard, but that’s another matter.)

The C∗-equation allows us to relate analytic information to algebraic informa-
tion. For example, consider the following Lemma, which relates the norm of an
element of a C∗-algebra to its spectral radius, and its consequence, Theorem 9.21.

9.20. Lemma. Let A be a C∗-algebra, and suppose h = h∗ ∈ A. Then

∥h∥ = spr(h).

More generally, if a ∈ A, then ∥a∥ = (spr(a∗a))1/2.
Proof. Now ∥h∥2 = ∥h∗h∥ = ∥h2∥. By induction, we find that ∥h∥2n = ∥h2n∥ for all
n ≥ 1. Using Beurling’s Spectral Radius Formula,

spr(h) = lim
n→∞

∥h2n∥1/2n = lim
n→∞

(∥h∥2n)1/2n = ∥h∥.

In general, a∗a is self-adjoint, and hence ∥a∥2 = ∥a∗a∥ = spr(a∗a).
◻

9.21. Theorem. Let α ∶ A → B be a ∗-isomorphism from a C∗-algebra A to
a C∗-algebra B. Then α is isometric. In particular, each C∗-algebra possesses a
unique C*-norm.
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Proof. First note that since α is a *-isomorphism, σA(a) = σB(α(a)) for all a ∈ A.
As such,

∥a∥A = [sprA(a∗a)]1/2

= [sprB(α(a)∗α(a))]1/2

= ∥α(a)∥B.

Thus α is isometric.
If A has two C*-norms ∥ ⋅ ∥1 and ∥ ⋅ ∥2, then the identity map id(a) = a is clearly

a *-isomorphism of A onto itself, and thus is isometric from above, implying that
the two norms coincide.

◻

Recall that we stated that isometric ∗-isomorphisms are the isomorphisms in
the category of C∗-algebras. By Theorem 9.21, we see that the word “isometric” is
extraneous.

Unitisations of C∗-algebras.

9.22. Given a non-unital Banach algebra A, we defined its unitisation to be the
algebra

Au = C⊕A,

equipped with the multiplication (α,a) ⋅ (β, b) = (αβ,αb + βa + ab) and the norm
∥(α,a)∥ ∶= ∣α∣ + ∥a∥A.

WhenA is in fact a C∗-algebra, the above norm on its Banach algebra-unitisation
fails to be a C∗-norm. Our present goal is to define a separate unitisation of A
which is a C∗-algebra. This will require the notion of an essential ideal, which we
now define.

9.23. Definition. Let K be an ideal of a C∗-algebra A. The annihilator of K
in A is the set

K⊥ = {a ∈ A ∶ ak = 0 for all k ∈ K}.

K is said to be essential in A if its annihilator K⊥ = {0}.

9.24. The apparent asymmetry (why do we multiply by a on the left?) of
this definition is illusory. Suppose A and K are as above. Let a ∈ K⊥. Given
k ∈ K, a∗ k ∈ K and hence aa∗k = 0. But then ∥a∗ k∥2 = ∥k∗ aa∗ k∥ = 0, forcing
a∗ ∈ K⊥. This in turn implies that k a = (a∗ k∗)∗ = 0 for all k ∈ K. As such,
K⊥ = {a ∈ A ∶ k a = 0 for all k ∈ K}.

It is routine to verify that K⊥ is a closed subalgebra of A, and from above, we
see that K⊥ is self-adjoint, implying that K⊥ is a C∗-subalgebra of A.
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9.25. Example. Let H be a complex, infinite dimensional Hilbert space.
Given x, y ∈H, let us denote by x⊗y∗ the rank-one operator (x⊗y∗)(z) = ⟨z, y⟩x,

z ∈ H. It is not hard to see that ∥x ⊗ y∗∥ = ∥x∥ ∥y∥. In particular, if ∥x∥ = 1, then
x⊗ x∗ represents the orthogonal projection of H onto Cx.

We claim that K(H) is essential in B(H). Indeed, if 0 /= T ∈ B(H), choose a non-
zero vector x ∈ H such that y = Tx /= 0. Then 0 /= T (x⊗ x∗), and hence T /∈ K(H)⊥.

9.26. Example. Recall that if X is a compact, Hausdorff space, then there is
a bijective correspondence between the closed subsets Y of X and the closed ideals
K of C(X). Given Y ⊆ X closed, the associated ideal KY = {f ∈ C(X) ∶ f(x) =
0 for all x ∈ Y }, while given an ideal K in C(X), the corresponding closed subset of
X is YK = {x ∈X ∶ f(x) = 0 for all f ∈ K}.

Let Y ⊆X be closed. We claim that KY is an essential ideal of C(X) if and only
if Y is nowhere dense in X.

Suppose first that Y is nowhere dense. Let f ∈ K⊥. If x ∈ X/Y = X/Y , then
by Urysohn’s Lemma we can find gx ∈ KY such that gx(x) /= 0. Since f gx = 0, we
have f(x) = 0. But X/Y is dense in X and f is continuous, and so f = 0 and KY is
essential.

To prove the converse, suppose Y is not nowhere dense. Then we can find an
open set G ⊆ Y = Y . Choose y0 ∈ G. Again, by Urysohn’s Lemma, we can find
f ∈ C(X) such that f(y0) = 1 and f(x) = 0 for all x ∈ X/G. It is routine to verify
that f ∈ K⊥Y , and hence KY is not essential.

9.27. Example. Let X be a locally compact, Hausdorff space. Then C○(X) is
an essential ideal in Cb(X), the space of bounded continuous functions on X with
the supremum norm.

9.28. Definition. Let A be a C∗-algebra. A C∗-algebra B is said to be a
unitisation of A if B is unital and A is *-isomorphic to an essential ideal in B.

Unless one specifically indicates otherwise, when referring to the unitisation of a
C∗-algebra, it will be assumed that one is always referring to this notion, as opposed
to the unitisation in the sense of Banach algebras previously defined.

9.29. Example. Let H be an infinite dimensional Hilbert space and let B ⊆
B(H) be any unital C∗-algebra containing K(H). Then B is a unitisation of K(H).

9.30. Example. Let A be a unital C∗-algebra and suppose B is a unitization
of A. Let % ∶ A → B be the *-monomorphic embedding of A into B as an essential
ideal. Then for each a ∈ A,

(eB − %(eA)) (%(a)) = 0,

and hence eB = %(eA). But %(A) is an ideal in B, and hence %(A) = B. Thus any
unitisation of A is *-isomorphic to A itself.
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9.31. Theorem. Every C∗-algebra A possesses a unitisation Ae.
Proof. If A is unital, then it serves as its own unitisation. Suppose, therefore, that
A is not unital. Consider the map:

κ ∶ A → B(A)
a ↦ La

where La(x) = ax for all x ∈ A. Then κ is clearly a homomorphism. Denote by Ae
the subalgebra of B(A) generated by κ(A) and I, the identity operator. While there
is no obvious candidate for an involution on B(A), nevertheless we may define one

on Ae via (La + λI)∗ = La∗ + λI.
Now ∥La∥ = sup

∥x∥=1
∥Lax∥ = sup

∥x∥=1
∥ax∥ ≤ ∥a∥, so that κ is continuous. In fact,

∥La∥ ≥ ∥La (
a∗

∥a∥
) ∥ = ∥a∥, so that κ is an isometric *-monomorphism. In particular,

therefore, κ(A) is closed in B(A). Since Ae is a finite dimensional extension of κ(A),
Ae is closed as well.

Next,

∥(La + λI)∗(La + λI)∥ = sup
∥x∥=1

∥(a∗ + λ)(a + λ)x∥

≥ sup
∥x∥=1

∥x∗(a∗ + λ)(a + λ)x∥

= sup
∥x∥=1

∥ax + λx∥2

= ∥La + λ∥2.

By Remark 9.9, Ae is a C∗-algebra.
That κ(A) is an ideal in Ae is easily checked. Suppose (La + λI)Lb = 0 for all

b ∈ A. Then for all b, x ∈ A, we have (a b + λb)x = 0. Letting x = (a b + λb)∗, we
find that a b = −λb. Since b is arbitrary, this implies that −λ−1a is a unit for A, a
contradiction. This implies that κ(A) is essential in Ae, completing the proof.

◻

9.32. Two observations are in order. First, it will be useful to keep in mind that
for any x ∈ Ae, ∥x∥Ae = sup{∥xa∥A ∶ ∥a∥A = 1}. Second, the unitisation of A above is
unique in the following sense:

If B is any unital C∗-algebra containing A, then B contains an *-isomorphic copy
of Ae. Indeed, if B0 is the algebra generated by A and eB, then either eB ∈ A, in
which case A = Ae ⊆ B, or B0 is a 1-dimensional extension of A, and hence is closed
in B. Since B0 is clearly self-adjoint, it is a C∗-algebra. The map:

Φ ∶ Ae → B0

La + λI ↦ a + λeB
is easily seen to be a *-isomorphism, and thus is isometric, by Theorem 9.21. B0 is
our desired copy of Ae.
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9.33. Remark. Let A be a non-unital C∗-algebra and a ∈ A. We now have two
possibilities for defining the spectrum of a its “unitisation”. On the one hand, A is
a Banach algebra and as such it admits a Banach algebra unitisation Au ∶= {(α,a) ∶
α ∈ C, a ∈ A)} with norm ∥(α,a)∥Au ∶= ∣α∣ + ∥a∥A. Previously we have defined the
spectrum of a to be σAu((0, a)).

Now that we know that A admits a C∗-unitisation (i.e. a unitisation Ae which is
a C∗-algebra), it seems more natural to define the spectrum of a ∈ A to be σ(̃A)(La).

Fortunately we shall not have to decide between the two, since both unitisations
yield the same spectrum.

(a) Set Au ∶= C⊕A, equipped with the multiplication (α,a)(β, b) = (αβ,αb+βa+
ab) and norm ∥(α,a)∥ = ∣α∣ + ∥a∥A. This is the Banach algebra unitisation
of A, and it is not a C∗-algebra in general.

(b) Set Ae to be the C∗-algebra unitisation of A as defined in Theorem 9.31.
That is, we have an isometric embedding κ ∶ A→ B(A) defined by κ(a) = La,
where La(x) = ax for all x ∈ A. We define an involution ∗ on κ(A) +CI ⊆
B(A) via (La + αI)∗ ∶= La∗ + αI. We proved in that Theorem that Ae ∶=
κ(A) +CI is a unital C∗-algebra.

Consider the map

Θ ∶ Au → Ae
(α,a) ↦ La + αI.

(The next part of the argument just shows that Θ is an isomorphism.) Then

Θ(λ(α,a) + (β, b)) = Θ(λα + β,λa + b) = Lλa+b + (λα + β)I.

But for all x ∈ A,

(Lλa+b+(λα+β)I)x = (λa+b)x+(λα+β)x = λ(ax+αx)+(bx+βx) = λL(α,a)x+L(β,b)x,

and therefore

Lλα+β,λa+b = λL(α,a) +L(β,b).

In other words, Θ is linear.
Similarly,

Θ((α,a)(β, b)) = Θ((αβ,αb + βa + ab)) = Lαb+βa+ab + (αβ)I,

while

Θ((α,a)) Θ((β, b)) = (La + αI)(Lb + βI) = LaLb + αLb + βLa + (αβ)I.

A routine calculation shows that

Θ((α,a)(β, b)) = Θ((α,a)) Θ((β, b)).

In other words, Θ is multiplicative, and thus Θ is a homomorphism.

By definition of Ae, Θ is clearly onto.
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Let us check that Θ is injective. If Θ(α,a) = Θ(β, b), then La+αI−(Lb+βI) = 0,
which implies that

La−b = La −Lb = (β − α)I.
If β ≠ α, then (β −α)−1La−b = L(β−α)−1(b−a) = I, which implies that e ∶= (β −α)−1(b−
a) ∈ A satisfies ex = x for all x ∈ A. Thus e is a left multiplicative identity for A.

But then x ∈ A implies that x∗ ∈ A, and xe∗ = (ex∗)∗ = (x∗)∗ = x. That is, e∗ is
a right multiplicative identity for A.

Finally, we see that this forces e∗ = ee∗ = e, so e = e∗ is a multiplicative identity
for A, contradicting our assumption that A was non-unital. Hence α = β.

But then
La−b = 0I,

so that
0 = La−b(a − b)∗ = (a − b)(a − b)∗,

which in a C∗-algebra implies that a − b = 0 (by the C∗-equation!!!); i.e. a = b.
Thus Θ(α,a) = Θ(β, b) implies that (α,a) = (β, b), and Θ is injective.

Next, we prove that Θ is a homeomorphism. By the Inverse Mapping Theorem
(see Corollary 9.4 of my online Functional Analysis notes, for example), it suffices
to prove that Θ is continuous (because it is a bijection).

Note that

∥Θ(α,a)∥Ae = ∥La + αI∥ ≤ ∥La∥ + ∥αI∥ = ∥a∥ + ∣α∣ = ∥(α,a)∥Au .
Thus ∥Θ∥ ≤ 1; i.e. Θ is contractive (and thus continuous).

We have just proven that Au is Banach algebra-isomorphic to Ae. This in turn
implies that

σAu((0, a)) = σΘ(Au)(Θ(0, a)) = σAe(La).
In other words, the C∗-algebraic and Banach algebraic spectra of a ∈ A coincide.

9.34. Example. Let X be a locally compact, Hausdorff space, and denote by
X0 the one point compactification of X. Then C(X0) is the minimal unitization of
C0(X).

9.35. We mention that there is also a notion of a largest unitization for a C∗-
algebra A, called the multiplier algebra of A. It plays an analogous rôle for
abstract C∗-algebras that B(H) plays for K(H).

Positivity, normality and the abstract spectral theorem.

9.36. The most important C∗-algebra is the C∗-algebra B(H) of bounded linear
operators on a Hilbert spaceH. When studying Hilbert space operators, it was useful
to define the notions of positive operators, self-adjoint operators, normal and unitary
operators. Fortunately, each of these notions may be generalised to the C∗-algebra
setting, and they are extremely useful there as well.
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9.37. Let A be a C∗-algebra and let x ∈ A. We write σ(x) to denote the
spectrum of x in the unitisation Ae of A. (If A is unital, recall that Ae = A, and so
no confusions arises.)

It is easy to verify that σ(x∗) = σ(x)∗ = {λ ∶ λ ∈ σ(x)}. Moreover, x is invertible
if and only if both x∗x and xx∗ are invertible. Indeed, if x ∈ A−1, then so is x∗. Thus
x∗ x and xx∗ lie in A−1, since this latter is a group. Conversely, if x∗ x is invertible
with inverse z, then z x∗ x = eA and so x is left invertible. But (xx∗)r = eA for some
r ∈ A, and so x is right invertible.

Finally, we remark that the invertibility of both xx∗ and of x∗ x is required.
Indeed, if S denotes the unilateral backward shift operator on B(`2), then S S∗ = I,
but S is not invertible, as we have seen.

9.38. Definition. For each a in a C∗-algebra A, we define the real part

Rea = (a + a∗)/2

and the imaginary part

Ima = (a − a∗)/2i
of a.

The terminology is of course inspired from the C∗-algebra C.

9.39. Definition. An element x of a C∗-algebra A is called

● hermitian if x = x∗;
● normal if xx∗ = x∗x;
● positive if x = x∗ and σ(x) ⊆ [0,∞);
● unitary if x∗ = x−1;
● idempotent if x = x2;
● a projection if x = x∗ = x2

● a partial isometry if xx∗ and x∗ x are projections (called the range pro-
jection and the initial projection of x, respectively).

9.40. Example. Consider the C∗-algebra c0. A sequence x = (xn)n ∈ c0 is

● hermitian if and only if xn ∈ R for all n ≥ 1;
● always normal;
● positive if and only if xn ≥ 0 for all n ≥ 1;
● unitary if and only if ∣xn∣ = 1 for all n ≥ 1;
● idempotent (or a projection, or a partial isometry) if and only if xn ∈ {0,1}

for all n ≥ 1, and only finitely many xn’s are non-zero.

We should think of hermitian elements of C∗-algebras as generalisations of real
numbers (or real-valued functions), and unitary elements of C∗-algebras generalisa-
tions of complex numbers (or complexed-valued functions) of modulus 1. The next
result shows us one reason for doing this.
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9.41. Proposition. Let A be a C∗-algebra.

(i) If u ∈ A is unitary, then σ(u) ⊆ T.
(ii) If h ∈ A is hermitian, then σ(h) ⊆ R.

Proof.

(i) First observe that 1 = ∥eA∥ = ∥u∗u∥ = ∥u∥2. Thus spr(u) ≤ ∥u∥ = 1 implies

σ(u) ⊆ D. But ∥u−1∥ ≥ 1/dist(0, σ(u)) implies that dist(0, σ(u)) ≥ ∥u∗∥ = 1,
and so σ(u) ⊆ T.

(ii) Suppose h = h∗ ∈ A. Consider u = exp (ih). Using the uniform convergence
of the power series expansion of exp (ih) we see that u∗ = exp(−ih∗) =
exp(−ih). Since (ih) and (−ih) obviously commute, we obtain:

u∗u = exp (−ih) exp (ih)
= exp (−ih + ih)
= exp (0)
= 1

= uu∗.

Thus u is unitary. By (i) and the holomorphic functional calculus, σ(u) =
exp (iσ(h)) ⊆ T, from which we conclude that σ(h) ⊆ R.

◻

9.42. Suppose S is a unital, self-adjoint linear manifold in a C∗-algebra A. If
h = h∗ ∈ S, then spr(h) ≤ ∥h∥, and hence σ(h) ⊆ [−∥h∥, ∥h∥]. Letting p1 = h + ∥h∥eA
and p2 = ∥h∥eA, we find that both p1 and p2 are positive and h = p1 − p2. Thus for
any s ∈ S, we may apply this to the real and imaginary parts of s to see that s is
a linear combination of four positive elements. This linear combination is far from
unique. (Another such linear combination is obtained by simply letting q1 = p1 + eA,
q2 = p2 + eA.)

Such linear manifolds S as above are referred to as operator systems. For
example, {α−1z + α0 + α1z ∶ α−1, α0, α1 ∈ C} is an operator system in C(T). Many
results stated for C∗-algebras carry over to operator systems. We refer the reader
to [39] for an excellent treatment of this vast topic.

9.43. Theorem. Suppose that A ⊆ B are C∗-algebras and x ∈ A. Then σA(x) =
σB(x).
Proof. By considering Ae instead of A, we may assume that A is unital. Clearly it
suffices to prove that σA(x) ⊆ σB(x).

First consider the case where h = h∗ ∈ A. Then σA(h) ⊆ R, and as such σA(h) =
∂σA(h). By Proposition 4.7, ∂σA(h) ⊆ σB(h) for any C∗-algebra B containing A.

In general, if x ∈ A is not invertible in A, then either h1 = x∗x or h2 = xx∗ is not
invertible. As h1 and h2 are self-adjoint, from above we have either 0 ∈ σB(h1) or
0 ∈ σB(h2). Either way, it follows that x is not invertible in B.

◻
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9.44. Theorem. [The Gelfand-Naimark Theorem.] Let A be an abelian
C∗-algebra. Then the Gelfand Transform Γ ∶ A → C0(ΣA) is an (necessarily isomet-
ric) *-isomorphism.
Proof. We have seen that the Gelfand Transform is a norm decreasing homomor-
phism from A into C0(ΣA). By Theorem 5.17, σ(a) ∪ {0} = ran Γ(a) ∪ {0} in both
the unital and non-unital cases. In particular, if h = h∗ ∈ A, then ran Γ(a) ⊆ R, and
so Γ(h) = Γ(h)∗. Thus Γ is a *-homomorphism.

Also, ∥Γ(a)∥2 = ∥Γ(a∗a)∥ = spr(Γ(a∗a)) = spr(a∗a) = ∥a∥2, and so Γ is isometric.
Finally, Γ(A) is a closed, self-adjoint subalgebra of C0(ΣA) which (by Theorem 5.16)
separates the points of ΣA. By the Stone-Weierstraß Theorem, Γ(A) = C0(ΣA).

◻

9.45. Theorem. [The Abstract Spectral Theorem.] Let A be a unital
C∗-algebra and n ∈ A be normal. Then ΣC∗(n) is homeomorphic to σ(n). As such,

C∗(n) is isometrically *-isomorphic to (C(σ(n)), ∥ ⋅ ∥).
Proof. We claim that Γ(n) implements the homeomorphism between ΣC∗(n) and
σ(n). Since ΣC∗(n) is compact, σ(n) is Hausdorff, and Γ(n) is continuous, it suffices
to show that Γ(n) is a bijection. By Theorem 5.17, ranΓ(n) = σ(n), and so Γ(n)
is onto. Suppose φ1, φ2 ∈ ΣC∗(n) and φ1(n) = Γ(n)(φ1) = Γ(n)(φ2) = φ2(n). Since

Γ is a *-homomorphism, φ1(n∗) = Γ(n∗)(φ1) = Γ(n)(φ1) = Γ(n)(φ2) = Γ(n∗)(φ2) =
φ2(n∗). Then φ1(p(n,n∗)) = φ2(n,n∗)) for all polynomials p in two non-commuting
variables, as both φ1 and φ2 are multiplicative. By the continuity of φ1 and φ2

and the density of {p(n,n∗) ∶ p a polynomial in two non-commuting variables } in
C∗(n), we find that φ1 = φ2 and Γ(n) is injective. By the Gelfand-Naimark Theo-
rem 9.44, C∗(n) ≃∗ C(ΣC∗(n)). It follows immediately that C∗(n) ≃∗ C(σ(n)).

◻

9.46. Remark. It is worth drawing attention to the fact that if Γ ∶ C∗(n) →
C(∑C∗(n)) is the Gelfand Transform and for x ∈ C∗(n) we set Γ′(x) = Γ(x)○(Γ(n))−1,

then Γ′ implements the *-isomorphism between C∗(n) and C(σ(n)). Furthermore
Γ′(n)(z) = z for all z ∈ σ(n); that is, Γ′(n) = q, where q(z) = z. In practice, we
usually identify C(ΣC∗(n)) and C(σ(n)), and still refer to the induced map Γ′ as the
Gelfand Transform, relabelling it as Γ.

When A is non-unital, we have A ⊆ Ae and C∗(1Ae , n) ≃∗ C(σ(n)). But then
C∗

0 (n) ⊆ Ae corresponds to the functions in C(σ(n)) which vanish at 0, namely
C0(σ(n)/{0}).

As an immediate Corollary to the above theorem, we are able to extend the
holomorphic functional Calculus developed in Chapter Two to a broader class of
functions.
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9.47. Theorem. [The Continuous Functional Calculus.] Let A be a
unital C∗-algebra and n ∈ A be normal. Then Γ−1 ∶ C(σ(n))→ C∗(n) is an isometric
*-isomorphism and for all f, g ∈ C(σ(n)), λ ∈ C, we have

(i) (λf + g)(n) = λf(n) + g(n);
(ii) (f g)(n) = f(n) g(n);
(iii) the Spectral Mapping Theorem: σ(f(n)) = f(σ(n));
(iv) ∥f(n)∥ = spr(f(n)) = spr(f) = ∥f∥.

In particular, if q(z) = z, z ∈ σ(n), then n = Γ−1(q).

Remark. When A is non-unital, the Gelfand Transform induces a functional cal-
culus for continuous functions vanishing at 0.

9.48. Corollary. Let A be a unital C∗-algebra and n ∈ A be normal. Then

(i) n = n∗ if and only if σ(n) ⊆ R;
(ii) n ≥ 0 if and only if σ(n) ⊆ [0,∞);
(iii) n∗ = n−1 if and only if σ(n) ⊆ T;
(iv) n = n∗ = n2 if and only if σ(n) ⊆ {0,1}.

Proof. This is an immediate consequence of identifying C∗(n) with C(σ(n)).
◻

It is worth observing that all of the above notions are C∗-notions; that is, if
ϕ ∶ A → B is a *-isomorphism of C∗-algebras, then each of the above notions is
preserved by ϕ.

9.49. Proposition. Let A be a C∗-algebra and 0 ≤ r ∈ A. Then there exists a
unique element q ∈ A such that 0 ≤ q and q2 = r. Moreover, if a ∈ A and a r = r a,
then a commutes with q.

Proof. Consider the function f(z) = z
1
2 ∈ C(σ(r)), and note that f(0) = 0. Thus

q ∶= f(r) ∈ C∗
0 (r) and thus is a normal element of A. In fact, σ(q) = f(σ(r)) ⊆ [0,∞),

and so q ≥ 0. Next, q2 = (f(r))2 = f2(r) = j(r) = r, where j(z) = z, z ∈ σ(r).
Suppose 0 ≤ s ∈ A and s2 = r. Then s r = s(s2) = (s2)s = r s, so that C∗

0 (r, s) is
abelian. The Gelfand Map Γ1 ∶ C∗

0 (r, s)→ C0(ΣC∗

0 (r,s)) is an isometric *-isomorphism

and Γ1(q), Γ1(s) are two positive functions whose square is Γ1(r). Thus Γ1(q) =
Γ1(s). Since Γ1 is injective, q = s. This shows that q is unique.

Finally, if a r = r a, then a commutes with every polynomial in r. Since q = f(r)
is a limit of polynomials in r, and since multiplication is jointly continuous, a q = q a.

◻

For obvious reasons, we write q = r
1
2 and refer to q as the (positive) square root

of r.

Let us momentarily pause to address a natural question which arises. For H a
Hilbert space and R ∈ B(H), we currently have two apparently distinct notions of
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positivity. That is, we have the operator notion (1): R = R∗ and ⟨Rx,x⟩ ≥ 0 for all
x ∈H, and the C∗-algebra notion (2): R is normal and σ(R) ⊆ [0,∞). The following
proposition reconciles these two notions.

9.50. Proposition. Let H be a complex Hilbert space and R ∈ B(H). The
following are equivalent:

(i) R = R∗ and ⟨Rx,x >≥ 0 for all x ∈H;
(ii) R is normal and σ(R) ⊆ [0,∞).

Proof.

(i) ⇒ (ii) Clearly R = R∗ implies R is normal, and σ(R) ⊆ R. Let λ ∈ R with
λ < 0. Then

∥(R − λI)x∥2 = ⟨(R − λI)x, (R − λI)x⟩
= ⟨Rx,Rx⟩ − 2λ⟨Rx,x⟩ + λ2⟨x,x⟩
≥ λ2⟨x,x⟩.

Thus (R − λI) is bounded below. Since R is normal, σ(R) = σa(R) by
Proposition 7.17, and therefore λ /∈ σ(R). Hence σ(R) ∈ [0,∞).

(ii) ⇒ (i) Suppose R is normal and σ(R) ⊆ [0,∞). Then by Proposition 9.49,

the operator Q = R
1
2 is positive. Let x ∈H. Then

⟨Rx,x⟩ = ⟨Q2x,x⟩
= ⟨Qx,Qx⟩
= ∥Qx∥2 ≥ 0.

◻

9.51. Remark. Of course, the above Proposition fails spectacularly when R is
not normal. For example, if V is the classical Volterra operator from Example 7.23,
then σ(V ) = {0} ⊆ [0,∞). But V is not positive, or even normal, for the only normal
quasinilpotent operator is 0.

9.52. Definition. Let A be a C∗-algebra and h = h∗ ∈ A. Consider the function
f+ ∶ R→ R, f+(x) = max{x,0}. We define the positive part h+ of h to be h+ = f+(h),
and the negative part h− of h to be h− = h+−h. It follows easily from the continuous
functional calculus that h− = f−(h), where f−(x) = −min{x,0} for all x ∈ R. Both
h+, h− ≥ 0, as h+, h− are normal and σ(h+) = σ(f+(h)) = f+(σ(h)) ⊆ [0,∞) (with a
parallel proof holding for h−). We therefore have h = h+ −h−. Clearly, given x ∈ A,

we can write x in terms of its real and imaginary parts, x = y + iz, and y = y+ − y−,
z = z+ − z−. Thus every element of A is a linear combination of (at most 4) positive
elements.

A useful result that follows from the functional calculus is:
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9.53. Proposition. Let A be a C∗-algebra and h = h∗ ∈ A. Then

∥h∥ = max(∥h+∥, ∥h−∥).

Proof. Consider ∥h+∥ = spr(h+) = spr(f+(h)) = ∥f+∣σ(h)∥ = max({0},{λ ∶ λ ∈
σ(h), λ ≥ 0}), while ∥h−∥ = spr(h−) = spr(f−(h)) = ∥f−∣σ(h)∥ = max({0},{−λ ∶ λ ∈
σ(h), λ ≤ 0}). A moment’s reflection shows that max(∥h+∥, ∥h−∥) = spr(h) = ∥h∥.

◻

9.54. Lemma. Let A be a unital C∗-algebra and h = h∗ ∈ A. The following are
equivalent:

(i) h ≥ 0;
(ii) ∥t1 − h∥ ≤ t for some t ≥ ∥h∥;

(iii) ∥t1 − h∥ ≤ t for all t ≥ ∥h∥.

Proof. First let us identify C∗(h) with C(σ(h)) via the Gelfand Transform Γ. Let

ĥ = Γ(h) so that ĥ(z) = z for all z ∈ σ(h). The equivalence of the above three
conditions is a result of their equivalence in C(σ(h)), combined with the fact that
positivity is a C∗-notion, as noted in the comments following Corollary 9.48. Thus
we have

(i) ⇒ (iii)

∥t1 − h∥ = ∥Γ(t1 − h)∥
= ∥t1 − ĥ∥
≤ t for all t ≥ ∥ĥ∥ = ∥h∥.

(iii) ⇒ (ii) Obvious.

(ii) ⇒ (i) If ∥t1 − h∥ = ∥t1 − ĥ∥ ≤ t, then ĥ ≥ 0, and so h ≥ 0.

◻

9.55. Definition. Let A be a Banach space. A real cone in A is a subset V
of A satisfying:

(i) 0 ∈ V;
(ii) if x, y ∈ V and λ ≥ 0 in R, then λx + y ∈ V;
(iii) V ∩ {−x ∶ x ∈ V} = {0}.

For the sake of convenience, we shall write −V for {−x ∶ x ∈ V}.

9.56. Example. Let A = C, the complex numbers viewed as a 1-dimensional
Banach space over itself. The set V = {z ∈ C ∶ Re(z) ∈ [0,∞), Im(z) ∈ [0,∞)} is a
real cone in A. More generally, any of the four “quadrants” in C determined by two
lines passing through the origin forms a real cone.

9.57. Example. Let A = C(X), X a compact Hausdorff space. The set V =
{f ∈ C(X) ∶ f ≥ 0} is a real cone in A.
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9.58. Proposition. Let A be a C∗-algebra. Then A+ = {p ∈ A ∶ p ≥ 0} is a
norm-closed, real cone in A, called the positive cone of A.
Proof. We may assume without loss of generality that 1 ∈ A. Clearly 0 ∈ A+, and
if p ∈ A+ and 0 ≤ λ ∈ R, then (λp)∗ = λp∗ = λp and σ(λp) = λσ(p) ⊆ [0,∞), so that
λp ∈ A+.

Next suppose that x, y ∈ A+. By Lemma 9.54, we obtain:

∥ (∥x∥ + ∥y∥)1 − (x + y) ∥ ≤ ∥ ∥x∥1 − x ∥ + ∥ ∥y∥1 − y ∥
≤ ∥x∥ + ∥y∥,

imply by the same Lemma that x + y ≥ 0. Suppose x ∈ F ∩ (−F). Then x = x∗ and
σ(x) ⊆ [0,∞) ∩ (−∞,0] = {0}. Since ∥x∥ = spr(x) = 0, we have x = 0. So far we have
shown that A+ is a real cone.

Finally, suppose that we have {xn}∞n=1 ⊆ A+ and x = limn→∞ xn. Then x∗ =
limn→∞ x

∗
n = limn→∞ xn = x, so that x is self-adjoint. By dropping to a subsequence

if necessary, we may assume that ∥x∥ ≥ ∥xn∥/2 for all n ≥ 1. Then

∥ (2∥x∥)1 − x ∥ = lim
n→∞

∥ (2∥x∥)1 − xn ∥

≤ lim
n→∞

2∥x∥

= 2∥x∥.

By Lemma 9.54 yet again, x ≥ 0 and so A+ is norm-closed, completing the proof.

◻

9.59. Let H be a Hilbert space and Z ∈ B(H). If R = Z∗Z, then for any x ∈H,

⟨Rx,x⟩ = ⟨Z∗Zx,x⟩ = ∥Zx∥2 ≥ 0,

and so R ≥ 0. Our next goal is to show that in any C∗-algebra, r ∈ A is positive
precisely if r factors as z∗z for some z ∈ A. The proof is rather more delicate than
in the B(H) setting. The next Lemma comes in handy.

9.60. Lemma. Let A be a Banach algebra and a, b ∈ A. Then

σ(ab) ∪ {0} = σ(ba) ∪ {0}.

Proof. Clearly it suffices to consider the case where A is unital. The proof, while
completely unmotivated, is a simple algebraic calculation.

Suppose 0 /= λ ∈ ρ(ab). Let c = λ−1(λ − ab)−1, and verify that

(λ − ba)−1 = (λ−1 + bca)
= λ−1 + λ−1b(λ − ab)−1a

= λ−1(1 + b(λ − ab)−1a).

◻
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9.61. Theorem. Let A be a C∗-algebra and r ∈ A. Then r ≥ 0 if and only if
r = z∗z for some z ∈ A.
Proof. First suppose that r ≥ 0. By Proposition 9.49, there exists a unique z ≥ 0 so
that r = z2 = z∗z.

Next, suppose r = z∗z for some z ∈ A. Clearly r = r∗. Let us write r as the
difference of its positive and negative parts, namely r = r+ − r−. Our goal is to show
that r− = 0.

Now r− ≥ 0 and so r− has a positive square root. Consider y = zr
1
2
− . Then y∗y is

self-adjoint and

y∗y = (zr
1
2
− )∗(zr

1
2
− )

= r
1
2
− z

∗zr
1
2
−

= r−(r+ − r−)r
1
2
−

= r
1
2
− r+r

1
2
− − r2

−

= −r2
−

≤ 0.

(Note that the last equality follows from the fact that f
1
2
− f+ = 0.) Thus σ(y∗y) ⊆

(−∞,0]. Writing y = h + ik, where h = Rey, k = Imy, we have

yy∗ = h2 + i k h − i h k + k2

y∗y = h2 − i hh + i h k + k2

so that

yy∗ = (yy∗ + y∗y) − (y∗y) = 2(h2 + k2) − (y∗y).
Since h2 + k2 ≥ 0 and y∗y ≤ 0 from above, the fact that A+ is a positive cone implies
that yy∗ ≥ 0. Thus σ(yy∗) ⊆ [0,∞).

By the previous Lemma, σ(yy∗)∪{0} = σ(y∗y)∪{0}, from which we deduce that
σ(yy∗) = {0} = σ(y∗y). But then ∥y∥2 = ∥y∗y∥ = spr(y∗y) = 0, and so y = 0. That is,
∥ − r2

−∥ = ∥y∗y∥ = 0, so that r− = 0 and r = r+ ≥ 0, as claimed.

◻

9.62. Remark.

(a) Given a ∈ A, a C∗-algebra, we can now define ∣a∣ = (a∗a)
1
2 , and we call this

the absolute value of a.
(b) The above theorem has a partial extension to involutive unital Banach

algebras. Suppose B is such an algebra with unit e, and x ∈ B satisfies
∥x − e∥ < 1. Then x = y2 for some y ∈ B. Indeed, when ∥e − x∥ < 1, we have

σ(x) ⊆ {z ∈ C ∶ ∣z − 1∣ < 1}. As such the function f(z) = z
1
2 is analytic on

σ(x), and so we set y = f(x).
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9.63. A partial order on Asa. Given a C∗-algebra A, we denote by Asa the
set of self-adjoint elements of A, i.e.

Asa ∶= {h ∈ A ∶ h = h∗}.
This is a real subspace of A. If a ∈ A, we define

Re(a) ∶= a + a
∗

2
and Im(a) = a − a

∗

2i
.

It is clear that Re(a) and Im(a) are self-adjoint and a = Re(a) + iIm(a). This way
of writing a is referred to as the Cartesian decomposition of a.

Given two self-adjoint elements x, y ∈ A, a C∗-algebra, we set x ≤ y if y − x ≥ 0.
It is easy to check that this defines a partial order. Certain, but not all properties
of the order on R carry over to this setting. Consider the following:

9.64. Proposition. Let A be a C∗-algebra.

(i) If a, b ∈ Asa and c ∈ A, then a ≤ b implies c∗ac ≤ c∗bc.
(ii) If 0 ≤ a ≤ b, then ∥a∥ ≤ ∥b∥.
(iii) If 1 ∈ A, a, b ∈ A+ are invertible and a ≤ b, then b−1 ≤ a−1.

Proof.

(i) Since a ≤ b, b − a is positive, and so we can find z ∈ A so that b − a = z∗z.
Then c∗z∗zc = (zc)∗(zc) ≥ 0 by Theorem 9.61. That is, c∗bc − c∗ac ≥ 0,
which is equivalent to our claim.

(ii) It suffices to consider the case where 1 ∈ A. Then the unital C∗-algebra
generated by b, namely C∗(b) ≃∗ C(σ(b)). Then Γ(b) ≤ ∥Γ(b)∥1 = ∥b∥1, and
since positivity is a C∗-property, b ≤ ∥b∥1.

But then a ≤ b and b ≤ ∥b∥1 implies a ≤ ∥b∥1. Again, by the Gelfand-
Naimark Theorem, Γ(a) ≤ ∥b∥1, and so ∥a∥ = ∥Γ(a)∥ ≤ ∥b∥.

(iii) First suppose c ≥ 1. Then Γ(c) ≥ 1, and so Γ(c) is invertible and Γ(c)−1 ≤ 1.
This in turn implies that c is invertible and that c−1 ≤ 1.

More generally, given a ≤ b, 1 = a−
1
2aa−

1
2 ≤ a−

1
2 ba−

1
2 , and so the above

argument implies that 1 ≥ (a−
1
2 ba−

1
2 )−1 = a

1
2 b−1a

1
2 .

Finally, a−1 = a−
1
2 1a−

1
2 ≥ b−1, by (i) above.

◻
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Supplementary Examples

S9.1. Example. Our work on the Jacobson radical in the Appendix to Chap-
ter 5 allows us to obtain a very useful result without much more effort.

Theorem. Every C∗-algebra A is semisimple; that is, the Jacobson radical J(A)
of A is equal to {0}.

Proof. Recall that J(A) is a left quasi-regular ideal in A. Suppose that J(A) ≠ {0}.
Let 0 ≠ q ∈ J(A) and set q0 ∶= − 1

∥q∥2 q
∗q. Then q0 ∈ J(A) since the latter is an ideal.

Since 0 ≤ q∗q, it follows that q0 ≤ 0 and ∥q0∥ = 1. That is, q0 = q∗0 , σ(q0) ⊆ [−1,0],
and = spr(q0) = ∥q0∥ = 1, implying that −1 ∈ σ(q0) ∶= σAe(q0). In other words, 1 + q0

is not invertible in Ae.
Since J(A) is left quasi-regular, there exists w ∈ A such that w ◇ q = 0. By iden-

tifying A with its image in Ae, we may suppose that w, q ∈ Ae. By Proposition A5.7,
it then follows that 1 + q0 is left invertible in Ae. Let b ∈ Ae denote the left-inverse
of 1 + q0. That is, b(1 + q0) = 1 in Ae. But then

1 = 1∗ = (b(1 + q0))∗ = (1 + q0)∗b∗ = (1 + q0)b∗,

implying that 1 + q0 is invertible in Ae, and contradiction.

Thus J(A) = {0}, as claimed.

◻

S9.2. Example. If follows that if A is a finite-dimensional C∗-algebra, then
– by the Wedderburn-Artin Theorem [5, 54] – A is isomorphic to a direct sum of
full matrix algebras. That is, one can find a sequence (k1, k2, . . . , km) in Nm and a
bijective algebra homomorphism % ∶ A→ ⊕mi=1Mki(C).

Of course, the canonical isomorphisms in the category of C∗-algebras are the ∗-
isomorphisms, and it is natural to ask whether or not A is ∗-isomorphic to ⊕mi=1Mki(C).
The answer is “yes”, and the proof is left as an exercise for the reader.

It is also worth pointing out that even if A ⊆ Mn(C) for some n ≥ 1, this still
leaves open the question of multiplicity. For example, the algebras

A = {diag(α,α,α,A) ∶ α ∈ C,A ∈M2(C)}

and

B ∶= {diag(α,A,A) ∶ α ∈ C,A ∈M2(C)}
are both subalgebras of M5(C) which are isomorphic to C ⊕M2(C), but they are
inherently different as subalgebras of M5(C). One way of identifying this difference is
to consider their commutants, that is, by comparing the operators which commute
with each algebra.

For example, an easy computation shows that the commutants A′ of A and B′
of B are the algebras

A′ = {diag(B,βI2) ∶ B ∈M3(C), β ∈ C},
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while

B′ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

β 0 0
0 γ1I2 γ2I2

0 γ3I2 γ4I2

⎤⎥⎥⎥⎥⎥⎦
∶ β, γ1, γ2, γ3, γ4 ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭
so that dim (A′) = 10, while dim (B′) = 5.

The classification of C∗-algebras acting on a finite-dimensional Hilbert space
then says that if A ⊆Mn(C) is a C∗-algebra, then there exist two sequences

(k1, k2, . . . , km), (µ1, µ2, . . . , µm) ∈ Nm

and a unitary matrix U such that

U∗AU =M(µ1)
k1

(C)⊕M(µ2)
k2

(C)⊕⋯⊕M(µm)
km

(C)⊕ 0r,

where r = n − (∑mi=1 kiµi).

S9.3. Example. There are many interesting and important classes of C∗-
algebras; more than one can shake a stick at, even if it were a very light stick,
one had burly arms, and one were the stick-shaking champion of one’s university.
Unfortunately, even the definitions of many of these algebras (for example AF-
algebras, Bunce-Deddens algebras, crossed-product C∗-algebras, full/reduced group
C∗-algebras) require more background than we currently have.

Let us at least give an alternate definition of a uniformly hyperfinite (UHF-)
C∗-algebra which avoids a description of inductive limits.

Let H = `2 with onb (en)n≥1. Given n ≥ 1, we let

An ∶=Mn(C)⊗ I ∶= {T (∞) ∶= T ⊕ T ⊕ T ⊕ T⋯ ∶ T ∈Mn(C)}.
It is not difficult to verify that if n ∣m, then An ⊆ Am.

Let (kn)n≥1 be a sequence of positive integers such that

● kn ∣ kn+1 for all n ≥ 1; and
● limn kn =∞.

We leave it to the reader to verify that

B0 ∶= ∪n≥1Akn
is a self-adjoint, unital subalgebra of B(H). It is not, however, a C∗-algebra because
it is not norm-closed. The norm-closure B ∶= B0 of B0 is a C∗-algebra, called a UHF
C∗-algebra.

It can be shown that UHF C∗-algebras are simple, unital and admit a unique
tracial state. That is, there exists a unique linear function τ ∶ B → C such that
∥τ∥ = 1 = τ(1), and τ(xy) = τ(yx) for each x, y ∈ B.

Although each element of B is almost a matrix (in the sense that it can be

approximated arbitrarily well by an operator of the form T (∞) for some T ∈Mkn(C),
nevertheless, B ∩K(H) = {0}, and so elements of B are in this sense very far from
being matrices.
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Appendix

A9.1. The question of determining whether or not two C∗-algebras A and B are
∗-isomorphic is a deep and often extremely difficult problem. Attempts to answer
this problem for various classes of C∗-algebras have resulted in entirely new fields
of mathematics.

One very successful approach has been to use tools from (algebraic) K-theory to
bring to bear upon this question. The idea is to associate to each C∗-algebra A two
groups K0(A) and K1(A) which are related to projections and unitaries in (matrix
algebras over) A. More precisely, the map A↦ (K0(A),K1(A)) is a functor from the
category of C∗-algebras to the category of abelian groups. Given two C∗-algebras
A and B, if (K0(A),K1(B)) is not isomorphic to (K0(B),K1(B)), then A and B are
not isomorphic. (The converse is false.) The basic idea behind this approach is that
the pairs of abelian groups should be easier to study than the original C∗-algebras
themselves.

This approach is not always successful in distinguishing between non-isomorphic
C∗-algebras, and other techniques have also been brought to bear upon this problem,
including other types of K-theory (such as KK-theory and KL-theory).

We refer the reader to [48] and to [55] for more information on K-theory. Be
aware that this field is vast, which is both exciting an daunting.

A9.2. C∗-algebra theory also connects with many other areas of math, includ-
ing graph theory. Given a graph G, it is possible to associate to G a C∗-algebra
known as the graph algebra of G. Very roughly, vertices of the graph correspond
to projections in the C∗-algebras and edges in the graph correspond to partial
isometries in the C∗-algebra. A description of these is beyond the scope of these
notes, and we refer the interested reader to the wonderful book by Raeburn [44] for
more information on these.

A9.3. The author would be remiss in failing to mention the excellent mono-
graph by K.R. Davidson [19], which also provides a cornucopia of C∗-algebras and
highlights the basic results which everyone studying C∗-algebras should know.
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Exercises for Chapter 9

Exercise 9.1. Tn is a Banach ∗-algebra
Prove that the involution on Tn defined in Example 9.7 is isometric.

Exercise 9.2. The positive cone
Let A be a C∗-algebra, and let a, b lie in the positive cone of A.

(i) Show that a ≤ b implies a1/2 ≤ b1/2.
(ii) Show that a ≤ b does NOT imply that a2 ≤ b2.

Exercise 9.3. Compact normal operators
If M and N are compact normal operators with the same spectrum, then C∗(M)

is isometrically isomorphic to C∗(N). Do M and N have to be unitarily equivalent?

Exercise 9.4. Finite-dimensional C∗-algebras
Suppose that A is a finite-dimensional C∗-algebra and that % ∶ A→Mn(C) is an

algebra homomorphism. Prove that there exists S ∈Mn(C) invertible such that the
map π ∶ A→Mn(C) defined by

π(a) = S−1%(a)S, a ∈ A
is a ∗-homomorphism.

Exercise 9.5. Finite-dimensional C∗-algebras, part II
Prove that if A ⊆Mn(C) is a C∗-algebra, then there exist two sequences

(k1, k2, . . . , km), (µ1, µ2, . . . , µm) ∈ Nm

and a unitary matrix U such that

U∗AU =M(µ1)
k1

(C)⊕M(µ2)
k2

(C)⊕⋯⊕M(µm)
km

(C)⊕ 0r,

where r = n − (∑mi=1 kiµi).



CHAPTER 10

C∗-algebras: approximate identities and ideals

A thesaurus is great. There’s no other word for it.

Ross Smith

Approximate identities.

10.1. In Chapter 9, we briefly discussed ideals of C∗-algebras in connection with
unitisations. Now we return for a more detailed and structured look at ideals and
their elements. As with Banach algebras in general, at times it is not desirable to
adjoin a unit to a C∗-algebra. As we are about to see, however, there is a distinct
advantage of C∗-algebras over Banach algebras when it comes to approximate iden-
tities. For one thing, they always exist. Secondly, one can always choose them to
consist of positive elements, bounded above in norm by 1. Thirdly, one can choose
the net to be increasing. The C∗-equation is a wondrous thing.

10.2. Definition. Let A be a C∗-algebra and suppose K is a linear manifold in
A. Then a right approximate identity for K is an increasing net (uλ) of positive
elements in K such that ∥uλ∥ ≤ 1 for all λ, and such that

lim
λ

∥k − k uλ∥ = 0

for all k ∈ K.

Analogously, one can define a left approximate identity for a linear manifold
K of A.

By an algebraic (left, right, or two-sided) ideal of a C*-algebra A, we shall
simply mean a linear manifold K which is invariant under multiplication (on the
left, right, or both sides) by elements of A. The notion of a (left, right or two-sided)
ideal differs only in that ideals are assumed to be norm-closed. Unless otherwise
specified, algebraic ideals and ideals are assumed to be two-sided.

10.3. Example. Let H be an infinite dimensional Hilbert space. Then F(H) =
{F ∈ B(H) ∶ rankF < ∞} is an algebraic ideal whose closure is the set K(H) of
compact operators on H (by Theorem 7.19).

183
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10.4. Example. Let C00(R) = {f ∈ C(R) ∶ supp(f) is compact }. Then C00(R)
is an algebraic ideal of C(R) whose norm closure is C0(R), the set of continuous
functions which vanish at infinity.

10.5. Proposition. Let A be a C∗-algebra and suppose K is an algebraic left
ideal in A. Then K has a right approximate identity.
Proof. We may assume without loss of generality that A is unital. Given a finite
subset F = {a1, a2, . . . , an} ⊆ K, we define

hF =
n

∑
i=1

a∗i ai

and

vF = hF (hF +
1

n
1)

−1

= (hF +
1

n
1)

−1

hF .

Note that vF ∈ K, since hF ∈ K.
Let F = {F ∶ F ⊆ K, F finite } be directed by inclusion.

Claim: the set (vF ∶ F ∈ F ,⊇) is a right approximate identity for K.

To see this, note first that hF ≥ 0 and that 0 ≤ t(t+ 1
n)

−1 ≤ 1 for all t ∈ R+. Thus
0 ≤ vF ≤ 1 by the functional calculus. Suppose F, G ∈ F and F ⊇ G. We may assume
that F = {a1, a2, . . . , am} and that G = {a1, a2, . . . , an}, where n ≤m.

Now hF ≥ hG since hF −hG = ∑mi=n+1 a
∗
i ai ≥ 0. Thus hF + 1

n1 ≥ hG + 1
n1 and hence

(hF +
1

n
1)−1 ≤ (hG +

1

n
1)−1.

From this, and since 1
m(t + 1

m)−1 ≤ 1
n(t +

1
n)

−1 for all t ∈ R+, we have

1

m
(hF +

1

m
1)−1 ≤ 1

n
(hF +

1

n
1)−1 ≤ 1

n
(hG +

1

n
1)−1.

But
1

m
(hF +

1

m
1)−1 = 1 − vF

and
1

n
(hG +

1

n
1)−1 = 1 − vG,

and so 1 − vF ≤ 1 − vG, implying that vG ≤ vF when F ⊇ G.
Suppose k ∈ K. Given n ∈ N, choose F0 ∈ F such that F0 has n elements and

k ∈ F0. If F ∈ F and F0 ⊆ F , then F has m (≥ n) elements, including k. Thus
k∗k ≤ hF , and

(k − kvF )∗(k − kvF ) = (1 − vF )k∗k(1 − vF )
≤ (1 − vF )hF (1 − vF )
= 1
m2 (hF + 1

m1)−2hF .
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Since 1
m2 (t + 1

m1)−2t ≤ 1
4m for all t ∈ R+, we have

∥k − kvF ∥2 = ∥(k − kvF )∗(k − kvF )∥
≤ ∥ 1

m2 (hF + 1
m1)−2hF ∥

≤ 1
4m

≤ 1
4n .

Thus ∥k − kvF ∥ ≤ 1
2
√
n

for all F ⊇ F0. By definition, limF ∈F ∥k − kvF ∥ = 0.

Finally, suppose that k ∈ K, and let ε > 0. Choose k0 ∈ K such that ∥k − k0∥ < ε
3 .

By the previous paragraph, there exists F0 ∈ F such that F0 ⊆ F ∈ F implies that
∥k0 − k0vF ∥ < ε

3 . Thus F0 ⊆ F ∈ F implies that

∥k − kvF ∥ ≤ ∥k − k0∥ + ∥k0 − k0vF ∥ + ∥k0vF − kvF ∥

< ε
3
+ ε

3
+ ∥k − k0∥ ∥vF ∥

< 2ε

3
+ ε

3
⋅ 1

= ε.

Thus k = limF ∈F kvF . This concludes the proof.

◻

If K is an algebraic right ideal of A, then K∗ is an algebraic left ideal of A. By
applying the above Proposition to K∗ and interpreting it in terms of K itself we
obtain:

10.6. Corollary. Let A be a C∗-algebra and suppose K is an algebraic right
ideal in A. Then K has a left approximate identity.

10.7. Remark. We have shown that an algebraic two sided ideal of a C*-
algebra A possesses both a left and a right approximate identity. We now wish to
show that these two identities can be chosen to coincide. First we require a lemma.

10.8. Lemma. Let A be a C*-algebra and suppose that K is an algebraic,
self-adjoint ideal in A. Then any left approximate identity for K is also a right
approximate identity for K, and vice-versa.
Proof. Suppose (uλ) is a right approximate unit for K. Then limλ ∥k −kuλ∥ = 0 for
all k ∈ K. But then limλ ∥k∗ − k∗uλ∥ = 0 = limλ ∥k − uλk∥, so that (uλ) is also a left
approximate unit for K.

◻
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10.9. Theorem. Every C*-algebra has an approximate identity. If the C*-
algebra is separable, then a countable approximate identity may be chosen
Proof. Let A be the C*-algebra. It is clearly a self-adjoint left ideal in itself,
and therefore has a right approximate identity by Proposition 10.5, which is an
approximate identity by Lemma 10.8.

Next, suppose A is separable, and let {an}∞n=1 be a countable dense subset of A.
Let (uλ)λ∈Λ be an approximate identity for A. Choose λ0 ∈ Λ arbitrarily. For each
k ≥ 1, we can find λk ∈ Λ such that λk ≥ λk−1 and max(∥uλkan−an∥, ∥anuλk −an∥) < ε
for each 1 ≤ n ≤ k. A relatively routine approximation argument then implies that
(uλk)∞k=1 is the desired countable approximate identity.

◻

10.10. Corollary. Every closed ideal K in a C*-algebra A is self-adjoint.
Proof. Let k ∈ K, and let (uλ)λ denote the approximate identity for K. Then
k∗ = limλ k

∗uλ, but uλ ∈ K for all λ, implying that each k∗uλ and therefore k∗ lies
in K = K.

◻

The above result is, in general, false if the ideal is not closed. For example, if
A = C(D), the continuous functions on the closed unit disk, and if K = qA, where
q ∈ A is the identity function q(z) = z, then K is an algebraic ideal in A, but q∗ does
not lie in K.

10.11. Corollary. Every algebraic ideal K in a C*-algebra A has an approxi-
mate identity.
Proof. Since K is a closed ideal in A, it must be self-adjoint, by the previous
Corollary. The left approximate identity (uλ) for K is again a left approximate
identity for K. By Lemma 10.8, (uλ) is a right approximate identity for K, and
since it already lies in K, it is therefore an approximate unit for K.

◻

10.12. Example. Let A be a unital C*-algebra. For each n ≥ 1, set un = eA.
Then {un}∞n=1 is an approximate unit for A.

10.13. Example. Let H be an infinite dimensional, separable Hilbert space
with orthonormal basis {en}∞n=1. For each k ≥ 1, let Pk denote the orthogonal
projection of H onto the span of {e1, e2, . . . , ek}. Then from the arguments of The-
orem 7.19, {Pk}∞k=1 is an approximate identity for K(H).
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10.14. Example. Consider the ideal C0(R) of C(R). For each n ≥ 1, let

un(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if ∣x∣ ≤ n,
(n + 1) − ∣x∣ if ∣x∣ ∈ (n,n + 1),
0 if ∣x∣ ≥ n.

Then {un}∞n=1 is an approximate identity for C0(R).

10.15. Proposition. Suppose A is a C*-algebra and L is an ideal in A. If K
is an ideal in L, then K is also an ideal in A.
Proof. Since K is the linear span of its positive elements, it suffices to prove that

ak and ka lie in K for all a ∈ A and 0 ≤ k ∈ K. Since ak = (ak
1
2 )k

1
2 , and since k

1
2 ∈ K,

we have ak ∈ K L ⊆ K.

◻

10.16. Definition. Let B be a C*-algebra. A C*-subalgebra A of B is said to
be hereditary if b ∈ B+, a ∈ A+ with 0 ≤ b ≤ a implies b ∈ A.

10.17. Example. Let B = C([0,1]) and A = {f ∈ C([0,1]) ∶ f(x) = 0 for all x ∈
[1

4 ,
3
4]}. If g ∈ B+, f ∈ A+ and 0 ≤ g ≤ f , then 0 ≤ g(x) ≤ f(x) = 0 for all x ∈ [1

4 ,
3
4],

and hence g ∈ A. Thus A is a hereditary C*-subalgebra of B.

10.18. Proposition. Let B be a C*-algebra and 0 /= p /= 1 be a projection in B.
Then A = pBp is hereditary.
Proof. That A = pBp is a C*-subalgebra of B is routine. Suppose 0 ≤ b ≤ a for some
a ∈ A, b ∈ B. Then by Proposition 9.64, 0 ≤ (1 − p)b(1 − p) ≤ (1 − p)a(1 − p) = 0, and
so (1 − p)b(1 − p) = 0.

Next, ∥b
1
2 (1 − p)∥2 = ∥(1 − p)b(1 − p)∥ = 0, so that b(1 − p) = b

1
2 (b

1
2 (1 − p)) = 0.

Finally, since b = b∗, (1 − p)b = (b(1 − p))∗ = 0, and so b = pbp ∈ A, as required.

◻

10.19. Lemma. Let A be a C*-algebra and a, b ∈ A. Suppose 0 ≤ b, ∥b∥ ≤ 1 and
aa∗ ≤ b4. Then there exists c ∈ A, ∥c∥ ≤ 1 such that a = b c.
Proof. Let Ae denote the minimal unitisation of A, and denote by 1 the identity in
Ae. For 0 < λ < 1, let cλ = (b + λ1)−1a, which lies in A because A is an ideal of Ae.
Our goal is to prove that c = limλ→0 cλ exists, and that this is the element we want.
Now

cλc
∗
λ = (b + λ1)−1aa∗(b + λ1)−1

≤ (b + λ1)−1b4(b + λ1)−1

≤ b2,
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and hence ∥cλ∥2 = ∥c∗λ∥
2 ≤ ∥b2∥ ≤ 1. Next we prove that {cλ}λ∈(0,1) is Cauchy. If

λ,β ∈ (0,1), then

∥cλ − cβ∥2 = ∥(cλ − cβ)∗∥2

= ∥(cλ − cβ)(cλ − cβ)∗∥
= ∥((b + λ1)−1 − (b + β1)−1)aa∗(b + λ1)−1 − (b + β1)−1)∥
= ∣λ − β∣2∥(b + λ1)−1(b + β1)−1aa∗(b + λ1)−1(b + β1)−1∥
≤ ∣λ − β∣2∥(b + λ1)−1(b + β1)−1b4(b + λ1)−1(b + β1)−1∥
≤ ∣λ − β∣2,

as b4(b + λ1)−2(b + β1)−2 ≤ 1. Let c = limλ→0 cλ. Then bc = limλ→0 bcλ = a.

◻

10.20. Proposition. Let A be a C*-algebra. Then every ideal in A is heredi-
tary.
Proof. Suppose that 0 /= K is an ideal in A, a ∈ A, k ∈ K and 0 ≤ a ≤ k. Then we

can write a = zz∗ for some z ∈ A and k = (k
1
4 )4, where k

1
4 ∈ K by the continuous

functional calculus. Then

0 ≤ zz∗ ≤ (k
1
4 )4.

By Lemma 10.19, z = (k
1
4 )c for some c ∈ A. In particular, z ∈ K and hence a = zz∗ ∈

K, as required.

◻

10.21. Theorem. Let A be a C*-algebra and K be an ideal in A. Let (uλ) be
any approximate unit for K. Then A/K is a C*-algebra, and for a ∈ A, we have

∥πK(a)∥ = lim
λ

∥a − auλ∥.

Proof. Fix a ∈ A. Clearly

∥πK(a)∥ = inf{∥a + k∥ ∶ k ∈ K}
≤ inf{∥a − auλ∥ ∶ λ ∈ Λ},

as each uλ and hence auλ lies in K.
Now, given ε > 0, choose k ∈ K so that ∥πK(a)∥ + ε > ∥a + k∥. Then

∥a − auλ∥ = ∥(a + k) − k − auλ∥
= ∥(a + k) − (k − kuλ) − (a + k)uλ∥
≤ ∥(a + k) − (a + k)uλ∥ + ∥k − kuλ∥.

We shall work in the unitisation Ae of A in order to obtain our desired norm
estimates.
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∥a − auλ∥ ≤ ∥(a + k)(1 − uλ)∥ + ∥k − kuλ∥
≤ ∥a + k∥ ∥1 − uλ∥ + ∥k − kuλ∥.

Hence limλ ∥a − auλ∥ ≤ (∥πK(a)∥ + ε)1 + 0. Since ε > 0 was arbitrary, ∥πK(a)∥ =
limλ ∥a − auλ∥.

We saw in Proposition 2.17 that A/K is a Banach algebra. Since K is self-adjoint,
we can set πK(a)∗ = πK(a∗), and this is a well-defined involution on A/K. There
remains only to verify the C∗-equation.

Given a ∈ A,

∥πK(a)∗ πK(a)∥ = ∥πK(a∗a)∥
= inf

λ
∥a∗a − a∗auλ∥

≥ inf
λ

∥(1 − uλ)(a∗a)(1 − uλ)∥

= inf
λ

∥a(1 − uλ)∥2

= ∥πK(a)∥2.

By Remark 9.9, we see that the quotient norm is a C∗-norm, and thus A/K is a
C∗-algebra.

◻

A subspace of a Banach space is said to be proximinal if the distance from an
arbitrary vector to that subspace is always attained. Although we shall not prove it
here, it can be shown that ideals of C∗-algebras are proximinal - that is, the quotient
norm is attained.

10.22. Theorem. Let τ ∶ A → B be a *-homomorphism between C*-algebras A
and B. Then ∥τ∥ ≤ 1, and τ is isometric if and only if τ is injective.
Proof. First suppose 0 ≤ r ∈ A. Then r = z∗z for some z ∈ A, and hence τ(r) =
τ(z)∗τ(z) ≥ 0. In particular, τ(r) is normal and so C∗

0 (τ(r)) is abelian. Let ϕ ∈
∑C∗

0 (τ(r)). Then ϕ ○ τ ∈ ∑C∗

0 (r) and hence ∥ϕ ○ τ∥ ≤ 1. But

∥τ(r)∥ = sup{ϕ(τ(r)) ∶ ϕ ∈ ∑C∗

0 (r)}
≤ ∥r∥.

More generally, if a ∈ A, then a∗a ≥ 0, and hence from above,

∥τ(a)∥2 = ∥τ(a∗a)∥ ≤ ∥a∗a∥ = ∥a∥2.

Thus we have shown that τ is continuous, with ∥τ∥ ≤ 1.
Clearly if τ is isometric, it must be injective.
Next, suppose that τ is not isometric, and choose a ∈ A such that ∥a∥ = 1, but

∥τ(a)∥ < 1. Let r = a∗a. Then ∥r∥ = ∥a∥2 = 1, but ∥τ(r)∥ = ∥τ(a)∥2 = 1 − δ < 1 for
some δ > 0. We shall work with r ≥ 0 instead of a. Choose f ∈ C([0,1]) such that
f(x) = 0 for all x ∈ [0,1− δ], but f(1) = 1. By the Stone-Weierstraß Theorem, f is a
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limit of polynomials pn in one variable with pn(0) = 0 for each n ≥ 1. For any such
polynomial,

τ(pn(r)) = pn(τ(r)),
since τ is a *-homomorphism. Since τ is continuous from above,

τ(f(r)) = τ( lim
n→∞

pn(r))

= lim
n→∞

τ(pn(r))

= lim
n→∞

pn(τ(r))

= f(τ(r)).

Now spr(r) = ∥r∥ = 1, and since 0 ≤ r, we conclude that 1 ∈ σ(r). Thus 1 = f(1) ∈
f(σ(r)) = σ(f(r)), so that f(r) /= 0. Finally, τ(r) ≥ 0 and spr(τ(r)) ≤ ∥τ(r)∥ ≤ 1−δ.
Since f ∣[0,1−δ] = 0, we have f(τ(r)) = 0 = τ(f(r)), implying that τ is not injective.

◻

10.23. Corollary. Let τ ∶ A → B be a *-homomorphism between C*-algebras A
and B. Then τ can be factored as τ = τ ○ π, where π ∶ A → A/ker τ is the canonical
map, and τ ∶ A/ker τ → ran τ is an isometric *-isomorphism. In particular, τ(A) is
a C∗-algebra.
Proof. Since τ is continuous, ker τ is a norm-closed ideal of A, and hence is self-
adjoint by Corollary 10.10. By Theorem 10.21, A/ker τ is a C∗-algebra and from
elementary algebra arguments, τ factors as τ = τ ○ π, where π ∶ A → A/ker τ is the
canonical map and τ is the *-homomorphism

τ ∶ A/ker τ → ran τ
a + ker τ ↦ τ(a).

Since ker τ = 0, τ is an isometric map onto its range, and thus ran τ = ran τ is a
C∗-subalgebra of B.

◻

10.24. Proposition. Let A be a C*-subalgebra of a C*-algebra B, and let K be
an ideal of B. Then A ∩K is an ideal in A, and

A +K
K

≃ A
A ∩K

.

In particular, A +K is a C*-subalgebra of B.
Proof. The first statement is a routine exercise. Consider the map

β ∶ A → B/K
a ↦ a +K.

It is readily seen to be a *-homomorphism. Moreover, ker β = A ∩ K. By Corol-
lary 10.23, ranβ = A + K/K is isometrically *-isomorphic to A/(A ∩ K), and so
A+K/K is a C∗-algebra. Thus it is complete. Since K is also complete, we conclude
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that A +K is complete as well. Hence A +K is a closed, self-adjoint subalgebra of
B, as was required to prove.

◻

10.25. Theorem. Let A be a hereditary C*-subalgebra of a C*-algebra B. Sup-
pose K is an ideal in A. Then K = A ∩L for some ideal L of B.
Proof.

◻
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Supplementary Examples

S10.1. Example. In progress.
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Appendix

A10.1. In progress.
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Exercises for Chapter 10

Exercise 10.1. In progress.



CHAPTER 11

C∗-algebras: the GNS construction

My opinions may have changed, but not the fact that I’m right.

Ashleigh Brilliant

The state space.

11.1. Let us now turn our attention to the dual space of a C∗-algebra. As
we shall see, the linear functionals generalise the notion of measures on spaces of
continuous functions, and are crucial to the representation theory of C∗-algebras.

11.2. Definition. Let A and B be C∗-algebras, and let ϕ denote a linear map
from A to B. We define the adjoint of ϕ as ϕ∗ ∶ A → B via ϕ∗(a) = (ϕ(a∗))∗ for
all a ∈ A. Then ϕ is said to be self-adjoint if ϕ = ϕ∗.

The map ϕ is said to be positive if ϕ(x∗x) ≥ 0 for all x ∈ A. (Equivalently, if
ϕ(p) ≥ 0 whenever p ≥ 0.) We write ϕ ≥ 0 when this is the case.

An element ϕ ∈ A∗ is called a state if ϕ is a positive linear functional of norm
one. We denote by S(A) the set of all states on A, and refer to this as the state
space of A.

11.3. Remarks. A few comments are in order.

● By definition, a linear map ϕ between C∗-algebras is self-adjoint if and only
if ϕ(x∗) = (ϕ(x))∗ for all x ∈ A. It is routine to verify that this is equivalent
to asking that ϕ send hermitian elements of A to hermitian elements of B.

● If ϕ ≥ 0, then ϕ preserves order. That is, if x ≤ y in A, then y − x ≥ 0, and
hence ϕ(y − x) = ϕ(y) − ϕ(x) ≥ 0 in B.

● Finally, it is easy to see that every positive linear map ϕ is automatically
self-adjoint. Indeed, given h = h∗ ∈ A, write h = h+ − h−, and observe that
ϕ(h) = ϕ(h+) − ϕ(h−) is self-adjoint.

11.4. Example. Let ϕ ∶ A → B be any ∗-homomorphism between C∗-algebras
A and B. Then

ϕ(x∗x) = ϕ(x)∗ ϕ(x) ≥ 0

for all x ∈ A, and hence ϕ ≥ 0.

195
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11.5. Example. Let X be a compact, Hausdorff space. The Riesz-Markov
Theorem [49] asserts that C(X)∗ ≃ M(X), the space of complex-valued regular
Borel measures on X. The action of a measure µ on f ∈ C(X) is through integration,
that is: µ(f) ∶= ∫X f dµ.

When X = [0,1], we can identifyM(X) with the space BV [0,1] of functions of
bounded variation on [0,1]. Now, given F ∈ BV [0,1], we define µF ∈M(X) via

µF (f) = ∫
X
f dF,

the quantity on the right being a Riemann-Stieltjes integral. For example, the
evaluation functional δx(f) = f(x) for some x ∈X corresponds to the point mass at
x.

Observe that µ is a self-adjoint (resp. positive) linear functional precisely when
the measure dµ is real-valued (resp. positive).

11.6. Example. Let n,m ≥ 1 be integers, and consider the C∗-algebra A =
Mn⊕Mm ⊆ B(Cn+m). For each k ≥ 1, let tr ∶Mk → C denote the normalized trace
functional

tr ([aij]) =
1

k

k

∑
i=1

aii.

For a = (a1, a2) ∈ A and λ ∈ [0,1], we can define ϕλ(a) = λtrn(a1) + (1 − λ)trm(a2).
Then {ϕλ}λ∈[0,1] is a family of states on A.

11.7. Example. Let H be an infinite-dimensional Hilbert space and let P be
a non-trivial projection on H. The map

ϕ ∶ B(H) → B(H)
T ↦ PTP

is a positive linear map.
Indeed, if T ≥ 0, the ϕ(T ∗T ) = PT ∗TP = (TP )∗(TP ) ≥ 0. Observe that ϕ is not

a *-homomorphism!

11.8. Remark. We have shown that every element of a C∗-algebra is, in a
natural way, a linear combination of four positive elements. Of course, this is a
generalisation of the corresponding fact for complex numbers.

In a similar vein, every complex measure possesses a Jordan decomposi-
tion [49] as a linear combination of four positive measures. Because of the as-
sociation between linear functionals on commutative C∗-algebras and measures as
outlined above, we shall think of linear functionals on C∗-algebras as abstract mea-
sures, and obtain a corresponding Jordan decomposition for these as well. This will
imply that the state space of a C∗-algebra A is in some sense “large”, a fact which
we shall exploit in the proof of the Gelfand-Naimark Construction below.
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We have seen that every multiplicative linear functional on an abelian Banach
algebra is automatically continuous of norm one. In the case of C∗-algebras, the
same applies to positive linear functionals.

11.9. Theorem. Let A be a C∗-algebra and ϕ ∶ A→ C be a positive linear map.
Then ϕ is continuous.
Proof. First observe that ϕ is bounded if and only if there exists K > 0 so that
0 ≤ r ∈ A+ with ∥r∥ ≤ 1 implies ϕ(r) ≤ K. Indeed, if ϕ is bounded, we can trivially
choose K = ∥ϕ∥.

Conversely, if 0 ≤ r ∈ A+ with ∥r∥ ≤ 1 implies ϕ(r) ≤K, then given any x ∈ A, we
can write x = y+ iz, where y = Rex, z = Imx. Then we set y = y+ −y− and z = z+ −z−,
and recall that max(∥y+∥, ∥y−∥, ∥z+∥, ∥z−∥) ≤ ∥x∥. From this we obtain

∣ϕ(x)∣ = ∣ϕ(y+) − ϕ(y−) + iϕ(z+) − iϕ(z−)∣
≤ ϕ(y+) + ϕ(y−) + ϕ(z+) + ϕ(z−)
≤ 4K∥x∥,

and so ∥ϕ∥ ≤ 4K <∞.
Now we argue by contradiction. Suppose, to the contrary, that for every n ≥ 1

we can find 0 ≤ rn in A so that ∥rn∥ ≤ 1
2n and ϕ(rn) ≥ 1. Then for each k ≥ 1,

sk = ∑kn=1 rn ∈ A+, and sk ≤ s = ∑∞n=1 rn ∈ A+. From Remark 11.3, we see that
k ≤ ϕ(sk) ≤ ϕ(s) for all k ≥ 1, which is absurd. It follows that ϕ must be bounded
on A+, and hence on A.

◻

11.10. Given a positive linear functional ϕ on a C∗-algebra A, we can construct
a pseudo-inner product on A by setting

[a, b] ∶= ϕ(b∗a)

for a, b ∈ A. Then we have

(i) [a, b] is clearly a sesquilinear function, linear in a and conjugate linear in
b;

(ii) [a, a] ≥ 0 for all a ∈ A, as ϕ ≥ 0 and a∗a ≥ 0;

(iii) Since ϕ is self-adjoint, [a, b] = ϕ(b∗a) = ϕ(a∗b) = [b, a];
(iv) If x ∈ A, then [xa, b] = ϕ(b∗(xa)) = ϕ((x∗b)∗a) = [a, x∗b].
The following will also prove useful in the GNS construction.

11.11. Lemma. Let [⋅, ⋅] be a positive sesquilinear function on a C∗-algebra A.
Then [⋅, ⋅] satisfies the Cauchy-Schwarz Inequality:

∣[a, b]∣2 ≤ [a, a] [b, b].

Proof.

(a) If [a, b] = 0, there is nothing to prove.
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(b) If [a, a] = 0, then we claim that [a, b] = 0 for all b ∈ A. To see this, note
that for all β ∈ C,

0 ≤ [a + βb, a + βb]
= [a, a] + ∣β∣2[b, b] + 2Re(β[a, b]).

Suppose there exists b ∈ A such that [a, b] /= 0. We may then scale b so that
[a, b] = −1. Now choose β > 0. The above equation then becomes:

0 ≤ [a, a] − 2β + β2[b, b]
= −2β + β2[b, b],

which implies 0 ≤ β[b, b] − 2. This yields a contradiction when β is cho-
sen sufficiently small and positive. Thus [a, a] = 0 implies ∣[a, b]∣2 = 0 ≤
[a, a] [b, b], which is clearly true.

(c) If [a, b] /= 0 and [a, a] /= 0, we may choose β = −[a, a]/[a, b]. Then, as above,

0 ≤ [a, a] + ∣β∣2[b, b] + 2Re(β[a, b])

= [a, a] − 2[a, a] + [a, a]2[b, b]
∣[a, b]∣2

,

which implies

∣[a, b]∣2 ≤ [a, a] [b, b],

as claimed.

◻

11.12. Lemma. Let A be a C*-algebra, and 0 ≤ ϕ ∈ A∗. Then

(i) ∣ϕ(b∗a)∣ ≤ ϕ(a∗a)
1
2 ϕ(b∗b)

1
2 ;

(ii) ∣ϕ(a)∣2 ≤ ∥ϕ∥ϕ(a∗a).
Proof.

(i) This is just a reformulation of the Cauchy-Schwarz Inequality which we de-
duced for the pseudo-inner product associated to ϕ in the previous Lemma.

(ii) Let (uλ)λ∈Λ be an approximate unit for A. Then

∣ϕ(a)∣2 = lim
λ

∣ϕ(auλ)∣2

≤ sup
λ
ϕ(a∗a)ϕ(u∗λuλ)

≤ sup
λ
ϕ(a∗a)∥ϕ∥ ∥uλ∥2

≤ ϕ(a∗a)∥ϕ∥.

◻
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11.13. Theorem. Let A be a C∗-algebra and ϕ ∈ A∗. The following are then
equivalent:

(i) 0 ≤ ϕ;
(ii) ∥ϕ∥ = limλϕ(uλ) for some approximate unit (uλ)λ∈Λ of A;
(iii) ∥ϕ∥ = limλϕ(uλ) for every approximate unit (uλ)λ∈Λ of A.

Proof.

(i) implies (iii) Consider {ϕ(uλ)}λ∈Λ, which is an increasing net of positive
real numbers, bounded above by ∥ϕ∥. Then limλϕ(uλ) exists. Clearly
limλϕ(uλ) ≤ supλ ∥ϕ∥ ∥uλ∥ ≤ ∥ϕ∥.

For the other inequality, first observe that if 0 ≤ r and ∥r∥ ≤ 1, then
0 ≤ r2 ≤ r. This follows from the Gelfand-Naimark Theorem by indentifying
r with the identity function q(z) = z on σ(r) ⊆ [0,1]. Then, given a ∈ A,

∣ϕ(a)∣ = lim
λ

∣ϕ(uλa)∣

≤ lim
λ
ϕ(u∗λuλ)

1
2 ϕ(a∗a)

1
2

≤ lim
λ
ϕ(uλ)

1
2 ϕ(a∗a)

1
2

≤ lim
λ
ϕ(uλ)

1
2 ∥ϕ∥

1
2 ∥a∗a∥

1
2

≤ (lim
λ
ϕ(uλ)

1
2 )∥ϕ∥

1
2 ∥a∥.

By taking the supremum over a ∈ A, ∥a∥ = 1, we find that ∥ϕ∥
1
2 ≤ limλϕ(uλ)

1
2 ,

and hence ∥ϕ∥ = limλϕ(uλ).
(iii) implies (ii) Obvious.
(ii) implies (i) Let us scale ϕ so that ∥ϕ∥ = 1. Consider h = h∗ ∈ A with

∥h∥ = 1. Let ϕ(h) = s + it ∈ C where s, t ∈ R. Our first goal is to show that
t = 0. By considering −h instead of h, we may assume that t ≥ 0. Fix an
integer n ≥ 1, and consider xn,λ = h + inuλ. Now

∥xn,λ∥2 = ∥x∗n,λxn,λ∥
= ∥h2 + in(huλ − uλh) − n2uλ∥
≤ ∥h∥2 + n∥huλ − uλh∥ + n2

= 1 + n2 + n∥huλ − uλh∥.
Now limλϕ(xn,λ) = limλ(ϕ(h) + inϕ(uλ)) = ϕ(h) + in = s + i(t + n). Fur-

thermore, ∣ϕ(xn,λ)∣2 ≤ ∥xn,λ∥2, and so

s2 + (t + n)2 ≤ lim
λ

(1 + n2 + n∥huλ − uλh∥) = 1 + n2.

Thus s2 + t2 + 2tn + n2 ≤ 1 + n2. Unless t = 0, we obtain a contradiction by
choosing n sufficiently large.

So far we have shown that ϕ is self-adjoint. We still want 0 ≤ ϕ(r).
Suppose 0 ≤ r ≤ 1. Let hλ = r − uλ. Then −1 ≤ −uλ ≤ hλ ≤ r ≤ 1, and
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so ∥hλ∥ ≤ 1. Now limλϕ(hλ) = ϕ(r) − 1, and since ∣ϕ(hλ)∣ ≤ 1, we have
∣ϕ(r) − 1∣ ≤ 1, from which we conclude that 0 ≤ ϕ(r) ≤ 1, which completes
the proof.

◻

11.14. Corollary. Let A be an abelian C∗-algebra and ϕ ∈ ΣA be a multiplicative
linear functional on A. Then ϕ ≥ 0.
Proof. Let (uλ)λ be an approximate identity for A. By Theorem 11.13, it suffices
to prove that

lim
λ
ϕ(uλ) = ∥ϕ∥.

Now ϕ ∈ ΣA implies that ∥ϕ∥ ≤ 1, by Proposition 5.11. Moreover, by definition,
ϕ ≠ 0. Choose a ∈ A such that ϕ(a) ≠ 0. Then a = limλ uλa, and thus

0 ≠ ϕ(a) = lim
λ
ϕ(uλ)ϕ(a).

From this it follows that limλϕ(uλ) = 1, and thus

∥ϕ∥ = 1 = lim
λ
ϕ(uλ).

This completes the proof.

◻

11.15. Corollary. Suppose A is a C∗-algebra, and ϕ,α, β ∈ A∗.

(i) If α,β ≥ 0, then ∥α + β∥ = ∥α∥ + ∥β∥.
(ii) Suppose A is unital. Then ϕ ≥ 0 if and only if ∥ϕ∥ = ϕ(eA). In particular,

ϕ is a state on A if and only if ϕ(eA) = 1 = ∥ϕ∥.

Proof.

(i) Since α,β ≥ 0, so is α + β. But then if (uλ)λ∈Λ is any approximate unit for
A,

∥α + β∥ = lim
λ

(α + β)(uλ)

= lim
λ
α(uλ) + lim

λ
β(uλ)

= ∥α∥ + ∥β∥.

(ii) This is an immediate consequence of Theorem 11.13, after observing that
uλ = eA is an approximate identity for A.

◻
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11.16. Proposition. Let A be a C∗-algebra and 0 ≤ ϕ ∈ A∗. Then for all
a, b ∈ A,

ϕ(b∗a∗ab) ≤ ∥a∗a∥ϕ(b∗b).

Proof. We claim that b∗a∗ab ≤ ∥a∗a∥b∗b, from which the above equation clearly
follows. For the sake of convenience, we shall work in Ae.

We know that a∗a ≤ ∥a∗a∥eA in Ae, and thus

b∗a∗ab ≤ b∗(∥a∗a∥eA)b = ∥a∗a∥b∗b.

Since ϕ is positive, it preserves order, and we are done.

◻

11.17. Theorem. Let A be a unital C∗-algebra. Then the state space S(A) is
a weak*-compact, convex subset of the unit ball A∗

1 of A∗.
Proof. Clearly S(A) ⊆ A∗

1 . Since A∗
1 is weak*-compact by the Banach-Alaoglu

Theorem, it suffices to show that S(A) is weak*-closed.
Suppose {ϕλ}λ∈Λ is a net in S(A) converging in the weak*-topology to ϕ ∈ A∗.

Again, the weak*-compactness of A∗
1 implies that ∥ϕ∥ ≤ 1. Moreover,

ϕ(1) = lim
λ
ϕλ(1) = 1,

and so by Corollary 11.15, ϕ ∈ S(A). Thus S(A) is weak*-closed, as required.
If ϕ1, ϕ2 ∈ S(A) and 0 < t < 1, then clearly ϕ = tϕ1 + (1 − t)ϕ2 is positive, and

ϕ(1) = 1. Since ∥ϕ∥ ≤ t∥ϕ1∥ + (1 − t)∥ϕ2∥ = 1, ϕ ∈ S(A), which is therefore convex.

◻

11.18. Our next goal is to prove that if A and B are C∗-algebras with A ⊆ B,
then every state on A can be extended to a state on B. Before doing that, let us
observe that the restriction of a state on B is not necessarily a state on A, although
it is still clearly a positive linear functional.

For example, let c denote the C∗-subalgebra of `∞(N) consisting of convergent
sequences. Then c0 = {(an)∞n=1 ∈ c ∶ limn→∞ an = 0} is a non-unital C∗-subalgebra of
c. Consider the states β1 and β2 on c, where

β1(an) = lim
n→∞

an and β2(an) = a1.

Then β = 1
2(β1 + β2) is again a state on c, by Theorem 11.17. The restriction of β

to c0 is 1
2β2, which is not a state on c0.

11.19. Theorem. Let A and B be C∗-algebras with A ⊆ B. Suppose ϕ ∈ S(A).
Then there exists β ∈ S(B) whose restriction to A coincides with ϕ.
Proof. Consider first the case where B = Ae, the unitization of A.

Here we have no choice as to the definition of β since β ∈ S(B) implies β(eB) = 1.
In other words, we must have β(a + αeB) = ϕ(a) + α. It remains only to verify that
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this β is in fact a state, which reduces to verifying that ∥β∥ = 1. Let (uλ)λ∈Λ be an
approximate unit for A. Now

∣β(a + αeB)∣ = ∣ϕ(a) + α∣
= lim

λ
∣ϕ(auλ) + αϕ(uλ)∣

= lim
λ

∣ϕ(auλ + αuλ)∣

≤ lim inf
λ

∥ϕ∥ ∥a + αeB∥ ∥uλ∥

≤ ∥a + αeB∥.

It follows that ∥β∥ ≤ 1. Since β is an extension of ϕ, it has norm at least 1, i.e.
β ∈ S(B).

Consider next the case where B is any unital C∗-algebra containing A. Then we
can assume, using the above paragraph, that A is unital as well. If ϕ ∈ S(A) and β is
any extension of ϕ to B given us by the Hahn-Banach Theorem (with ∥β∥ = ∥ϕ∥ = 1),
then ∥β∥ = 1 = ϕ(eB) = β(eB), and so β ∈ S(B).

Finally, suppose B is not unital. First we extend ϕ to a state ϕ̃ on Ae by the
first paragraph. From the second paragraph, ϕ̃ extends to a state β̃ on B̃. Let β be
the restriction of β̃ to B. Clearly β is positive, and 1 = ∥β̃∥ ≥ ∥β∥ ≥ ∥ϕ∥ = 1, since β
is an extension of ϕ. Thus β ∈ S(B).

◻

11.20. Corollary. Suppose that A and B are C∗-algebras and that A ⊆ B. Then
every positive linear functional on A extends to a positive linear functional on B with
the same norm.
Proof. If 0 < ϕ is a positive linear functional on A, then α = ϕ/∥ϕ∥ is a state on A,
which extends to a state β on B by Theorem 11.19 above. Hence ∥ϕ∥ β extends ϕ.

◻

11.21. Proposition. If A is an ideal of a C∗-algebra B, then any positive linear
functional ϕ on A extends in a unique way to a positive linear functional β on B
with ∥β∥ = ∥ϕ∥.
Proof. Suppose A ⊆ B is an ideal. From Corollary 11.20, given 0 ≤ ϕ ∈ A∗, we can
find 0 ≤ γ1 ∈ B∗ so that ∥γ1∥ = ∥ϕ∥ and γ1∣A = ϕ. Let γ2 be any positive extension of
ϕ to B with ∥γ2∥ = ∥ϕ∥. Let (uλ)λ be an approximate identity for A.

Then limλ γ2(1 − uλ) = 0. Moreover, (1 − uλ)2 ≤ (1 − uλ), and so

lim
λ
γ2((1 − uλ)2) = 0.
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For all b ∈ B,

∣γ2(b) − γ2(uλb)∣2 = ∣γ2((1 − uλ)b)∣2

≤ γ2((1 − uλ)2) γ2(b∗b)

by the Cauchy-Schwarz inequality. It follows that limλ ∣γ2(b) − γ2(uλb)∣ = 0, so that
γ2(b) = limλ γ2(uλb).

Since A is an ideal, we have uλb ∈ A, and hence γ2(b) = limλϕ(uλb). In particular,
the values of γ on B are completely determined by the values of ϕ on A, and so γ1

is unique.

◻

11.22. Proposition. Let A be a C∗-algebra and 0 /= n ∈ A be normal.

(a) If τ ∈ S(A), then τ(n) ∈ co(σ(n)), the closed convex hull of the spectrum
of n.

(b) There exists τ ∈ S(A) such that ∣τ(n)∣ = ∥n∥.

Proof.

(a) First recall that the closed convex hull of a compact subset subset Ω ⊆ C is
the intersection of all closed disks which contain Ω.

Suppose that τ ∈ S(A) and that τ(n) /∈ co(σ(n)). Then there exists
z0 ∈ C and r > 0 so that σ(n) ∈ D(z0, r) ∶= {λ ∈ C ∶ ∣z0 − λ∣ ≤ r}, but
∣τ(n) − z0∣ > r. Let τ̃ denote the positive extension of τ to Ae, with ∥τ̃∥ =
∥τ∥ = 1. Let e denote the identity in Ae. Now n − z0e is normal and
σ(n − z0e) = σ(n) − z0 ⊆D(0, r), so that

∥n − z0e∥ = spr(n − z0e) ≤ r,
while ∣τ̃(n − z0e)∣ = ∣τ̃(n) − z0∣ > r ≤ ∥n − z0e∥, implying that the extension
τ̃ has norm greater than one, a contradiction since ∥τ̃∥ = ∥τ∥ = 1.

(b) We may assume that n /= 0. Now C∗
0 (n) ≃∗ C0(σ(n)/{0}). Let λ ∈ σ(n)/{0}

such that ∣λ∣ = spr(n) = ∥n∥. Let τ ∈ ΣC∗

0 (n) be the corresponding multi-
plicative linear functional, so that

τ(m) = [Γ(m)](λ), m ∈ C∗
0 (n).

Then τ ∈ S(A) and

∣τ(n)∣ = ∣[Γ(n)](λ)∣ = ∥n∥.
◻

The GNS Construction.

11.23. We have defined a C∗-algebra as an involutive Banach algebra A which
satisfies the C∗-equation ∥a∗a∥ = ∥a∥2 for all a ∈ A. We have seen that every
norm-closed, self-adjoint subalgebra of B(H) is a C∗-algebra. For a period of time,
the former were referred to as “B∗-algebras”, while the latter were referred to as
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“concrete B∗-algebras”, or “C∗-algebras”. In this section we prove that every C∗-
algebra of operators is isometrically ∗-isomorphic to a C∗-algebra of operators on
a Hilbert space, a result known as the Gelfand-Naimark-Segal Construction.
This reconciled the two notions, and the name C∗-algebra won out.

11.24. Definition. A ∗-representation of a C∗-algebra A is a pair (H, %)
where

% ∶ A→ B(H)
is a ∗-homomorphism. The representation is said to be faithful if % is injective.

A cyclic vector for the representation is a vector ν ∈ H for which %(A)ν =
{%(a)ν ∶ a ∈ A} is dense in H. The representation (H, %) is said to be cyclic if it
admits a cyclic vector ν, in which case we shall often write (H, %, ν) to emphasize
the fact that ν is cyclic for (H, %).

We note that it is common to refer to % as the representation, and to apply
adjectives such as “faithful” or “cyclic” to %.

11.25. Example.

(a) Let A = C([0,1]), and H = L2([0,1], dx), where dx denotes Lebesgue mea-
sure on the interval [0,1]. Then (H, %) is a representation of A, where

%(f) =Mf , f ∈ C([0,1])

and Mfg = fg, g ∈ H. Since ∥Mf∥ = ∥f∥∞ by Example 6.7, % is injective,
and hence (H, %) is faithful.

Consider the constant function ν(x) = 1, x ∈ [0,1] as an element of H.
(Strictly speaking, of course, ν is an equivalence class of this function in
L2([0,1], dx).) For any a ∈ A, %(a)ν = a, and so %(A)ν = C([0,1]), which is
dense in L2([0,1], dx). Thus ν is cyclic for (H, %).

(b) LetH be a separable complex Hilbert space with orthonormal basis {en}∞n=1.
Let A = K(H), and consider the representation

% ∶ A → B(H(2))
K ↦ K ⊕K.

Let ν = e1 ⊕ e2 ∈ H(2). For each y, z ∈ H, y ⊗ e∗1 and z ⊗ e∗2 ∈ K(H), being
rank one operators. Then

%(y ⊗ e∗1)(ν) = y ⊕ 0
%(z ⊗ e∗2)(ν) = 0⊕ z

and so H(2) = %(A)ν, i.e. ν is cyclic for (H(2), %).
(c) Let A = C([0,1]) once again and let H = C. Then (C, %) is a representation,

where %(f) = f(1), f ∈ C([0,1]). Note that (C, %) is not faithful, since, for
example, if g(x) = 1 − x, x ∈ [0,1], then g /= 0, but %(g) = g(1) = 0.
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(d) With A as above, consider H = C3 along with the representation

% ∶ C([0,1]) ↦ B(C3)
f ↦ f(0)⊕ f(0)⊕ f(1).

We leave it as an exercise for the reader to verify that (H, %) is not
cyclic.

11.26. Let A be a C∗-algebra. We now describe a process that allows us to
identify a certain quotient of A by a closed left ideal with a pre-Hilbert space.

Suppose 0 ≤ ϕ ∈ A∗. Recall from paragraph 11.10 that we obtain a pseudo-inner
product on A via

[a, b] ∶= ϕ(b∗a).
Let L = {m ∈ A ∶ [m,m] = 0}. It follows from the Cauchy-Schwarz Inequality
(Lemma 11.11) that m ∈ L if and only if [m,b] = 0 for all b ∈ A. In particular, if
m1,m2 ∈ L and λ ∈ C, b ∈ A, then [λm1 +m2, b] = λ[m1, b] + [m2, b] = 0 + 0, so that
L is easily seen to be a subspace of A. Moreover, by Paragraph 11.10 (iv), if m ∈ L
and a ∈ A, then [am,am] = [m,a∗am] = 0 from above, and so am ∈ L. Thus L is in
fact a left ideal of A.

It is routine to verify that A/L is a pre-Hilbert space when equipped with the
inner product ⟨a + L, b + L⟩ ∶= [a, b] ∶= ϕ(b∗a). Furthermore, we can define a left
module action of A upon A/L via

a ○ (x +L) = ax +L, a ∈ A, x +L ∈ A/L.
This map is well-defined because if x +L = y +L, then x − y ∈ L. Since this latter is
a left ideal of A, ax − ay ∈ L, and so ax +L = ay +L.

11.27. Theorem. [The Gelfand-Naimark-Segal Construction.] Let A be
a C∗-algebra and 0 ≤ ϕ ∈ A∗. Then there exists a cyclic representation (H, %, ν) of

A where ν is a cyclic vector satisfying ∥ν∥ = ∥ϕ∥
1
2 and

⟨%(a)ν, ν⟩ = ϕ(a), a ∈ A.

Proof. Using the notation above, let H denote the completion of the pre-Hilbert
space A/L, where L = {m ∈ A ∶ ϕ(m∗m) = 0}. For a, x ∈ A,

∥a ○ (x +L)∥2 = ∥ax +L∥2

= ⟨ax +L, ax +L⟩
= [ax, ax]
= ϕ(x∗a∗ax)
≤ ∥a∗a∥ ϕ(x∗x)
= ∥a∥2 [x,x]
= ∥a∥2 ∥x +L∥2,
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and so if we define
%0(a) ∶ A/L → A/L

x +L ↦ ax +L
then ∥%0(a)∥ ≤ ∥a∥ and therefore %0(a) extends to a bounded linear map %(a) on H.
It is now routine to verify that a↦ %(a) is a linear homomorphism of A into B(H).

Also,

⟨%(a∗)x +L, y +L⟩ = [a∗x, y] = [x, ay] = ⟨x +L, %(a)y +L⟩
for all x, y, a ∈ A, and so by the density of A/L in H, we see that

⟨%(a∗)ξ1, ξ2⟩ = ⟨ξ1, %(a)ξ2⟩ for all ξ1, ξ2 ∈H.
Hence %(a∗) = %(a)∗ for all a ∈ A, which implies that (H, %) is a representation of A.

Let (uλ)λ be an approximate identity for A. Then (uλ + L)λ is a net of vectors
in the unit ball of H. Furthermore, since (uλ)λ is increasing, so is (ϕ(uλ))λ in [0,1].
Given 0 < ε < 1, choose λ0 so that λ ≥ λ0 implies that 0 ≤ ∥ϕ∥ − ϕ(uλ) < ε/2. If
β ≥ α ≥ λ0, then

∥(uβ +L) − (uα +L)∥2 = [(uβ − uα), (uβ − uα)]
= ϕ((uβ − uα)2)
≤ ϕ(uβ − uα)
< ∣∥ϕ∥ − ϕ(uβ)∣ + ∣∥ϕ∥ − ϕ(uα)∣
< ε.

Thus (uλ + L)λ is Cauchy in the complete space H, and therefore it converges to
some vector ν in the unit ball of H. Also,

∥ν∥2 = lim
λ

[uλ +L, uλ +L] = lim
λ
ϕ(u2

λ) = ∥ϕ∥,

since (u2
λ)λ is also an approximate identity for A.

For any a ∈ A,

%(a)ν = lim
λ
%(a)(uλ +L)

= lim
λ
auλ +L

= a +L.

Thus %(A)ν = A/L =H, and therefore ν is indeed a cyclic vector for (H, %).
Finally,

⟨%(a)ν, ν⟩ = ⟨a +L, ν⟩
= lim

λ
⟨a +L, uλ +L⟩

= lim
λ

[a, uλ]

= lim
λ
ϕ(u∗λa)

= ϕ(a)
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for all a ∈ A, completing the proof.

◻

11.28. Let (Hλ, %λ)λ be a family of representations of a fixed C∗-algebra A. Let
H = ⊕λHλ denote the Hilbert space direct sum of the family (Hλ)λ, and for a ∈ A,
define

% ∶ A → B(H)
a ↦ ⊕λ%λ(a).

Since each %λ is a representation, ∥%λ∥ ≤ 1, and thus ∥%∥ ≤ 1. It is now routine to
verify that (H, %) is a representation of A, call the direct sum of (Hλ, %λ)λ and
denoted by

(H, %) = ⊕λ(Hλ, %λ).
Clearly ∥%(a)∥ = supλ ∥%λ(a)∥ for all a ∈ A.

In particular, for each τ ∈ S(A), the state space of A, we have constructed a
cyclic representation (Hτ , %τ , ντ) via the GNS Construction (Theorem 11.27).

11.29. Definition. The universal representation of a C∗-algebra A is the
direct sum representation

(H, %) = ⊕{(Hτ , %τ , ντ) ∶ τ ∈ S(A)}.

11.30. Theorem. [Gelfand-Naimark.] Let A be a C∗-algebra. The uni-
versal representation (H, %) is a faithful representation of A, and hence A is isomet-
rically ∗-isomorphic to a C∗-algebra of operators on H.
Proof. Let a ∈ A. Then n = a∗a ≥ 0, and so by Proposition 11.21, there exists
a state τ ∈ S(A) with ∣τ(n)∣ = ∥n∥. Let (Hτ , %τ , ντ) be the corresponding cyclic

representation and observe that ∥ν∥ = ∥τ∥
1
2 = 1.

Now ∥n∥ = ∣τ(n)∣ = ∣⟨%τ(n)ντ , ντ ⟩∣ ≤ ∥%τ(n)∥ ≤ ∥n∥, and so ∥n∥ = ∥%τ(n)∥.
It follows that

∥%(a)∥2 = ∥%(a)∗%(a)∥ = ∥%(a∗a)∥
= ∥%(n)∥ ≥ ∥%τ(n)∥
= ∥n∥ = ∥a∗a∥
= ∥a∥2.

Thus ∥a∥ ≤ ∥%(a)∥. Since ∥%∥ ≤ 1, ∥%(a)∥ ≤ ∥a∥, and thus % is isometric.

◻
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Supplementary Examples

S11.1. Example. In progress.
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Appendix

A11.1. In progress.
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Exercises for Chapter 11

Question 1. In progress.



CHAPTER 12

von Neumann algebras

Health nuts are going to feel stupid someday, lying in hospitals, dying
of nothing.

Redd Foxx

Basic theory.

12.1. In this Chapter, we study a class of concrete C∗-algebras which are closed
in a second, weaker topology than the norm topology. These are the so-called von
Neumann algebras. While various important and deep structure theorems for these
algebras (based upon the projections which can be found in the algebra) exist, we
shall restrict ourselves to that part of the theory necessary for us to prove the
celebrated Spectral Theorem for normal operators.

Before doing so, we remind the reader about how one constructs locally convex
space topologies (LCS topologies) on a vector space from a separating family of
seminorms. (Full details, including all proofs, may be found in [35].) But first we
recall that a function p ∶ V → R is said to be a seminorm on the complex vector
space V if

● p(x) ≥ 0 for all x ∈ V;
● p(λx) = ∣λ∣p(x) for all λ ∈ C, x ∈ V; and
● p(x + y) ≤ p(x) + p(y) for all x, y ∈ V.

Thus the only thing distinguishing a norm from a seminorm is that if µ is a norm
on V, then µ(x) = 0 implies that x = 0, which we do not necessarily have in the case
of seminorms. Indeed, if we fix x0 ∈ [0,1], then the map

px0 ∶ C([0,1],C) → R
f ↦ ∣f(x0)∣

is a prototypical example of a seminorm which is not a norm.
A family {pλ ∶ λ ∈ Λ} of seminorms on V is said to be separating if for all

0 ≠ x ∈ V, there exists λ ∈ Λ such that pλ(x) ≠ 0.
We mention in passing that the definition of a seminorm can be easily modified

to apply to real vector spaces.

211
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12.2. Let Γ be a family of seminorms on a vector space V. For F ⊆ Γ finite,
x ∈ V and ε > 0, set

N(x,F, ε) = {y ∈ V ∶ p(x − y) < ε, p ∈ F}.

Permitting ourselves a slight abuse of notation, we shall write N(x, p, ε) in the case
where F = {p}.

12.3. Theorem. If Γ is a separating family of seminorms on a vector space V,
then

B = {N(x,F, ε) ∶ x ∈ V, ε > 0, F ⊆ Γ finite}
is a base for a locally convex topology T on V. Moreover, each p ∈ Γ is T -continuous.

12.4. The above result says that a separating family of seminorms on a vector
space V gives rise to a locally convex topology on V. The next result shows that all
locally convex spaces arise in this manner.

12.5. Theorem. Suppose that (V,TV) is a LCS. Then there exists a separating
family Γ of seminorms on V which generate the topology TV .

12.6. Proposition. Let V be a vector space and Γ be a separating family of
seminorms on V. Let T denote the locally convex topology on V generated by Γ.

A net (xλ)λ in V converges to a point x ∈ V if and only if

lim
λ
p(x − xλ) = 0 for all p ∈ Γ.

Proof.

● Suppose first that (xλ)λ converges to x in the T -topology. Given p ∈ Γ and
ε > 0, the set N(x, p, ε) ⊆ T and so there exists λ0 so that λ ≥ λ0 implies
that xλ ∈ N(x, p, ε). That is, λ ≥ λ0 implies that p(x − xλ) < ε. Thus
limλ p(x − xλ) = 0.

Alternatively, one may argue as follows: suppose that (xλ)λ converges
to x in the T -topology. Given p ∈ Γ, we know that p is continuous in the
T -topology by Theorem 12.3. Since limλ x − xλ = 0,

lim
λ
p(x − xλ) = p(lim

λ
(x − xλ)) = p(0) = 0.

● Conversely, suppose that limλ p(x − xλ) = 0 for all p ∈ Γ. Let U ∈ Ux
is the T -topology. Then there exist p1, p2, ..., pm ∈ Γ and ε > 0 so that
N(x,{p1, p2, ..., pm}, ε) ⊆ U . For each 1 ≤ j ≤ m, choose λj so that λ ≥ λj
implies that pj(xλ − x) < ε. Choose λ0 ≥ λ1, λ2, ..., λm. If λ ≥ λ0, then
pj(xλ − x) < ε for all 1 ≤ j ≤ m so that xλ ∈ N(x,{p1, p2, ..., pm}, ε) ⊆ U .
Hence limλ xλ = x in (V,T ).

◻
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12.7. Example. Let H = `2(N) and recall that H is a Hilbert space when
equipped with the inner product ⟨(xn), (yn)⟩ = ∑∞n=1 xnyn.

Recall also that B(H) is a normed linear space with the operator norm ∥T ∥ ∶=
sup{∥Tx∥ ∶ x ∈H, ∥x∥ ≤ 1}.

From above, we see that the norm topology on B(H) admits as a nbhd base at
T ∈ B(H) the collection

{N(T, ∥ ⋅ ∥, ε) ∶ ε > 0} = {Vε(T ) ∶ ε > 0},

and that this is the locally convex topology generated by the separating family
Γ = {∥ ⋅ ∥} of (semi)norms.

Convergence of a net of operators (Tλ)λ to T ∈ B(H) in the norm topology (i.e.
limλ ∥Tλ − T ∥ = 0) should be thought of as uniform convergence on the closed unit
ball of H.

This is certainly not the only interesting topology one can impose upon B(H).
Let us first consider the topology of “pointwise convergence”.

The strong operator topology (SOT).
For each x ∈H, consider

px ∶ B(H) → R
T ↦ ∥Tx∥.

Then

(i) px(T ) ≥ 0 for all T ∈ B(H);
(ii) px(λT ) = ∥λTx∥ = ∣λ∣ ∥Tx∥ = ∣λ∣ px(T ) for all λ ∈ K;
(iii) px(T1 + T2) = ∥T1x + T2x∥ ≤ ∥T1x∥ + ∥T2x∥ = px(T1) + px(T2),

so that px is a seminorm on B(H) for each x ∈H.
In general, px is not a norm because we can always find T ∈ B(H) so that 0 /= T

but px(T ) = 0. Indeed, let y ∈ H with 0 /= y and y ⊥ x. Define Ty ∶ H → H via
Ty(z) = ⟨z, y⟩y. Then ∥Ty(z)∥ ≤ ∥z∥ ∥y∥2 by the Cauchy-Schwarz Inequality and
in particular Ty(y) = ∥y∥2y /= 0, but Ty(x) = ⟨x, y⟩y = 0y = 0. Thus 0 /= Ty but
px(Ty) = 0.

On the other hand, if 0 /= T ∈ B(H), then there exists x ∈H so that Tx /= 0. Thus
px(T ) = ∥Tx∥ /= 0, proving that ΓSOT ∶= {px ∶ x ∈H} separates the points of B(H).

The locally convex topology on B(H) generated by ΓSOT is called the strong
operator topology and is denoted by SOT.

By Proposition 12.6 above, we see that a net (Tλ)λ ∈ B(H) converges to T ∈ B(H)
in the SOT if and only if

lim
λ
px(Tλ − T ) = lim

λ
∥Tλx − Tx∥ = 0 for all x ∈H.

Thus the SOT is the topology of pointwise convergence. That is, it is the weakest
topology that makes all of the evaluation maps T ↦ Tx, x ∈H continuous.

A nbhd base for the SOT at the point T ∈ B(H) is given by the collection

{N(T,{x1, x2, ..., xm}, ε) ∶m ≥ 1, xj ∈H,1 ≤ j ≤m,ε > 0}
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where, for m ≥ 1, F ∶= {xj ∈H ∶ 1 ≤ j ≤m} and ε > 0, we have

N(T,F, ε) = {R ∈ B(H) ∶ ∥Rxj − Txj∥ < ε, 1 ≤ j ≤m}.

The weak operator topology (WOT).
Next, for each pair (x, y) ∈H ×H, consider the map

qx,y ∶ B(H) → R
T ↦ ∣⟨Tx, y⟩∣.

Again, it is routine to verify that each qx,y is a seminorm but not a norm on B(H).
The locally convex topology on B(H) generated by ΓWOT ∶= {qx,y ∶ (x, y) ∈H×H}

is called the weak operator topology on B(H) and is denoted by WOT.
A net (Tλ)λ ∈ B(H) converges to T ∈ B(H) in the WOT if and only if

lim
λ

∣⟨(Tλ − T )x, y⟩∣ = lim
λ

∣⟨Tλx, y⟩ − ⟨Tx, y⟩∣ = 0

for all x, y ∈H. In other words, the WOT is the weakest topology that makes all of
the functions T ↦ ⟨Tx, y⟩, x, y ∈H continuous.

A nbhd base for the WOT at the point T ∈ B(H) is given by the collection

{N(T,{x1, x2, ..., xm, y1, y2, ..., ym}, ε) ∶m ≥ 1, xj , yj ∈H,1 ≤ j ≤m,ε > 0},

where, for m ≥ 1, F ∶= {(xj , yj) ∈H ×H ∶ 1 ≤ j ≤m} and ε > 0, we have

N(T,F, ε) = {R ∈ B(H) ∶ ∣⟨Rxj − Txj , yj⟩∣ < ε, 1 ≤ j ≤ m}.

12.8. Example. Let H = Cn for some n ≥ 1. Since a finite-dimensional (real
or) complex vector space admits at most one topology making it into a topological
vector space (see [35]), the WOT, SOT and norm topologies on B(H) all coincide.

12.9. Example. Let H be a separable Hilbert space with orthonormal basis
{en}∞n=1. Let Pn denote the orthogonal projection onto the span of {e1, e2, ..., en},
n ≥ 1. Then the sequence {Pn}∞n=1 converges to the identity in the SOT.

Indeed, if x ∈H, say x = ∑k xkek, then ∥x−Pnx∥ = ∥∑∞k=n+1 xkek∥ = (∑∞k=n+1 ∣xk∣2)
1
2

and this tends to 0 as n tends to infinity.

12.10. Remark. In infinite-dimensional Hilbert spaces, the SOT, WOT and
norm topologies are all distinct. For example, if H is separable and infinite di-
mensional with orthonormal basis {en}∞n=1, and if Fn = e1 ⊗ e∗n, then it is easy to
verify that SOT-limn Fn = 0 but ∥Fn∥ = 1 for all n ≥ 1, while if Gn = en ⊗ e∗1 , then
WOT-limnGn = 0, while ∥Gne1∥ = 1 for all n ≥ 1, so that SOT-limnGn /= 0.

These examples can easily be adapted to non-separable spaces.
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12.11. Proposition. Let H be a Hilbert space and let A,B ∈ B(H) be fixed.
Then each of the functions

(i)
σ ∶ B(H) × B(H) → B(H)

(X,Y ) ↦ X + Y ;

(ii)
µ ∶ C × B(H) → B(H)

(z,X) ↦ zX
;

(iii)
λA ∶ B(H) → B(H)

X ↦ AX
;

(iv)
ρB ∶ B(H) → B(H)

X ↦ XB
;

(v)
α ∶ B(H) → B(H)

T ↦ T ∗
.

is continuous in the WOT. The first four are also SOT-continuous, while the ad-
joint operation α is not SOT continuous.
Proof. That σ and µ are both WOT- and SOT-continuous is clear, since they are
LCS, and thus topological vector space topologies. The remaining items are left as
an exercise for the reader.

◻

12.12. Definition. Let H be a Hilbert space. Then a von Neumann algebra
(also called a W ∗-algebra) M is a C∗-subalgebra of B(H) which is closed in the
WOT.

We remark that some authors require that the algebra M contain the identity
operator. As we shall see, every von Neumann algebra contains a maximal projection
which serves as an identity for the algebra as a ring. By restricting our attention to
the range of that projection, we can then assume that the identity operator lies in
M.

12.13. Example. IfH is a Hilbert space, then B(H) is a von Neumann algebra.

12.14. Proposition. Let H be a Hilbert space and A ⊆ B(H) be a self-adjoint

subalgebra. Then AWOT
is a von Neumann algebra. If A is abelian, then so is

AWOT
.

Proof. Suppose that (Aα)α∈Λ and (Bβ)β∈Γ are nets in A with WOT-limαAα = A
and WOT-limβ Bβ = B. Now Λ×Γ is a directed set with the lexicographic order, so
that (α1, β1) ≤ (α2, β2) if α1 < α2, or α1 = α2 and β1 ≤ β2. If we set Aα,β = Aα, Bα,β =
Bβ for all α,β, then limα,β Aα,β = A and limα,β Bα,β = B. By Proposition 12.11, for

all z ∈ C, zA +B = WOT − limα,β zAα,β +Bα,β ∈ A
WOT

.
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Next, for each β ∈ Γ, ABβ = WOT- limαAαBβA
WOT

, and thus

WOT- lim
β
ABβ = AB ∈ AWOT

.

Thus AWOT
is an algebra. Since the adjoint operation is continuous in the WOT,

and since A is self-adjoint, Aα ↦WOT A implies A∗
α ↦WOT A∗, and so A∗ ∈ AWOT

.

Hence AWOT
is a von Neumann algebra.

Suppose A is abelian. For all β ∈ Γ and x, y ∈H,

⟨ABβx, y⟩ = WOT − limα⟨AαBβx, y⟩
= WOT − limα⟨BβAαx, y⟩
= WOT − limα⟨Aαx,B∗

βy⟩
= ⟨Ax,B∗

βy⟩ = ⟨BβAx, y⟩.

Thus ABβ = Bβ A for all β ∈ Γ. The same argument then shows that AB = BA, and

so AWOT
is abelian.

◻

12.15. Definition. If C ⊆ B(H) is any collection of operators, then

C′ = {T ∈ B(H) ∶ TC = CT for all C ∈ C}
is called the commutant of C.

12.16. Proposition. Let H be a Hilbert space. Then K(H)′ = CI.
Proof. Exercise.

◻

12.17. Proposition. Let H be a Hilbert space and C ⊆ B(H) be a self-adjoint
collection of operators. Then the commutant C′ of C is a von Neumann algebra.
Proof. Suppose A,B ∈ C′, z ∈ C and C ∈ C. Then (zA +B)C = zAC +BC = zCA +
CB = C(zA + B) and (AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(AB),
so that C′ is an algebra. Also, C self-adjoint implies that AC∗ = C∗A and hence
CA∗ = A∗C for all C ∈ C. Thus C′ is self-adjoint.

Finally, if Aα ∈ C′, α ∈ Λ and WOT − limαAα = A, then for all x, y ∈H,

⟨ACx, y⟩ = lim
α

⟨CAαx, y⟩

= lim
α

⟨Aαx,C∗y⟩

= ⟨Ax,C∗y⟩
= ⟨CAx, y⟩,

so that A ∈ C′ and therefore C′ is WOT-closed, which completes the proof.

◻
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12.18. Definition. A masa M in a C∗-algebra A is a maximal abelian self-
adjoint subalgebra. That is, M is a self-adjoint abelian subalgebra of A, and is not
properly contained in any abelian self-adjoint subalgebra of A.

12.19. Example. Let A =Mn(C) for some n ≥ 1. ThenDn = {diag(d1, d2, ..., dn) ∶
dk ∈ C, 1 ≤ k ≤ n} is a masa in A. We leave the verification as an exercise, although
this example will be covered by Proposition ?? below.

12.20. Proposition. Let H be a Hilbert space and M ⊆ B(H) be a self-adjoint
algebra of operators. The following are equivalent:

(a) M =M′;
(b) M is a masa.

In particular, every masa in B(H) is a von Neumann algebra.
Proof.

(a) implies (b): Since M = M′, M is abelian. Suppose M ⊆ N, where N is
abelian and self-adjoint. Then N ⊆M′, and so N ⊆M. Thus M is a masa.

(b) implies (a): Suppose that M is a masa. Let T ∈ M′, T = H + iK, where
H = (T + T ∗)/2 and K = (T − T ∗)/2i. If M ∈ M, then M∗ ∈ M, so that
TM∗ =M∗T and thus T ∗M =MT ∗ and T ∗ ∈M′. But then H,K ∈M′.

Now if N is the WOT-closed algebra generated by M and H, then N
is abelian and so N = M by maximality. Thus H ∈ M. Similarly, K ∈ M
and therefore T ∈M. That is, M′ ⊆M. Since M is abelian, M ⊆M′, from
which equality follows.

◻

Recall that a measure space (X,µ) is called a probability space if µ is a positive
regular Borel measure on X for which µ(X) = 1. Recall that the map f ↦ Mf is

an isometric embedding of L∞(X,µ) into B(L2(X,µ)). Let us use M∞(X,µ) to
denote the image of L∞(X,µ) under this embedding.

12.21. Proposition. Let (X,µ) be a probability space. Then M∞(X,µ) is a
masa in B(L2(X,µ)), and as such is a von Neumann algebra.
Proof. SinceM∞(X,µ) is self-adjoint, by Proposition 12.20, it suffices to show that
M∞(X,µ) =M∞(X,µ)′. Observe that M∞(X,µ) is abelian, and so M∞(X,µ) ⊆
M∞(X,µ)′.

Suppose T ∈ B(H) satisfies TMf =MfT for all f ∈ L∞(X,µ). Let e ∈ L2(X,µ)
denote the constant function e(x) = 1a.e., and set g = Te.

Then Tf = TMfe = MfTe = fg for all f ∈ L∞(X,µ). If we can show that
g ∈ L∞(X,µ), then it will follow from the continuity of T and the fact that L∞(X,µ)
is dense in L2(X,µ) that T =Mg.
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Let E = {x ∈X ∶ ∣g(x)∣ ≥ ∥T ∥ + 1}, and let f = χE ∈ L∞(X,µ). Then

∥Tf∥2 = ∫
X

∣fg∣2dµ

= ∫
E
∣fg∣2dµ

> ∥T ∥2 ∫
E
∣f ∣2dµ

= ∥T ∥2 ∥f∥2
2,

and so ∥f∥2
2 = 0, implying that f = 0 a.e.. Thus ∣g(x)∣ ≤ ∥T ∥ + 1 a.e., and hence g ∈

L∞(X,µ). From the argument above, T =Mg ∈M∞(X,µ), and henceM∞(X,µ)′ ⊆
M∞(X,µ).

◻

12.22. Lemma. Suppose A ⊆ B(H) is a self-adjoint algebra and x ∈ H. Let P
denote the orthogonal projection onto [Ax], the closure of Ax in H. Then P ∈ A′.
Proof. We prove that [Ax] is reducing for each element A of A. Indeed, if z ∈ [Ax],
then z = limnAnx for some sequence {An}n in A. But then Az = limnAAnx ∈ [Ax],
and A∗z = limnA

∗Anx ∈ [Ax], so that [Ax] is reducing for A by Proposition ??.
Thus AP = PAP and A∗P = PA∗P , from which PA = AP , and P ∈ A′, as

claimed.

◻

12.23. Definition. Let H be a Hilbert space and C ⊆ B(H). The kernel of C
is the set

kerC = {x ∈H ∶ Cx = 0 for all C ∈ C}.

12.24. Example.

(a) We leave it as an exercise for the reader to verify that kerK(H) = {0}.
(b) If T ∈ B(H), and C is the algebra generated by T , then kerC = kerT .

12.25. Lemma. Let A ⊆ B(H). Set A(n) = {A⊕A⊕ ...⊕A ∶ A ∈ A} ⊆ B(H(n)).

Then (A(n))′′ = {B ⊕B ⊕ ...⊕B ∶ B ∈ A′′}.
Proof. Exercise.

◻
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12.26. Theorem. [The von Neumann Double Commutant Theorem.]
Let A ⊆ B(H) be a self-adjoint algebra of operators and suppose that kerA = {0}.

Then AWOT = ASOT = A′′. In particular, if A is a von Neumann algebra, then
A = A′′.

Remark: Before proving the result, let us pause to observe what a truly remarkable
Theorem this is. Indeed, the conclusion of this Theorem allows us to identify a
topological concept, namely the closure of a given algebra in a certain topology,
with a purely algebraic concept, the second commutant of the algebra. It is difficult
to overstate the usefulness of this Theorem.

Proof. Observe that A ⊆ A′′ and that this latter is a von Neumann algebra by

Proposition 12.17. Thus AWOT ⊆ A′′. Since the strong operator topology is stronger
than the weak operator topology,

ASOT ⊆ AWOT ⊆ A′′.

It therefore suffices to prove that if B ∈ A′′, then B ∈ ASOT
. This amounts to proving

that if ε > 0 and x1, x2, ..., xn ∈ H, then there exists A ∈ A so that ∥(A −B)xk∥ < ε,
1 ≤ k ≤ n.

Let ε > 0.

(1) Case One: n = 1 Let x ∈ H. Then by Lemma 12.22, if P is the orthogonal
projection onto [Ax], P ∈ A′. Moreover, x ∈ ranP , for if C ∈ A, then
C(I −P )x = (I −P )Cx = 0, and hence (I −P )x ∈ ker A = {0}. Since P ∈ A′,
we have PB = BP , and so Bx = BPx = PBx ∈ ranP . That is, there exists
A ∈ A so that ∥Bx −Ax∥ < ε.

(2) Case Two: n > 1 Let x1, x2, ..., xn ∈H and set z = x1⊕x2⊕⋯⊕xn ∈H(n). By

Lemma 12.25, A(n) is a self-adjoint algebra of operators and it is routine
to check that ker A(n) = {0}. By Case One above, we can find A0 ∈ (A(n))′′
so that

∥(A0 −B(n))z∥ < ε.
Since (A(n))′′ = (A′′)(n), A0 = A(n) for some A ∈ A, and so we have

(∑nk=1 ∥(A −B)xk∥2)
1
2 < ε, which in turn implies that ∥(A −B)xk∥ < ε for

all 1 ≤ k ≤ n.

◻

12.27. Proposition. Let H be a Hilbert space and suppose ϕ ∶ B(H) → C is a
linear map. The following are equivalent:

(a) ϕ is SOT-continuous;
(b) ϕ is WOT-continuous;
(c) there exist {xk}nk=1, {yk}nk=1 ∈ H so that ϕ(T ) = ∑nk=1⟨Txk, yk⟩ for all T ∈
B(H).

Proof.
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(c) implies (b): this is clear from the definition of the WOT.
(b) implies (a): this follows from the fact that the WOT is weaker than the

SOT.
(a) implies (c): Let ε > 0. From the definition of a basic neighbourhood in the

SOT, we can find vectors x1, x2, ..., xn ∈H such that (∑nk=1 ∥Txk−0xk∥2)
1
2 <

ε implies ∣ϕ(T )−ϕ(0)∣ < 1. Consider
Ψ ∶ B(H) → H(n)

T ↦ (Tx1, Tx2, ..., Txn).
Then Ψ is linear and so R = ranT is a linear manifold. Consider

βR ∶ R → C
(Tx1, Tx2, ..., Txn) ↦ ϕ(T ).

Then from above it follows that βR is well-defined, is continuous, and in fact
∥βR∥ ≤ 1/ε. By the Hahn-Banach Theorem, βR extends to a continuous lin-

ear functional β ∈ (H(n))∗ ≃ H(n). By the Riesz Representation Theorem,

β(Z) = ⟨Zx, y⟩ for some y ∈H(n), say y = (y1, y2, ..., yn). In particular,

ϕ(T ) = β(Tx1, Tx2, ..., Txn)
= ⟨(Tx1, Tx2, ..., Txn), (y1, y2, ..., yn)⟩

=
n

∑
k=1

⟨Txk, yk⟩

for all T ∈ B(H).
◻

12.28. Remark. Suppose H is a separable, complex Hilbert space, T ∈ B(H)
and F ∈ F(H) is a finite rank operator. Let {eα}α be an orthonormal basis for H.
It can be shown that we can then define tr(TF ) = ∑i kαα, where [TF ] = [kα,β] with
respect to the given basis. If F = ∑ni=1 yαi ⊗ x∗αi , then

tr(TF ) =
n

∑
i=1

⟨Txαi , yαi⟩.

Thus the WOT-continuous (or SOT-continuous) linear functionals are those in-
duced by ϕF , F ∈ F(H), where ϕF (T ) = tr(TF ).

12.29. Corollary. The spaces (B(H),WOT) and (B(H),WOT) have the
same closed, convex sets.
Proof. By the Krein-Milman Theorem, the SOT-closed convex subsets are com-
pletely determined by the SOT-closed half-spaces which contain them. These in
turn are determined by the SOT-continuous linear functionals on B(H). Since the
SOT- and WOT-continuous linear functionals on B(H) coincide, every SOT-closed
convex set is also WOT-closed.

Conversely, any WOT-closed set is automatically SOT-closed, and in particular,
this applies to convex sets.

◻
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12.30. Proposition. Let M ⊆ B(H) be a von Neumann algebra. Then the unit
ball M1 of M is WOT-compact.
Proof. First note that M1 is WOT-closed, since (Tα)α ⊆ M1 and Tα → T in the

WOT implies that T ∈MWOT
and

∣⟨Tx, y⟩∣ = lim
α

∣⟨Tαx, y⟩∣ ≤ sup
α

∥Tα∥ ∥x∥ ∥y∥

for all x, y ∈H. The remainder of the proof is similar to that of the Banach-Alaoglu
Theorem.

For each x, y ∈ H, consider Ix,y = [−∥x∥ ∥y∥, ∥x∥ ∥y∥]. Let B = Πx,y∈HIx,y, and
suppose that B carries the product topology so that B is compact (since each Ix,y
clearly is). Now the map

j ∶ M1 → B
T ↦ Πx,y∈H⟨Tx, y⟩

is clearly an injective map from M1 into B. We claim that j is a homeomorphism
of (M1,WOT) with its range.

Indeed, Tα →WOT T if and only if ⟨Tαx, y⟩→ ⟨Tx, y⟩ for each x, y ∈H if and only
if j(Tα)→ j(T ) in the product topology on B.

Moreover, j(M1) is closed in B. To see this, suppose (j(Tα))α ⊆ j(M1). If
j(Tα)→ (zx,y)x,y∈H, then for each y0 ∈H,

φy0(x) ∶= zx,y0
defines a continuous linear functional on H. By the Riesz Representation Theorem,
there exists a vector T ∗y0 ∈H so that φy0(x) = ⟨x,T ∗y0⟩. It is not difficult to verify
that the function y0 ↦ T ∗y0 is linear. Moreover, ∣zx,y ∣ ≤ ∥x∥ ∥y∥ for all x, y ∈ H and
hence

∥T ∗y0∥ = sup
∥x∥=1

∣⟨x,T ∗y0⟩∣

= sup
∥x∥=1

∣zx,y0 ∣

≤ ∥x∥ ∥y0∥ = ∥y0∥.

Hence ∥T ∥ = ∥T ∗∥ ≤ 1.
Clearly ⟨Tαx, y⟩ ↦ zx,y = ⟨x,T ∗y⟩ = ⟨Tx, y⟩ for all x, y ∈ H, and so (zx,y)x,y∈H =

Πx,y = Πx,y⟨Tx, y⟩ = j(T ) ∈ ran j. Thus ran j is closed in the compact set B and
hence ran j is compact. But then (M1,WOT) is also compact, which is what we
were trying to prove.

◻

12.31. Proposition. Let (Pβ)β∈Γ be an increasing net of positive elements in
the unit ball M1 of a unital von Neumann algebra M. Then P = SOT − limβ Pβ
exists, P ∈M1 and 0 ≤ P ≤ I.
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Proof. Fix x ∈ H. Then ⟨Pβx,x⟩β is an increasing net of positive real numbers in
[0,1] and hence mx ∶= limβ⟨Pβx,x⟩ exists. Let ε > 0 and choose β0 such that β ≥ β0

implies ∣mx − ⟨Pβx,x⟩∣ < ε.
Since (Pβ)β is increasing, if β ≥ α, then Pβ − Pα ≥ 0, and so (Pβ − Pα)

1
2 ∈ M.

Moreover, 0 ≤ Pα ≤ Pβ ≤ I implies Pβ − Pα ≤ I − 0 = I, and hence (Pβ − Pα)
1
2 ≤ I. If

β ≥ α ≥ β0, then

∥(Pβ − Pα)x∥2 ≤ ∥(Pβ − Pα)
1
2 ∥2 ∥(Pβ − Pα)

1
2x∥2

= ∥Pβ − Pα∥ ⟨(Pβ − Pα)
1
2x, (Pβ − Pα)

1
2x⟩

≤ ⟨(Pβ − Pα)x,x⟩ < ε.

Hence (Pβx)β is Cauchy. Since H is complete, Px ∶= limβ Pβx exists for all
x ∈ H. It is not hard to check that P is linear, and ⟨Px,x⟩ = limβ⟨Pβx,x⟩ ≥ 0, so
that P ≥ 0. Since Pβ → P in the SOT, we also have Pβ → P in the WOT. Since the
unit ball M1 of M is WOT-compact from above, and since Pβ ∈M1 for all β, we get
P ∈M1.

◻

Kaplansky’s Density Theorem.

12.32. In order to prove our next approximation theorem, we shall require a
few auxiliary results. The first of these addresses a special case of continuity of joint
multiplication in B(H) relative to the SOT. The reader should compare the next
Proposition with Proposition 12.11 above.

12.33. Proposition. Let Ω ⊆ B(H) be a non-empty, bounded set. The map

µ ∶ Ω ×Ω → B(H)
(X,Y ) ↦ XY

is SOT-continuous.
Proof. Let ∥Ω∥∞ ∶= sup{∥T ∥ ∶ T ∈ Ω}. (We assume below that Ω ≠ {0}, otherwise
the proof is obvious.)

Let (Xλ, Yλ)λ∈Λ be a net in Ω × Ω converging to (X,Y ) ∈ B(H) × B(H) in the
product SOT-topology; i.e. SOT − limλXλ = X and SOT − limλ Yλ = Y . Let z ∈ H
and ε > 0. Then

∥XY z −XλYλz∥ ≤ ∥XY z −XλY z∥ + ∥XλY z −XλYλz∥
≤ ∥XY z −XλY z∥ + ∥Xλ∥ ∥Y z − Yλz∥.

Choose λ0 ∈ Λ such that λ ≥ λ0 implies that

● ∥X(Y z) −Xλ(Y z)∥ < ε
2 ; and

● ∥Y z − Yλz∥ <
ε

2∥Ω∥∞
.
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From this it readily follows that λ ≥ λ0 implies that

∥XY z −XλYλz∥ <
ε

2
+ ∥Ω∥∞

ε

2∥Ω∥∞
= ε.

By definition, SOT − limλXλYλ =XY .

◻

12.34. Remark. The corresponding statement for the WOT is false. Let
{en}∞n=1 be an orthonormal basis for a Hilbert space H, and let Xn ∶= e1 ⊗ e∗n,
Yn = en ⊗ e∗1 be rank-one partial isometries in B(H). Notice, in particular, that
∥Xn∥ = 1 = ∥Yn∥ for all n ≥ 1.

We leave it to the reader to verify that WOT − limnXn = 0 = WOT − limn Yn.
On the other hand,

WOT − lim
n
XnYn = WOT − lim

n
e1 ⊗ e∗1 = e1 ⊗ e∗1 ≠ 0.

Recall that the involution map ι ∶ B(H) → B(H) defined by ι(T ) = T ∗ is not
SOT-continuous. Our next result says tht if we restrict its domain to the set of
normal operators in B(H), then the restricted map is continuous. Let us write
nor(H) to denote the set of normal operators in B(H). Recall that if N ∈ NOR(H)
and x ∈ H, then ∥Nx∥ = ∥N∗x∥. Also, it is clear that if (Tλ)λ is any net converging
strongly to T ∈ B(H), then limλ ∥Tλx∥ = ∥Tx∥.

12.35. Lemma. The involution map ι○ ∶ nor(H)→ nor(H) defined by ι○(N) =
N∗ is SOT-continuous.
Proof. Let (Nλ)λ be a net of normal operators converging in the SOT to a normal
operator N , and let x ∈H. Then

∥N∗
λx −N

∗x∥2 = ⟨N∗
λx −Nλx,N

∗
λx −Nλx⟩

= ∥N∗
λx∥

2 + ∥N∗x∥2 − 2Re⟨N∗
λx,N

∗x⟩
= ∥N∗

λx∥
2 + ∥N∗x∥2 − 2Re⟨N∗x,N∗x⟩ − 2Re⟨(N∗

λ −N
∗)x,N∗x⟩

= ∥N∗
λx∥

2 − ∥N∗x∥2 − 2Re⟨x, (Nλ −N)N∗x⟩
≤ ∥Nλx∥2 − ∥Nx∥2 − 2∥x∥ ∥(Nλ −N)(N∗x)∥

Since limλ ∥Nλx∥ = ∥Nx∥, and since limλ ∥(Nλ −N)(N∗x)∥ = 0, we see that

lim
λ

∥N∗
λx −N

∗x∥ = 0,

implying that (N∗
λ)λ converges in the SOT-topology to N∗, and therefore that ι○ is

SOT-continuous.

◻
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12.36. Proposition. Let Ω ⊆ nor(H) be a non-empty bounded set, and let
p(x, y) be a polynomial in two commuting variables x and y. The map

p○ ∶ Ω → B(H)
T ↦ p(T,T ∗)

is SOT-continuous on Ω.
Proof. We leave this as an Assignment Exercise.

◻

Our next Proposition asserts that every continuous function on f ∶ C → C is
SOT-continuous as a function from a bounded set Ω of normal operators in B(H)
into nor(H).

12.37. Proposition. Let f ∶ C → C be a continuous function, and let Ω ⊆
nor(H) be a bounded set of normal operators. The map

f ∶ Ω ↦ nor(H)
N ↦ f(N)

is SOT-continuous.
Proof. Once again, we assume that Ω ≠ {0}, for otherwise the result is trivial. Let
us define ∥Ω∥∞ ∶= sup{∥M∥ ∶M ∈ Ω}. Fix M0 ∈ Ω; we shall prove SOT-continuity of
f at M0.

Let x ∈ H and ε > 0. Since the disc of radius ∥Ω∥∞ in C centred at the origin
is compact, we may apply the Stone-Weierstraß Theorem to produce a polynomial
p(z, z) which approximates f to within δ ∶= ε

3∥x∥+1 on that disc; that is,

sup{∣f(z) − p(z, z)∣ ∶ ∣z∣ ≤ ∥Ω∥∞} ≤ δ.
Observe that if M ∈ Ω, then the fact that the Gelfand Transform is isometric, coupled
with the fact that σ(M) ⊆ B(0, ∥Ω∥) ∶= {z ∈ C ∶ ∣z∣ ≤ ∥Ω∥∞} implies that

∥f(M) − p(M,M∗)∥ = sup{∣f(z) − p(z, z)∣ ∶ z ∈ σ(M)} ≤ δ.
Let (Mλ)λ∈Λ be a net in Ω converging in the SOT to M . Then

∥f(Mλ)x − f(M0)x∥ ≤ ∥f(Mλ)x − p(Mλ,M
∗
λ)x∥

+ ∥p(Mλ,M
∗
λ)x − p(M0,M

∗
0 )x∥

+ ∥p(M0,M
∗
0 )x − f(M0)x∥

≤ ∥f(Mλ) − p(Mλ,M
∗
λ)∥ ∥x∥

+ ∥p(Mλ,M
∗
λ)x − p(M0,M

∗
0 )x∥

+ ∥p(M0,M
∗
0 ) − f(M0)∥ ∥x∥

≤ δ ∥x∥ + ∥p(Mλ,M
∗
λ)x − p(M0,M

∗
0 )x∥ + δ ∥x∥

≤ ε
3
+ ∥p(Mλ,M

∗
λ)x − p(M0,M

∗
0 )x∥ + ε

3
.
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By Proposition 12.36, there exists λ0 ∈ Λ such that λ ≥ λ0 implies that

∥p(Mλ,M
∗
λ)x − p(M0,M

∗
0 )x∥ < ε

3
.

Then λ ≥ λ0 clearly implies that

∥f(Mλ)x − f(M0)x∥ < ε,

proving that f(Mλ) converges in the SOT to f(M0). That is, f is SOT-continuous
on Ω.

◻

Our immediate goal is to prove Kaplansky’s Density Theorem, which states that
if I ∈ A ⊆ B(H) is a self-adjoint algebra, then every self-adjoint operator of norm
one in the SOT-closure of A is a limit of a net of self-adjoint operators in the

unit ball of A. This is far from obvious. If T ∈ ASOT
, then any SOT-nbhd of T

contains an infinite-dimensional subspace of A, and as a result, it contains operators
of arbitrarily large norm. The above proposition and its proof required the set Ω
above to be bounded. We need a way to get around this. Our proof of Kaplansky’s
Density Theorem below is modelled after that appearing in [31].

12.38. Definition. Let H ∈ B(H) be a self-adjoint operator. The Cayley
Transform of H is the operator

UH ∶= (H − iI)(H + iI)−1 = (H + iI)−1(H − iI).

12.39. Remarks.

(a) First note that H = H∗ implies that σ(H) ⊆ R, and thus H + iI is indeed
invertible. Also, a routine calculation shows that UH is unitary. Indeed,

U∗
H = ((H + iI)−1)∗(H − iI)∗ = (H − iI)−1(H + iI) = U−1

H .

(b) Consider the continuous function γ ∶ R → T ∖ {1} defined by γ(x) = x − i
x + i

.

It is not hard to verify that γ is bijective with continuous inverse

γ−1(z) = −i(z + 1)
z − 1

.

By the continuous functional calculus (i.e. the Gelfand Transform for
normal operators), we see that UH = γ(H), and thus

H = id(H) = γ−1 ○ γ(H) = γ−1(UH).

A moment’s thought should convince the reader that if V ∈ B(H) is any
unitary operator with 1 /∈ σ(V ), then K ∶= γ−1(V ) is a self-adjoint operator
for which γ(K) = UK = V .
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(c) If x ∈ R, then ∣x + i∣ =
√
x2 + 1 ≥ 1, and thus ∣x + i∣−1 ≤ 1. Combining this

with the functional calculus and the Spectral Mapping Theorem, we see
that if H =H∗ ∈ B(H), then (H + iI)−1 is a normal operator with spectral
radius at most 1, and thus ∥(H+iI)−1∥ ≤ 1. This will be used in the Lemma
below.

12.40. Lemma. Let U(H) ∶= {U ∈ B(H) ∶ U is unitary}. The Cayley transform
map

γ ∶ B(H)sa → U(H)
H ↦ UH

is continuous in the SOT-topology.
Proof. Let H0 = H∗

0 ∈ B(H), and let (Hλ)λ∈Λ be a net of hermitian operators
tending in the SOT-topology to H0. Let x ∈H, and let ε > 0. A routine calculation
reveals that

(Hλ + iI)(UHλ −UH0)(H0 + iI) = 2i(Hλ −H0),
and so (keeping in mind that ∥(Hλ + iI)−1∥ ≤ 1),

∥γ(Hλ)x − γ(H0)x∥ = ∥UHλx −UH0x∥
= 2∥(Hλ + iI)−1(Hλ −H0)(H0 + iI)−1x∥
≤ 2∥(Hλ −H0)((H0 + iI)−1x)∥.

To prove the result, it suffices to note that we can choose λ0 ∈ Λ such that λ ≥ λ0

implies that

∥(Hλ −H0)((H0 + iI)−1x)∥ < ε
2
.

◻

12.41. Proposition. Let f ∈ C0(R,C). Then f ∶ B(H)sa → B(H) is continuous
in the SOT-topology.

Proof. Recall that the map γ ∶ R→ T∖1 defined by γ(x) = x − i
x + i

is a homeomorphism

with inverse γ−1(z) = −i(z + 1)
z − 1

. Define the function

% ∶ T → C

z ↦
⎧⎪⎪⎨⎪⎪⎩

0 if z = 1

f ○ γ−1(z) if z ≠ 1.

Since f tends to zero as ∣x∣ tends to infinity, we find that % is continuous on T. It
follows from Proposition 12.37 that % is continuous in the SOT-topology on the set
of all normal operators of norm at most 1, and more specifically on the set U(H) of
all unitary operators.

Finally, since % and γ are both SOT-continuous, it follows that their composition

f = % ○ γ
is again SOT-continuous.
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◻

12.42. Theorem. [Kaplansky’s Density Theorem.] Let H be a Hilbert
space and let I ∈ A ⊆ B(H) be a self-adjoint algebra of operators. Then

(ASOT)sa1 ⊆ (Asa1 )
SOT

.

Proof. Let H = H∗ ∈ ASOT
be an operator of norm at most one, and choose a net

(Aλ)λ in A with SOT − limλAλ = H. Since the WOT is weaker than the SOT, it
follows that

H = WOT − lim
λ
Aλ.

But then

H =H∗ = WOT − lim
λ
A∗
λ,

since the involution map ι ∶ B(H)→ B(H) defined by ι(T ) = T ∗ is WOT-continuous.
From this we conclude that

H = WOT − lim
λ

ReAλ,

and thus H ∈ (Asa)
WOT

. Now, as we saw in Corollary 12.29, (B(H),SOT) and
(B(H),WOT) have the same closed, convex sets, and since Asa is convex, it follows
that there exists a net (Hα)α in Asa which converges in the SOT to H.

Next, we wish to replace (Hα)α by a net of hermitian operators in the unit ball
of Asa.

To that end, let f ∈ C0(R,C) be any real-valued function, bounded in the uniform
norm by 1, which satisfies f(x) = x, x ∈ [−1,1]. The standard example appearing in
a number of sources is

f(x) =
⎧⎪⎪⎨⎪⎪⎩

x x ∈ [−1,1]
x−1 ∣x∣ ≥ 1.

Set Kα ∶= f(Hα) for each α. By Proposition 12.41, the net (Kα)α converges
in the SOT to f(H). But ∥H∥ ≤ 1 implies that σ(H) ⊆ [−1,1], and f(x) = x for
all x ∈ [−1,1], implying that f(H) = H. Meanwhile, Kα = f(Hα) is a self-adjoint
operator (f is real-valued!) with σ(Kα) = f(σ(Hα)) ⊆ ran f ⊆ [−1,1], from which
we deduce that ∥Kα∥ ≤ 1. Since f is continuous and f(0) = 0, we also see that

Kα = f(Hα) lies in the (non-unital) C∗-algebra generated by Hα, and thus in A∥⋅∥
.

Of course, every hermitian element of norm one in A∥⋅∥
is a norm-limit of her-

mitian elements of norm one in A (check!), and thus Kα ∈ (Asa1 )
SOT

for each α.
Since

H = f(H) = SOT − lim f(Hα) = SOT − limKα,

we have that H ∈ (Asa1 )
SOT

, which concludes the proof.

◻
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The next Corollary is also referred to as (part of) Kaplansky’s Density Theorem.

12.43. Corollary. Let H be a Hilbert space and let I ∈ A ⊆ B(H) be a self-
adjoint algebra of operators. Then

(ASOT)1 ⊆ (A1)
SOT

.

Proof. The proof of this Corollary is left as an Assignment exercise.

◻

Polar Decomposition

12.44. Given a complex number z, we can write z as a product of a positive
number (its modulus) and a complex number of magnitude one. We wish to gener-
alize this to operators on a Hilbert space. Our reason for waiting until this section
to prove the result will be made clear from Proposition 12.52.

12.45. Definition. Let H1 and H2 be Hilbert spaces and V ∈ B(H1,H2). We
say that V is a partial isometry if ∥V x∥ = ∥x∥ for all x ∈ (kerV )⊥. If kerV = {0},
we say that V is an isometry.

The space (kerV )⊥ is called the initial space of V , while ranV is called the final
space of V . Observe that ranV is automatically closed in H2.

12.46. Example. Fix n ∈ N and let H = Cn. Then V is an isometry if and only
if V is unitary.

12.47. Example. Let H be a separable Hilbert space with orthonormal basis
{en}∞n=1. Consider the unilateral forward shift Sen = en+1, n ≥ 1. Then S is an
isometry, and S∗ is a partial isometry with initial space {e1}⊥.

12.48. Proposition. Let H be a Hilbert space and H1,H2 be closed subspaces
of H with dimH1 = dimH2. Then there exists a partial isometry V ∈ B(H) with
initial space H1 and final space H2.
Proof. The fact that dim H1 = dim H2 implies that there exists an index set Λ
and orthonormal bases B1 = {bλ}λ∈Λ and B2 = {cλ}λ∈Λ for H1 and H2 respectively.
Extend B1 to an orthonormal basis B0 ∶= {bλ}λ∈Λ ∪ {eω}ω∈Ω for H, and define
V ∈ B(H) via:

V bλ ∶= cλ, λ ∈ Λ

V eω ∶= 0, ω ∈ Ω.

We leave it to the reader to verify that this map extends by linearity and continuity
to a continuous map on all of H, and that the resulting map is indeed a partial
isometry with initial space H1 and final space H2.
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◻

The next result says that an operator is determined entirely by all of its diagonal
values (relative to an arbitrary orthonormal basis).

12.49. Lemma. Let A and B ∈ B(H) and suppose that ⟨Ax,x⟩ = ⟨Bx,x⟩ for
all x ∈H. Then A = B.
Proof. The proof of this is left as an Assignment Exercise.

◻

12.50. Proposition. Let H be a Hilbert space and V ∈ B(H). The following
are equivalent:

(a) V is a partial isometry.
(b) V ∗ is a partial isometry.
(c) V V ∗ is a projection - in which case it is the orthogonal projection onto the

range of V .
(d) V ∗V is a projection, in which case it is the orthogonal projection onto the

range of V ∗.

Proof.

(a) implies (d). Let us decompose H = ranV ∗ ⊕ (ranV ∗)⊥ = ranV ∗ ⊕ ker V .
Let Q denote the orthogonal projection onto the range of V ∗. Given x ∈H,
we may write x = y + z relative to this decomposition. Note that V x = V y
and that Q∗Q = Q. For each x ∈H,

⟨V ∗V x,x⟩ = ⟨V x,V x⟩ = ⟨V y,V y⟩ = ⟨y, y⟩ = ⟨Qx,Qx⟩ = ⟨Qx,x⟩.

By Lemma 12.49, V ∗V = Q.
(d) implies (c). Suppose that V ∗V is the orthogonal projection Q onto range

V ∗. Clearly V V ∗ is self-adjoint. Furthermore,

(V V ∗)2 = V (V ∗V )V ∗ = V QV ∗ = V V ∗,

implying that P ∶= V V ∗ is a (self-adjoint) idempotent, hence a projection.
Clearly ranP ⊆ ranV , and if y ∈ ranV – say y = V x for some x ∈H, then

⟨Py, y⟩ = ⟨V V ∗(V x), (V x)⟩ = ⟨V Qx,V x⟩
= ⟨Q2x,x⟩ = ⟨Qx,x⟩
= ⟨V x,V x⟩ = ⟨y, y⟩,

so that ranP ⊇ ranV ; i.e. P is the orthogonal projection onto ranV .
(c) implies (b). Let y ∈ (ker V ∗)⊥ = ranV . Then

∥V ∗y∥2 = ⟨V ∗y, V ∗y⟩ = ⟨V V ∗y, y⟩
= ⟨y, y⟩ = ∥y∥2.

Thus ∥V ∗y∥ = ∥y∥, and V ∗ is a partial isometry.
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(b) implies (a). Combining the above implications, we now know that (a)
implies (b). That is, if V is a partial isometry, then so is V ∗. Applying
this with V replaced by V ∗ shows that if V ∗ is a partial isometry, then so
is (V ∗)∗ = V .

◻

12.51. Theorem. [Polar Decomposition.] Let H be a Hilbert space and
T ∈ B(H). There there exists a partial isometry V and a positive operator P such
that T = V P . If we further require that ker V = ker P , then V and P are unique.

Proof. Let P ∶= ∣T ∣ = (T ∗T )
1
2 . Observe first that for all x ∈H,

∥Px∥2 = ⟨Px,Px⟩ = ⟨P 2x,x⟩ = ⟨T ∗Tx,x⟩ = ⟨Tx,Tx⟩ = ∥Tx∥2.

Define V0 ∶ ranP → ranT via V0Px = Tx. If Px1 = Px2, then x1−x2 ∈ ker P = ker T ,
which proves that Tx1 = Tx2 and thus V0 is well-defined and isometric. That V0 is
linear is routine, and thus V0 extends uniquely (by continuity) to an isometric map
V1 ∶ ranP → ranT . Let H = (ranP )⊥ ⊕ ranP , and for x = y + z ∈ H (relative to this
decomposition), define V x = V1z. Then V is a partial isometry with initial space
ranP and final space ranT .

Suppose next that W is a partial isometry, 0 ≤ Q is a positive operator, kerW =
kerQ and T = WQ. Then ranW ∗ = (ker W )⊥ = (kerQ)⊥ = ranQ∗ = ranQ, so that
W ∗W is the orthogonal projection of H onto ranQ. Thus

T ∗T = QW ∗WQ = Q2,

and by the uniqueness of positive square roots, Q = P = ∣T ∣. Hence T =W ∣T ∣ = V ∣T ∣.
Thus W ∣ran ∣T ∣ = V ∣ran ∣T ∣, and since kerW = kerP = ker ∣T ∣ = ker V = (ran ∣T ∣)⊥, we
find that W = V .

◻

12.52. Proposition. Let T ∈ B(H). The unique partial isometry V with
ker V = ker T = ker ∣T ∣ appearing in the polar decomposition of the operator T = V ∣T ∣
lies in the von Neumann algebra generated by T .
Proof. Let Z ∈ C∗(T )′, so that ZT = TZ and ZT ∗ = T ∗Z. It then follows that
Z(T ∗T ) = (T ∗T )Z, and so Z commutes with ∣T ∣, since the latter is the norm-limit
of polynomials in T ∗T .

Thus
V Z ∣T ∣ = V ∣T ∣Z = TZ = ZT = ZV ∣T ∣.

● If x ∈ ran ∣T ∣, say x = ∣T ∣w, then V Zx = V Z ∣T ∣w = ZV ∣T ∣w = ZV x. By

continuity of V Z and of ZV , we see that V Zx = ZV x for all x ∈ ran ∣T ∣.
● If x ∈ (ran ∣T ∣)⊥ = ker T = ker V , then the equation TZx = ZTx = Z0 = 0

implies that Zx ∈ ker T = ker V , so

V Zx = 0 = Z0 = Z(V x) = ZV x.
It follows that V Z = ZV , so that V ∈ C∗(T )′′ =W ∗(T ).

◻
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12.53. Example. Let H be a separable Hilbert space with orthonormal ba-
sis {en}∞n=1, and define the unilateral forward shift operator Wen = 1

nen+1. Then
W is compact, and so the non-unital C∗-algebra C∗

0 (W ) generated by W satisfies
C∗

0 (W ) ⊆ K(H).
If Sen = en+1, n ≥ 1 denotes the unweighted shift and Den = 1

nen is the diagonal
operator operator whose weight sequence is that of W , then W = SD, where S
is a (partial) isometry and 0 ≤ D. Since ker D = {0} = ker S, we see that this is
the unique polar decomposition of W . While D = ∣W ∣ ∈ C∗

0 (W ), S does not lie
in C∗(W ), (the unital C∗-algebra generated by W ), since π(S) /∈ Cπ(I), where
π ∶ B(H)→ B(H)/K(H) is the canonical quotient map.

We finish this section with a proposition that was proven in one of the Assign-
ments, though at the time we did not give it its proper name.

12.54. Proposition. [The Wold Decomposition.] Let H be a Hilbert space,
and W ∈ B(H) be an isometry. Then there exist a unitary U and a cardinal number

α so that W ≃ U ⊕ S(α), where S is the forward unilateral shift operator.
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Supplementary Examples

S12.1. Example. Note that when A is a von Neumann algebra, then any
algebraic two-sided ideal is automatically self-adjoint. Indeed, if K ∈ K, a left
algebraic ideal, then we may write the polar decomposition for K, namely K = U ∣K ∣.
Since A is a von Neumann algebra, both terms of the polar decomposition of K lie
in A.

As such, U ∈ A, and so is U∗. But then U∗KU∗ = ∣K ∣U∗ =K∗ ∈ K.
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Appendix

A12.1. In progress.
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Exercises for Chapter 12

Question 1. In progress.



CHAPTER 13

The Spectral Theorem for normal operators

If any of you cry at my funeral I’ll never speak to you again.

Stan Laurel

The spectral theorem for normal operators.

13.1. In this section we extend the functional calculus for normal operators on
a separable Hilbert space beyond the continuous functional calculus we obtained in
Chapter Four via the Gelfand transform. In the present setting, we show that if H
is a separable Hilbert space and N ∈ B(H) is normal, then the unital von Neumann
algebra W ∗(N) generated by N is isometrically ∗-isomorphic to L∞(σ(N), µ), where
µ is a finite, positive, regular Borel measure with support σ(N). This identification
leads us to an L∞-functional calculus for normal operators.

13.2. Proposition. Let (X,µ) be a measure space, where µ is a finite, positive,
regular Borel measure on X. The map

% ∶ L∞(X,µ) → M∞(X,µ)
f ↦ Mf

is a homeomorphism from (L∞(X,µ),weak∗) to (M∞(X,µ),WOT).
Proof. We are required to show that a net (fα)α∈Λ in L∞(X,µ) converges in the
weak∗-topology to a function f if and only if (Mfα)α converges in the WOT to Mf .

● Suppose fα converges in the weak∗-topology to f . Then for all g ∈ L1(X,µ),

lim
α
∫
X
fαgdµ = ∫

X
fgdµ.

235
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If h1, h2 ∈ L2(X,µ), then h1h2 ∈ L1(X,µ) by Hölder’s Inequality and so

lim
α

⟨Mfαh1, h2⟩ = lim
α

⟨fαh1, h2⟩

= lim
α
∫
X
fαh1h2dµ

= ∫
X
fh1h2dµ

= ⟨fh1, h2⟩
= ⟨Mfh1, h2⟩.

That is, (Mfα) converges in the WOT to Mf .
● Conversely, if (Mfα)α is a net in M∞(X,µ) which converges in the WOT to

Mf , then given g ∈ L1(X,µ), we can find h1, h2 ∈ L2(X,µ) so that g = h1h2.
Then, as above,

lim
α
∫
X
fαh1h2dµ = lim

α
⟨Mfαh1, h2⟩

= ⟨Mfh1, h2⟩

= ∫
X
fh1h2dµ.

Thus (fα)α converges in the weak∗-topology to f .

◻

13.3. Lemma. Let X be a compact, Hausdorff space and suppose that µ is a
positive, regular Borel measure on X with µ(X) = 1. Let ε > 0 and g ∶ X → C be a
µ-integrable function. Then there exists a compact subset J ⊆X such that

(i) g∣J is bounded; and
(ii)

∫
X∖J

∣g∣dµ < ε.

Proof. For each 1 ≤ k ∈ N, define Ek = {x ∈ X ∶ k − 1 ≤ ∣g(x)∣ < k}. Each Ek is then
µ-measurable, and clearly ∪∞k=1Ek =X. Furthermore,

∑
k
∫
Ek

∣g∣dµ = ∫
∪kEk

∣g∣dµ = ∫
X

∣g∣dµ <∞,

and so there exists N ∈ N such that

∞
∑

k=N+1
∫
Ek

∣g∣dµ < ε
2
.

Let F ∶= ∪Nk=1Ek, and note that supx∈F ∣g(x)∣ ≤ N . Since µ is regular, we can find
a compact subset J ⊆ F such that µ(F ∖ J) < ε

2N .
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Clearly ∣g(x)∣ ≤ N for all x ∈ J , and

∫
X∖J

∣g∣dµ = ∫
X∖F

∣g∣dµ + ∫
F∖J

∣g∣dµ

< ε
2
+Nµ(F ∖ J)

< ε
2
+N ε

2N
= ε.

◻

13.4. Theorem. Let X be a compact, Hausdorff space and suppose that µ is a
positive, regular Borel measure on X with µ(X) = 1. Then

(i) The unit ball of C(X) is weak∗-dense in the unit ball of L∞(X,µ), and thus
(ii) C(X) is weak∗-dense in L∞(X,µ).
(iii) The set MC(X) ∶= {Mf ∶ f ∈ C(X)} is WOT-dense in M∞(X,µ).

Proof. Our proof will deal with µ-integrable functions; the translations to elements
of L1(X,µ) and L∞(X,µ) (which are equivalence classes of functions) is hopefully
clear.

(i) Let g ∶ X → C be a µ-integrable function, and let ε > 0. (In other words,
the equivalence class [g] of g lies in L1(X,µ), the pre-dual of L∞(X,µ).)

By Lemma 13.3, we can find a compact subset J ⊆ X such that g∣J is
bounded, say by N ≥ 1, and

∫
X∖J

∣g∣dµ < ε
4
.

Let f ∶ X → C be a µ-measurable function with supx∈X ∣f(x)∣ ≤ 1. (In
other words, the equivalence class [f] of f lies in the unit ball of L∞(X,µ).)

By Lusin’s Theorem 1.30, there exists a measurable subset E ⊆ X
satisfying µ(X ∖E) < ε

4N and a continuous function h ∶ X → C, such that
∥h∥∞ = supx∈X ∣h(x)∣ ≤ 1 and h(x) = f(x) for all x ∈ E.

Thus for g ∶ X → C as above, and keeping in mind that µ(J ∖ E) ≤
µ(X ∖E) < ε

4N ,

∫
X

∣f − h∣∣g∣dµ = ∫
X∖J

∣f − h∣∣g∣dµ + ∫
J∖E

∣f − h∣∣g∣dµ + ∫
E
∣f − h∣∣g∣dµ

≤ ∫
X∖J

2∣g∣dµ + ∫
J∖E

2Ndµ + ∫
E

0∣g∣dµ

< 2
ε

4
+ 2N

ε

4N
+ 0

= ε.
This completes the proof.

(ii) This follows immediately from part (i).
(iii) This follows from part (ii), combined with Proposition 13.2.

◻
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13.5. Recall that two positive measures µ1 and µ2 on a sigma algebra (X,S)
are mutually absolutely continuous if for E ∈ S, µ1(E) = 0 is equivalent to µ2(E) = 0.
We write µ1 ∼ µ2 in this case.

13.6. Theorem. Let X be a compact, metric space and µ1, µ2 be finite, pos-
itive, regular Borel measures on X. Suppose that τ ∶ L∞(X,µ1) ↦ L∞(X,µ2)
is an isometric ∗-isomorphism and τ(f) = f for all f ∈ C(X). Then µ1 ∼ µ2,
L∞(X,µ1) = L∞(X,µ2), and τ(g) = g for all g ∈ L∞(X,µ1).
Proof. Suppose that E ⊆X is a Borel set. Then τ(χE) ∈ L∞(X,µ2) is idempotent,
and hence a characteristic function, say χF (= χF (E)). If we can show that E = F
a.e. − µ2, then

µ1(E) = 0 iff χE = 0 in L∞(X,µ1)
iff τ(χE) = 0 in L∞(X,µ2)
iff χF = 0 in L∞(X,µ2)
iff µ2(F ) = 0

iff µ2(E) = 0.

From this it follows that µ1 ∼ µ2 and therefore that L∞(X,µ1) = L∞(X,µ2). Fur-
thermore, since τ then fixes all characteristic functions, it fixes their spans, which
are norm dense in L∞(X,µ1). By continuity of τ , we see that τ fixes the entire
algebra, so τ is the identity map.

Note that χX/E = 1 − χE , and hence τ(χX/E) = 1 − τ(χE) = 1 − χF = χX/F . As
such, if we can prove that E ⊆ X implies that µ2(F /E) = 0, then X/E ⊆ X implies
µ2(E/F ) = µ2((X/F )/(X/E)) = 0. Letting ∆ = (E/F )∪(F /E), we have µ2(∆) = 0,
and hence E = F a.e. − µ2.

Case One: E is compact: For each n ≥ 1, define fn ∈ C(X) as follows:

fn(x) = { 1 − n dist(x,E) if dist(x,E) ≤ 1/n
0 otherwise

Then fn ≥ χE for all n ≥ 1, and fn(x) → χE(x) as n → ∞ for all x ∈ X.
Since τ is a ∗-homomorphism, it is positive, and as such, it preserves order.
Thus τ(χE) ≤ τ(fn) for all n ≥ 1. But fn ∈ C(X) implies τ(fn) = fn so
that χF = τ(χE) ≤ fn for all n ≥ 1. Hence χF ≤ χE in L∞(X,µ2). Thus
µ2(F /E) = 0, as required.

Case Two: E ⊆ X is Borel: Since µ1, µ2 are regular, we can find an increasing
sequence (Kn)n of compact subseteq of E so that µi(E/Kn)→ 0 as n→∞,
i = 1,2. (Indeed, choose K1 so that µ1(E/K1) < 1, K2 ≥ K1 so that
µ2(E/K2) < 1/2, etc.).

Now τ preserves order, and therefore it also preserves suprema. That
is, if sup gn = g in L∞(X,µ1), then sup τ(gn) = τ(g) in L∞(X,µ2). In our
case,

supχKn = χE in L∞(X,µ1).
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Thus sup τ(χKn) = τ(χE) = χF in L∞(X,µ2). Since τ(χKn) ≤ χKn by Case
One, we have

χE = supχKn ≥ sup τ(χKn) = χF
in L∞(X,µ2), and so again, µ2(F /E) = 0, completing the proof.

◻

13.7. Definition. Let H be a Hilbert space and A ⊆ B(H) be an algebra. A
vector x ∈H is said to be cyclic for A if [Ax] =H. Also, x is said to be separating
for A if A ∈ A and Ax = 0 imply that A = 0.

13.8. Example. Let X ⊆ C be a compact set and µ be a positive regular Borel
measure with suppµ =X.

Let q(z) = z, z ∈ X, and consider Mq ∈ B(L2(X,µ)). Then e(z) = 1, z ∈ X is
cyclic for C∗(Mq). Indeed, since C∗(Mq) ≃ C(X), we get [C∗(M1)e] = [C(X)] =
L2(X,µ).

Note that e is also separating for C∗(Mq), since T ∈ C∗(Mq) implies T =Mf for
some f ∈ C(X), and hence Te = f = 0 if and only if T = 0. This is not a coincidence.

13.9. Lemma. Let H be a Hilbert space and A ⊆ B(H) be an abelian algebra.
If x is cyclic for A, then x is separating for A.
Proof. Suppose A ∈ A and Ax = 0. Then for all B ∈ A, ABx = BAx = 0. By
continuity of A, Ay = 0 for all y ∈ [Ax] =H. Thus A = 0 and x is separating for A.

◻

13.10. Theorem. [The Spectral Theorem: Cyclic Case.] Let H be a
Hilbert space and N ∈ B(H) be normal. Suppose that x ∈ H is a cyclic vector for
C∗(N). Then there exists a finite, positive, regular Borel measure µ with suppµ =
σ(N) and a unitary U ∶H → L2(σ(N), µ) so that

Γ∗ ∶ W ∗(N) ↦ B(L2(σ(N), µ))
T ↦ UTU∗

is an isometric ∗-isomorphism onto M∞(σ(N), µ). Furthermore, up to the isomor-
phism between M∞(σ(N), µ) and L∞(σ(N), µ), Γ∗∣C∗(N) = Γ, the Gelfand trans-
form.
Proof. First we observe that since C∗(N) is separable and x ∈ H is cyclic for
C∗(N), it follows that H is separable as well. Without loss of generality, we may
assume that ∥x∥ = 1.

Consider
ϕ ∶ C∗(N) → C

T ↦ ⟨Tx,x⟩.
Then ϕ is a positive linear functional. Also, Γ ∶ C∗(N) → C(σ(N)) is an isometric
∗-isomorphism, so

ϕ ○ Γ−1 ∶ C(σ(N))→ C
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is a positive linear functional on C(σ(N)). By the Riesz-Markov Theorem 1.31,
there exists a finite, positive, regular Borel measure µ on σ(N) such that

ϕ(f(N)) = ϕ ○ Γ−1(f) = ∫
σ(N)

fdµ.

We claim that suppµ = σ(N). For otherwise, there exists G ⊆ σ(N) open so
that µ(G) = 0. Choose a non-zero positive continuous function f with f ≤ χG. Then
0 /= f(N) and hence

ϕ(f(N)) = ϕ((f(N)1/2)2)
= ∥f(N)1/2x∥2

/= 0

since f(N)1/2 ∈ C∗(N) and x is cyclic, hence separating for C∗(N). But then
0 /= ϕ(f(N)) = ∫σ(N) fdµ ≤ ∫G 1dµ = µ(G) = 0, a contradiction. Thus suppµ = σ(N).

Consider
U0 ∶ C∗(N) → C(σ(N))

g(N)x ↦ g.

Then

∥g∥2
2 = ∫

σ(N)
∣g∣2dµ

= ϕ ○ (∣g∣2(N))
= ⟨∣g∣2(N)x,x⟩
= ⟨g(N)∗ g(N)x,x⟩
= ∥g(N)x∥2,

so U0 is isometric. We can and do extend U0 to an isometry U ∶ H = [C∗(N)x] →
[C(σ(N))] = L2(σ(N), µ).

Now set
Γ∗ ∶ W ∗(N) → B(L2(σ(N), µ))

T ↦ UTU∗.

Then Γ∗ is an isometric ∗-preserving map. For f, g ∈ C(σ(N)),

Γ∗(f(N))g = U f(N) (U∗g) = Uf(N)g(N)x = fg,

so that Γ∗(f(N)) =Mf . In particular, ran Γ∗ ⊇MC(X).
Now Γ∗ is WOT-WOT continuous. Indeed, suppose fα(N) → f(N) in the

WOT. Then for all g, h ∈ L2(σ(N), µ),

⟨UfαU∗(Ug), (Uh)⟩ = ⟨fαg, h⟩→ ⟨fg, h⟩ = ⟨UfU∗(Ug), (Uh)⟩.

But MC(X) is WOT-dense in M∞(X,µ) by Theorem 13.4 (iii), and thus it follows
that ran Γ∗ ⊇M∞(σ(N), µ).

◻
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13.11. We remark that the measure µ above is unique in the sense that if ν
is a second finite, positive, regular Borel measure with support equal to σ(N) and
Γ∗ν ∶ W ∗(N) → B(L2(σ(N), ν)) extends the Gelfand map as Γ∗ does, then µ ∼ ν,
L∞(σ(N), µ) = L∞(σ(N), ν), and Γ∗ν = Γ∗.

Indeed, Γ∗ν ○ (Γ∗)−1 ∶ M∞(σ(N), µ) →M∞(σ, ν) is an isometric ∗-isomorphism
which, through Γ, induces an isometric ∗-isomorphism τ from L∞(σ(N)), µ to
L∞(σ(N), ν) which fixes the continuous functions. By Theorem 13.6, τ is the iden-
tity map, so that Γ∗ν = Γ∗.

13.12. Proposition. Suppose H is a Hilbert space, A ⊆ B(H) is an abelian
C∗-algebra. Then there exists a masa M of B(H) so that A ⊆M.
Proof. This is a straightforward application of Zorn’s Lemma and the proof is left
to the reader.

◻

13.13. Theorem. Let H be a separable Hilbert space and M ⊆ B(H) be a masa.
Then M admits a cyclic vector x.
Proof. The key to the first half of the proof is that if y and z are two non-zero
vectors and z is orthogonal to [My], then [Mz] is orthogonal to [My]. This follows
from the fact that [My] is reducing for M.

Now consider the family

F = {{xα}α ∈ Λ ⊆H ∶ ∥xα∥ = 1 for all α and [Mxα1] ⊥ [Mxα2] if α1 /= α2},
partially ordered with respect to inclusion. If J = {(Jβ)β} is a chain in F, it is
routine to verify that ∪βJβ lies in F and is an upper bound for J. By Zorn’s Lemma,
F has a maximal element, say {xγ}γ∈Ξ. If H0 = ∨[Mxγ] /= H, then we can choose
a unit vector y ∈ H0. From the comment in the first paragraph, we deduce that
{xγ}γ ∪ {y} ∈ F and is greater than {xγ}γ , contradicting the maximality of {xγ}γ .
Thus ∨[Mxγ] =H.

Since M is a masa, I ∈M and so xγ ∈ [Mxγ] for each γ and thus dim [Mxγ] ≥ 1.
Since dim H = ℵ0 ≥ ∑γ dim [Mxγ], it follows that the cardinality of Ξ is at most
ℵ0. Write Ξ = {n}mn=1, m ≤ ℵ0. Let x = ∑n<m+1 xn/n. (The index set of the
sum is merely a device to allow us to handle the cases where Ξ is infinite and
where Ξ is finite simultaneously.) For each n, the orthogonal projection Pn onto
[Mxn] lies in M′ = M, so that [Mxn] = [MPnx] ⊆ [Mx] for all n < m + 1. Thus
H = ∨n<m+1[Mxn] ⊆ [Mx] ⊆H, and x is a cyclic vector for M.

◻

13.14. Corollary. Let H be a separable Hilbert space and A ⊆ B(H) be an
abelian C∗-algebra. Then A has a separating vector.
Proof. By Proposition 13.12, A ⊆M for some masa M of B(H). By Theorem 13.13,
M has a cyclic vector x, and x is separating for M by Lemma 13.9. Finally, if x is
separating for M, then trivially x is also separating for A.
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◻

13.15. Definition. Let H be a Hilbert space and M ⊆ H be a closed subspace
of H. Let PM denote the orthogonal projection of H onto M. Given T ∈ B(H), we
define the compression of T onto M to be the map

PMT ∣M ∈ B(M).
It is clear that ∥PMT ∣M∥ ≤ ∥T ∥.

Let H be a separable Hilbert space, A ⊆ B(H) be a C∗-algebra, and x ∈ H.
Denote by Hx the space Ax, and for Z ∈ B(H), denote by Zx the compression of Z
to Hx. Note that Hx is reducing for A.

13.16. Proposition. Let H be a separable Hilbert space, A ⊆ B(H) be a C∗-
algebra, and x ∈H be a separating vector for A. The map

Φ ∶ A → B(Hx)
T ↦ Tx

is an isometric ∗-isomorphism of A onto ran Φ. Moreover, σ(T ) = σ(Tx) for all
T ∈ A.
Proof. Recall from Lemma 12.22 that the orthogonal projection Px onto Hx lies in
A′, and x ∈ ranPx. From this the fact that Φ is a ∗-homomorphism easily follows.

Suppose 0 /= T ∈ A. Then Tx(x) = TPx(x) = Tx /= 0, as x is separating for
A. Thus ker Φ = 0, and so Φ is an isometric map as well. It follows that Φ(A) is
complete, and thus a C∗-algebra. In particular,

σ(T ) = σA(T ) = σΦ(A)(Φ(T )) = σB(Hx)(Tx) = σ(Tx),
completing the proof.

◻

13.17. Theorem. [The Spectral Theorem for normal operators.] Let H
be a separable Hilbert space and N ∈ B(H) be normal. Then there exists a finite,
positive, regular Borel measure µ with support equal to σ(N) and an isometric ∗-
isomorphism

Γ∗ ∶W ∗(N)→M∞(σ(N), µ)
which extends the Gelfand map Γm ∶ C∗(N)→MC(σ(N)) defined by Γm(f(N)) =Mf .

Moreover, the measure µ is unique up to mutual absolute continuity, while Γ∗m
and M∞(σ(N), µ) are unique.
Proof. By Corollary 13.14, W ∗(N) an abelian C∗-algebra implies that W ∗(N) has
a separating vector x, which we may assume has norm one. Let Hx = [W ∗(N)x],
and consider (using the same notation as before)

Φ ∶ W ∗(N) → B(Hx)
T ↦ Tx.
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By Proposition ??, Φ is an isometric ∗-isomorphism, and σ(Tx) = σ(T ) for all
T ∈ W ∗(N) - in particular, σ(Nx) = σ(N). By identifying W ∗(N) with its range

Φ(W ∗(N)), we may assume thatW ∗(N) already has a cyclic vector. But C∗(N)
WOT

=
W ∗(N), and so if T ∈ W ∗(N), then there exists a net (Tα)α ∈ C∗(N) so that
Tx = limα Tαx ∈ [C∗(N)x]. It follows that Hx = [C∗(N)x], so that x is also a cyclic
vector for C∗(N).

By the Cyclic Version of the Spectral Theorem for normal operators, Theo-
rem 13.10, we obtain a finite, positive, regular Borel measure µ with support σ(N)
so that Γ∗m ∶ W ∗(N) → B(Hx) is an isometric ∗-isomorphism. Also, ran Γ∗m =
M∞(σ(N), µ). From the proof of that Theorem, we saw that Γ∗m is WOT-WOT
continuous, and so Γ∗ = Γ∗m ○Φ is WOT-WOT continuous as well. Also, Γ∗ extends
the Gelfand map because Γ∗m does.

Finally, Φ surjective implies that ran Γ∗ =M∞(σ(N), µ). Uniqueness follows as
before.

◻

13.18. Remarks.

(i) Let H be a separable Hilbert space and N ∈ B(H) be normal. The map Γ∗

from Theorem ?? now defines L∞-functional calculus for N . That is, for
each f ∈ L∞(X,µ), we can define

f(N) ∶= (Γ∗)−1(Mf) ∈W ∗(N).

If f is continuous, then this agrees with the previously defined f(N) ∈
C∗(N).

Of great importance is the fact that if ι(z) = z for all z ∈ σ(N) is the
identity function, then ι(N) = N ; in other words, the map Γ∗ sends N to
the operator Mι, which corresponds to the L∞-function ι.

(ii) From basic measure theory, any element of L∞(X,µ) is a limit of simple
functions. Let g = ∑nk=1 αkχEk , where Ek are (without loss of generality,
mutually disjoint) measurable subsets of X. Then

g(N) =
n

∑
k=1

αkχEk(N).

But χEk = χ∗Ek = χ2
Ek

is a self-adjoint idempotent in L∞(X,µ), and thus

Qk ∶= χEk(N) is a self-adjoint projection in W ∗(N). Let f ∈ L∞(X,µ),
ε > 0, and choose a simple function gε such that

∥f − gε∥∞ < ε.

Then

∥f(N) − gε(N)∥ < ε.
In particular, this shows that every element of W ∗(N) can be approximated
by linear combinations of projections, each of which lies in W ∗(N). The
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moral of the story is that von Neumann algebras have lots and lots of
projections.

(iii) Another formulation of the Spectral Theorem for normal operators deals
with projection-valued spectral measures. The rough idea is to find a
function

E ∶ Ω → B(H)
Y ↦ EY

defined on the set Ω of Borel subsets of σ(N) such that for each Y ∈ Ω,
EY ∈ B(H) is an orthogonal projection in B(H) and for each x, y ∈ H,
the map µx,y ∶ Y ↦ ⟨EY x, y⟩ defines a complex-valued Borel measure on
σ(N). It is then possible to define ∫σ(N) fdE for each f ∈ L∞(σ(N), µ),
and N = ∫σ(N) ιdE, where ι(z) = z is the identity function on σ(N). We

refer the interested reader to Murphy’s treatment [38] of this.

Kadison’s Transitivity Theorem

13.19. In Chapter 8, we proved Jacobson’s Density Theorem, which shows
that if A is a Banach algebra, X is a Banach space and % ∶ A → B(X) is a con-
tinuous, algebraically irreducible representation of A on X, then for all choices of
N ≥ 1 vectors y1, y2, . . . , yN ∈ X and any choice of N linearly independent vectors
x1, x2, . . . , xN ∈ X, there exists a ∈ A such that %(a)xn = yn, 1 ≤ n ≤ N . We also say
that %(A) is N -transitive (for each N).

Our present goal is to exhibit of theorem of R.V. Kadison [30] from 1957, who
showed that if A is a C∗-algebra, and if % ∶ A → B(H) is a continuous, topologically
irreducible representation of A onto a Hilbert space H, then % is algebraically irre-
ducible, and as a consequence of Jacobson’s Density Theorem, it is N -transitive for
all N ≥ 1.

13.20. Lemma. Let H be a Hilbert space and F ⊆ B(H) be a self-adjoint set.
The following are equivalent.

(i) F acts topologically irreducibly on H; that is, the only invariant (closed)
subspaces of H which are invariant under F are {0} and H itself.

(ii) F′ = CI.

Proof.

(i) implies (ii). Suppose that F acts topologically transitively. Since F is
self-adjoint, F′ is a von Neumann algebra, by Proposition 12.17. From this
it is easy to see that it suffices to prove that every positive element of F′ is
scalar.

Let 0 ≤ H ∈ F′. If σ(H) is disconnected, say σ(H) = σ0 ⊍ σ1 for two
non-empty, relatively closed sets σ0 and σ1 of σ(H), then the characteristic
functions χσk are non-sclar continuous functions on σ(H), k = 1,2. It
follows that P0 ∶= χσ0 is a non-trivial projection in C∗(H) ⊆ F′, and thus
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ranP0 is a non-trivial invariant subspace for F, a contradiction. Thus σ(H)
must be connected.

If σ(H) is a singleton set, say σ(H) = {α}, then H = αI is scalar
operator and we are done.

Thus we may assume that σ(H) is the interval [δ, ∥H∥] for some ap-
propriate 0 ≤ δ < ∥H∥. By the Spectral Theorem for normal operators
(Theorem ??), we can find a finite, positive, regular Borel measure µ with
support equal to σ(H) and an isometric ∗-isomorphism

Γ∗ ∶W ∗(H)→M∞(σ(H), µ).
Choose η ∈ (δ, ∥H∥), and let Q ∶= χ[η,∥H∥](H). Then Q is a non-trivial

projection in W ∗(H) ⊆ F′. As before, this implies that ranQ is a non-
trivial invariant subspace for F, a contradiction.

We conclude that every positive operator in F′ is scalar, whence every
hermitian and therefore every operator in F′ is scalar as well.

(ii) implies (i). Suppose that F′ = CI. Let {0} ≠M ⊆H be a closed, invariant
subspace for F. Since F = F∗,M is reducible for F, and thus the projection
P of H onto M lies in F′. This implies that P = I, and thus M = H. In
other words, F acts topologically irreducibly upon H.

◻

13.21. The above result, combined with Kaplansky’s Density Theorem, is the
key to Kadison’s Transitivity Theorem below.

If A is a C∗-algebra which acts topologically irreducibly on a Hilbert space H,
then by Lemma ??, A′ = CI. It therefore follows that A′′ = B(H). By Kaplansky’s
Density Theorem, any operator T ∈ B(H) can be approximated in the SOT by an
element of A of the same norm. In particular, if x and y are two non-zero vectors in
H with ∥x∥ = 1, then T = y⊗x∗ is an operator of norm ∥T ∥ = ∥y∥ and as such, given
ε > 0, by Kaplansky’s Density Theorem there exists A ∈ A such that ∥A∥ ≤ ∥y∥ and

∥Ax − y∥ = ∥Ax − Tx∥ < ε.
Let us refer to this as the “approximation technique” in the proof below.

13.22. Theorem. [Kadison’s Transitivity Theorem.] If the C∗-algebra
A acts topologically irreducibly on a Hilbert space H, then A acts algebraically irre-
ducibly on H.
Proof. Let x, y ∈H be two non-zero vectors. We must find an operator B ∈ A such
that Bx = y. We may suppose (without loss of generality) that ∥x∥ = 1.

Let ε > 0. By the approximation technique from Paragraph ??, there exists
A0 ∈ A with ∥A0∥ = ∥y∥ such that ∥A0x − y∥ < ε

2 .

Set y1 = A0x − y, and note that ∥y1∥ < ε
21

. By a second application of the
approximation technique, there exists A1 ∈ A with ∥A1∥ ≤ ε

2 such that ∥A1x−y1∥ < ε
4 .

Let y2 = y1 −A1x = y − (A0x +A1)x and note that ∥y2∥ < ε
22

.
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In general, given A0,A1, . . . ,AN−1 ∈ A and y1, y2, . . . , yN as above with ∥yN∥ <
ε

2N
, by the approximation technique we can find an element AN ∈ A such that

∥AN∥ ≤ ∥yN∥ < ε
2N

and

∥yN −ANx∥ <
ε

2N+1
.

We set yN+1 = yN −ANx = y − (A0 +A1 +⋯AN)x.

Then
∞
∑
n=0

∥An∥ ≤ ∥A0∥ +
∞
∑
n=1

∥An∥ ≤ ∥A0∥ +
∞
∑
n=1

ε

2n
< ∥y∥ + ε <∞,

and thus B ∶= ∑∞n=0An ∈ A. Moreover,

Bx =
∞
∑
n=0

Anx = lim
N→∞

(A0 +A1 +⋯ +AN)x = lim
N→∞

y − yN+1 = y.

◻
It is sometimes the next result which is explicitly referred to as Kadison’s Tran-

sitivity Theorem.

13.23. Corollary. If the C∗-algebra A acts topologically irreducibly on a Hilbert
space H, then A is N -transitive for all N ≥ 1.
Proof. This is an now an immediate consequence of Theorem 13.23 and the Jacob-
son Density Theorem (Theorem 8.15), using the inclusion representation

% ∶ A → B(H)
A ↦ A.

◻
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Supplementary Examples

S13.1. In progress.
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Appendix

A13.1. For those who prefer to avoid Lusin’s Theorem, , we provide second,
more elementary proof of the fact that the continuous functions on a compact,
Hausdorff measure space (X,µ) are weak∗-dense in the space L∞(X,µ).

Lemma. Suppose X is a compact, Hausdorff space and that µ is a positive, regular
Borel measure on X with µ(X) = 1. If X can be written as the disjoint union of
measurable sets {Ej}nj=1, g ∈ L1(X,µ) and ∥g∥1 = 1, then for all ε > 0 there exist
compact sets K1,K2, ...,Kn such that Kj ⊆ Ej and with K = ∪nj=1Kj,

∫
X/K

∣g∣dµ < ε.

Proof. For each 1 ≤ j ≤ n, let Ej(m) = {x ∈ Ej ∶ m − 1 ≤ ∣g(x)∣ < m},m ≥ 1. Then
Ej(m) is measurable for all m,j and

1 = ∥g∥1 =
n

∑
j=1
∑
m
∫
Ej(m)

∣g∣dµ.

Let ε > 0. Then there exists N > 0 so that for each 1 ≤ j ≤ n,

∞
∑

m=N+1
∫
Ej(m)

∣g∣dµ < ε/2n.

For each 1 ≤ j ≤ n, 1 ≤ m ≤ N , the regularity of µ allows us to find a compact set
Kj(m) ⊆ Ej(m) so that µ(Ej(m)/Kj(m)) < ε/2N2n.

Let Kj = ∪Nm=1Kj(m). Since each Km(j) is compact, so is Kj . It follows that if
K = ∪nj=1Kj , then

∫
X/K

∣g∣dµ =
n

∑
j=1

∞
∑

m=N+1
∫
Ej(m)

∣g∣dµ +
n

∑
j=1

N

∑
m=1
∫
Ej(m)/Kj(m)

∣g∣dµ

≤
n

∑
j=1

ε/2n +
n

∑
j=1

N

∑
m=1

(ε/2nN2)

< ε/2 +
n

∑
j=1

N

∑
m=1

(ε/2nN2)N

= ε/2 +
n

∑
j=1

ε/2n = ε.

◻

Remark: If L is compact and K ⊆ L, then ∫X/L ∣g∣dµ ≤ ∫X/K ∣g∣dµ < ε.
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A13.2. Proposition. Let X be a compact, Hausdorff set and µ be a positive,
regular Borel measure on X with µ(X) = 1. Then the unit ball (C(X))1 of C(X) is
weak∗-dense in (L∞(X,µ))1, and as such, C(X) is weak∗-dense in L∞(X,µ).

Proof. First observe that the simple functions in (L∞(X,µ))1 are norm dense in
(L∞(X,µ))1, and hence they are weak∗-dense. As such, it suffices to prove that
each simple function can be approximated in the weak∗-topology on L∞(X,µ) by
continuous functions.

Consider ϕ(x) = ∑nj=1 ajχEj , where Ej is measurable, 1 ≤ j ≤ n and ∪nj=1Ej = X.

(We can suppose without loss of generality that the Ej ’s are also disjoint. Suppose
furthermore that ∥ϕ∥∞ ≤ 1. Let Kj ⊆ Ej be a compact set for all 1 ≤ j ≤ n. Then
K = ∪nj=1Kj is compact, and so by Tietze’s Extension Theorem we can find a function

fK ∈ C(X) so that fK(x) = aj if x ∈Kj and 0 ≤ fK ≤ 1.
Let Λ = {K ∶ K = ∪nj=1Kj ,Kj ⊆ Ejcompact}, and partially order Λ by inclusion,

so that K1 ≤K2 if K1 ⊆K2. Then Λ is a directed set and (fK)K∈Λ is a net in C(X).
Let ε > 0. For g ∈ L1(X,µ), by Lemma 13.21 and the remark which follows it, we
can find K0 ∈ Λ so that K ≥K0 implies ∫X/K ∣g∣dµ < ε/2. But then K ≥K0 implies

∣∫
X
(fK − ϕ)gdµ∣ ≤

n

∑
j=1
∫
Ej/Kj

∣fK − ϕ∣ ∣g∣dµ

≤ 2
n

∑
j=1
∫
Ej/Kj

∣g∣dµ

= 2∫
X/K

∣g∣dµ < ε,

and so weak∗-limK fK = ϕ.
Thus (C(X))1 is weak∗-dense in (L∞(X,µ))1. The second statement is straight-

forward.

◻
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Exercises for Chapter 13

Question 1. In progress.



Appendix A: The essential spectrum

A.1. Definition. Given an operator T ∈ B(H), we define the essential
spectrum of T to be the spectrum of the image π(T ) in the Calkin algebra A(H).

In this note, we wish to prove a result due to Putnam and Schechter , namely:

A.2. Theorem. Let H be a Hilbert space and T ∈ B(H). Suppose that
λ ∈ ∂σ(T ). Then either λ is isolated in σ(T ), or λ ∈ σe(T ).

The proof below uses a description of the singular points of the semi-Fredholm
domain of T , due to C. Apostol [1].

A.3. Definition. Let H be a Hilbert space and T ∈ B(H). Then the semi-
Fredholm domain ρsF(T ) of T is the set of all complex numbers λ such that
λ1 − π(T ) is either left or right invertible in the Calkin algebra.

If µ ∈ C, then µ is called a (T )−singular point if the function

λ↦ Pker(T−λ)

is discontinuous at µ. Otherwise, µ is said to be (T )−regular .
If µ ∈ ρsF(T ) and µ is singular (resp. µ is regular), then we write µ ∈ ρs

sF(T )
(resp. ρr

sF(T )).

A.4. Lemma. Let T ∈ B(H) and suppose that µ is a regular point of the
semi-Fredholm domain of T . Then

ker (T − µ)∗ ⊆ ( span {ker (T − λ) ∶ λ ∈ C})⊥.

Proof. First note that ran (T − µ) ⊇ ker (T − λ) for all λ /= µ. For if x ∈ ker (T − λ)
and λ /= µ, then (T − µ)x = (λ − µ)x and so x ∈ ran (T − µ).

Also span{ker (T − λ) ∶ λ ∈ C} = span{ker (T − λ) ∶ λ /= µ}. This follows from the
regularity of µ. Basically, we must show that ker (T −µ) ⊆ span{ker (T −λ) ∶ λ /= µ}.
But if x ∈ (T − µ) and ∥x∥ = 1, then again by the regularity of µ, for any ε > 0 we
can find λn → µ such that ∥Pker (T−λn) − Pker (T−µ)∥ < ε.
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But then

ε > ∥Pker (T−λn)x − Pker (T−µ)x∥
= ∥Pker (T−λn)x − x∥,

and so x ∈ ker (T − µ) ⊆ span{ker (T − λ) ∶ λ /= µ}.

Combining these two arguments,

ker (T − µ)∗ = (ran (T − µ))⊥

⊆ span{ker (T − λ) ∶ λ ∈ C}.

◻

A.5. Theorem. Let T ∈ B(H). Then

(i) ρr
sF(T ) is open;

(ii) ρr
sF(T ) = ρr

sF(T ∗)∗ ∶= {λ ∶ λ ∈ ρr
sF(T )};

(iii) ρr
sF(T ) has no accumulation points in ρs

sF(T ).

Proof.

(i) Let µ ∈ ρr
sF(T ) and put Y = span{ker (T − λ) ∶ λ ∈ C}. We claim that

TY ⊆ Y .
Consider y ∈ span{ker (T − λ) ∶ y ∈ C}, say y = ∑mn=1 yn with each yn ∈

ker (T − λn). Then Ty = ∑mn=1 Tyn = ∑mn=1 λnyn which lies in span{ker (T −
λn) ∶ 1 ≤ n ≤m}. By the continuity of T , we have TY ⊆ Y . Let TY = T ∣Y .

Since ker (T − µ) ⊆ Y , ran (TY − µ) is closed. To see this, suppose that
{xn} is a sequence in ran (TY −µ) such that {xn} converges to x ∈ Y . Then
there exists a sequence {yn} ⊆ Y such that (TY − µ)yn = xn.

In fact, since ker (T − µ) ⊆ Y , we can let

zn = PY ⊖ker (T−µ)yn

and then

(T − µ)zn = (TY − µ)zn = (TY − µ)yn = xn
for all n ≥ 1.

Since ran (T − µ) is closed, (i.e. µ ∈ ρsF), there exists z ∈ H such that
(T −µ)z = x. But (T −µ) is bounded below on (ker (T −µ))⊥, and therefore
(TY − µ) is bounded below on Y ⊖ ker (T − λ). From this we get a δ > 0
such that

∥xn − x∥ = ∥(T − µ)zn − (T − µ)z∥
≥ δ∥zn − z∥

for all n ≥ 1.

But then z = limn→∞ zn, and so z ∈ Y . This gives us (TY − µ)z =
(T − µ)z = x, and so x ∈ ran (TY − µ), i.e. ran (TY − µ) is closed.
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We next claim that

(TY − µ)Y ⊇ span{ker (T − λ) ∶ λ /= µ}
= span{ker (T − λ) ∶ λ ∈ C}
= Y.

The first equality we saw in the previous Lemma, while the second is
the definition of Y . As for the containment, let y ∈ span{ker (T −λ) ∶ λ /= µ},
say y = ∑mn=1 yn. Then

(TY − µ)y =
m

∑
n=1

(TY − µ)yn

=
m

∑
n=1

(λn − µ)yn

where yn ∈ ker (T − λn). Thus if z = ∑mn=1(λn − µ)−1yn, we have z ∈ Y and
(TY − µ)z = y. Since ran (TY − µ) is closed, the desired conclusion follows.

Since (TY − µ) is onto, we have µ ∈ ρr(TY ), the right resolvent set of
TY . For A ∈ B(H), define the right resolvent as

Rr(λ;A) = (λ −A)∗[(λ −A)(λ −A)∗]−1

so that
Pker (A−λ) = I −Rr(λ;A)(λ −A)

for all λ ∈ ρr(A).
Since ker (TY − µ) = ker (T − µ) for all λ ∈ C, we infer that the map

λ↦ Pker (T−µ) is continuous in an open neighbourhood Gµ of µ, as ρr(T ) is
open. Thus µ is an interior point of ρr

sF(T ), and so ρr
sF(T ) is open.

(ii) ρr
sF(T ) = ρr

sF(T ∗)∗

Let Z = (span{ker (T − λ)∗ ∶ λ ∈ C})⊥. Then the proof of (i) shows that
ρr

sF(T ) ⊆ ρr(TY ) and ρr
sF(T ∗) ⊆ ρr(T ∗Z⊥).

We now claim that ρr
sF(T ) ⊆ ρl(TY ⊥) = ρr(T ∗Y ⊥)∗. For suppose that

λ ∈ ρr(TY ). If w ∈ ker (TY ⊥ − λ), then

(T − λ) [ 0
w

] = [ Ty − λ TZ
0 TY ⊥ − λ

] [ 0
w

] = [ TZw
0

] .

Since TY − λ is right invertible, (TY − λ)R = I for some R ∈ B(Y ) and
so (TY − λ)R(−TZw) = (−TZw). Letting v = −RTZw, we have

(T − λ) [ v
w

] and so [ v
w

] ∈ ker (T − λ) ⊆ Y.

Thus w = 0. But then TY ⊥ is injective.

If λ ∈ ρr
sF(T ), then ran (TY ⊥−λ) = PY ⊥(ran (T −λ)) and since ran (T −λ)

is closed, so is ran (TY ⊥−λ). Thus λ ∈ ρr
sF(T ) implies that ker(TY ⊥−λ) = {0}

and ran (TY ⊥ − λ) is closed, so that λ ∈ ρl(TY ⊥) = ρr(T ∗Y ⊥)∗.
Similarly, ρr

sF(T ∗) ⊆ ρr(TZ)∗.
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Since the maps

λ ↦ Pker(T ∗
Y ⊥

−λ)λ ∈ ρ
r
sF(T )

λ ↦ Pker(T ∗Z−λ)
λ ∈ ρr

sF(T ∗)

are continuous, and by the first Lemma we have

ker (T − λ)∗ = ker (T ∗Y ⊥ − λ) for all λ ∈ ρr
sF(T )

ker(T − λ) = ker (TZ − λ) for all λ ∈ ρr
sF(T ∗),

we infer that

ρr
sF(T )∗ ⊆ ρr

sF(T ∗)
ρr

sF(T ∗) ⊆ ρr
sF(T )∗

so that ρr
sF(T ) = ρr

sF(T ∗)∗.

(iii) ρs
sF(T ) has no accumulation points in ρsF(T ).

Let z ∈ ρs
sF(T ). Then we may assume that z ∈ ρle(T ), for otherwise,

by (2), we may consider z and T ∗. Put Y0 = span{ker (T − λ) ∶ λ /= z}. As
TY0 − z has dense range (the proof follows as from (1)), and since ran (TY0)
is closed (i.e. z ∈ ρle(T )), we get z ∈ ρr(TY0).

Now for λ /= z, we have ker (T − λ) = ker (TY0 − λ). Since the map

λ↦ Rr(λ;TY0) λ ∈ ρr(TY0)
is continuous, we have that

λ↦ Pker(TY0−λ)
= I −Rr(λ;TY0)(λ − TY0) λ ∈ ρr(TY0)

is continous, and so
λ↦ Pker (T−λ)

is continous in some punctured neighbourhood of z. Since ρsF(T ) is open,
we have that z is an isolated point in ρs

sF(T ).
Finally, suppose ρs

sF(T ) has an accumulation point µ ∈ ρsF(T ). Then
by (1), µ ∈ ρs

sF(T ) and µ is isolated, a contradiction. This concludes the
proof.

◻
A.6. Proposition. Let H be a Hilbert space and T ∈ B(H). Then

σ(T ) = σe(T ) ∪ σp(T ) ∪ σp(T ∗)∗,

where σp(T ∗)∗ = {λ ∶ λ ∈ σp(T ∗)}.

Proof. Suppose λ /∈ ∪σp(T ) ∪ σp(T ∗)∗. Then nul(T − λ) = nul(T − λ)∗ = 0.
Thus (T −λ) is injective and has dense range. If λ /∈ σe, then (T −λ) is Fredholm

and thus ran (T − λ) is closed. But then (T − λ) is bijective and hence λ /∈ σ(T ).
Thus σ(T ) ⊆ σe(T ) ∪ σp(T ) ∪ σp(T ∗)∗. The other inclusion is obvious.
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◻
A.7. Theorem. Let T ∈ B(H) and suppose λ ∈ ∂σ(T ). Then either λ is

isolated or λ ∈ σe(T ).

Proof. Suppose λ /∈ σe(T ). Then by the above Proposition, we may assume that

λ ∈ σp(T ) (otherwise consider λ and T ∗. Since λ ∈ ∂σ(T ), we can find a sequence
{λ}n ⊆ ρ(T ) such that λ = limn→∞ λn.

Since ker (T − λn) = {0} for all n ≥ 1 while ker (T − λ) /= {0}, we conclude that
λ ∈ ρs

sF(T ). Since ρs
sF(T ) has no accumulation points in ρsF(T ), and since λ /∈ σe(T ),

we conclude that λ is isolated in σ(T ).
◻

A.8. Corollary. Let T ∈ B(H). Then σ(T ) = σe(T )∪Ω, where Ω consists of
some bounded components of the Fredholm domain of T and a sequence of isolated
points in the Fredholm domain which converge to σe(T ).





Appendix B. von Neumann algebras as dual spaces

Let H be a separable Hilbert space. In this note we show the von Neumann
algebras are precisely the class of C*-algebras of B(H) which can be identified with
the dual space of some Banach space X. Much of the material in the second half of
this note is borrowed from the book of Pedersen [40] .

Let us first recall how B(H) is itself a dual space. By K(H) we denote the set
of compact operators on H.

Given an operator K ∈ K(H), we may consider ∣K ∣ = (K∗K)
1
2 ∈ K(H). Then

∣K ∣ ≥ 0, and so by the Spectral Theorem for Compact Normal Operators, we know
that σ(∣K ∣) = {sn(K)}∞n=1, where sn(K) ≥ 0 for all n ≥ 1 and limn→∞ sn(K) = 0.

B.1. Definition. We write K ∈ C1(B(H)) and say that K is a trace class
operator on H if K is compact and ∑∞n=1 sn(K) <∞. The numbers sn = sn(K)
are called the singular numbers for K.

More generally, we write K ∈ Cp(B(H)) if ∑∞n=1 sn
p <∞.

We shall require the following two facts. Their proofs may be found in [18].

Facts:

● For each p, 1 ≤ p < ∞, Cp(B(H)) is an ideal of B(H) called the Schatten
p-ideal. Moreover, Cp(B(H)) is closed in the Cp− norm topology which is
the topology determined by the norm

∥K∥p = (
∞
∑
n=1

sn
p)

1/p
.

● If T ∈ B(H), K ∈ C1(B(H)) and {en}∞n=1 is an orthonormal basis of H, then
we can define tr(TK) = ∑∞n=1 ann, where TK = [aij]i,j≥1 with respect to the

orthonormal basis {en}∞n=1. One can then show that tr(TK) is well-defined;
that is, it is independent of the orthonormal basis chosen.

257



258 APPENDIX B. VON NEUMANN ALGEBRAS AS DUAL SPACES

From the above two facts, we see that given T ∈ B(H), we can define

φT ∶ C1(B(H)) → C
K ↦ tr(TK) .

The map that sends a trace class operator T to the functional φT proves to be an
isometric isomorphism between C1(B(H))∗ and B(H), so that B(H) is a dual space
and as such is endowed with the weak∗-topology induced by its predual, C1(B(H)).
This turns out to be precisely the ultraweak or σ-weak topology on B(H).

An alternate approach to this result is to realize C1(B(H)) as the closure of
H⊗H in B(H)∗.

In order to prove that every von Neumann algebra A is a dual space, we require
some basic results form Linear Analysis.

B.2. Definition. Let X be a Banach space and M ⊂ X, N ⊆ X∗ be linear
manifolds. Then

M⊥ = {f ∈ X∗ ∶ f(m) = 0 for all m ∈M}
⊥N = {x ∈ X ∶ g(x) = 0 for all g ∈ N}.

B.3. Proposition. Let X be a Banach space and M ⊆ X, N ⊆ X∗ be linear
manifolds. Then

(1) M⊥ is a weak∗-closed subspace of X∗.
(2) ⊥N is a norm closed subspace of X.

Proof.

(1) Suppose {fα}α∈Λ is a net in M⊥ and fα converges to f in the weak∗-
topology. Then for all x in X, limα∈Λ fα(x) = f(x), and so in particular,
f(m) = limα fα(m) = 0 for all m ∈ M , implying that f ∈ M⊥. Thus M is
weak∗-closed.

(2) If {xn}∞n=1 ⊆⊥ N and x = limn→∞ xn, then g(x) = limn→∞ g(xn) = 0 for all
g ∈ N . Thus x ∈⊥ N and the latter is norm closed.

◻

B.4. Theorem. Let X be a Banach space and let M ⊆ X and N ⊆ X∗ be
linear manifolds. Then (⊥N)⊥ is the weak∗-closure of N in X∗.

Proof. Clearly, if g ∈ N , then g(x) = 0 for all x ∈ ⊥N , and so g ∈ (⊥N)⊥. But (⊥N)⊥
is now a weak∗-closed subspace of X∗ which contains the weak∗-closure of N .

If f does not lie in the weak∗-closure of N , then by the Hahn-Banach Theorem
applied to X∗ with its weak∗-topology (which separates points from convex sets),
there exists x ∈ ⊥N such that f(x) /= 0. But then f /∈ (⊥N)⊥, completing the proof.

◻
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B.5. Theorem. Let X be a Banach space and M ⊆ X be a subspace of X.
Let π ∶ X→ X/M denote the canonical quotient map. Then the map

τ ∶ (X/M)∗ → M⊥

f ↦ f ○ π
is an isometric isomorphism.

Proof. First we shall show that τ is injective.
If τ(f) = f ○ π = g ○ π = τ(g), then

f(π(x)) = (f ○ π)(x) = (g ○ π)(x) = g(π(x)) for all x ∈ X,
and so f = g as elements of (X/M)∗.

Next we show that τ is surjective.
Let φ ∈ M⊥ and define g ∈ (X/M)∗ by g(π(x)) = φ(x). To see that g is well-

defined, note that if π(x) = π(y), then

g(π(x)) − g(π(y)) = φ(x) − φ(y) = φ(x − y).
But π(x − y) = 0 implies that x − y ∈M , and so φ(x − y) = 0. Thus g is well-defined,
and since τ(g) = g ○ π = φ, τ is surjective.

Finally we show that τ is isometric. Let τ ∈ (X/M)∗. Then

∥τ(g)∥ = ∥g ○ π∥
= sup

∥x∥=1
∥g ○ π(x)∥

= sup
∥π(x)∥=1

∥g(π(x))∥

= ∥g∥.
◻

B.6. Theorem. Let A ⊆ B(H) be a von Neumann algebra acting on a
separable Hilbert space H. Then A is isometrically isomorphic to the dual space of
some Banach space.

Proof. Let X = C1(B(H)) = (B(H))∗, and let M = ⊥A, so that M is closed in X. By
Theorem B.5 above, we have

(X/M)∗ ≃M⊥,

and this isomorphism is isometric. But then

(C1(B(H))/(⊥A))∗ ≃ (⊥A)⊥ = A−weak∗ .

But A is a von Neumann algebra and hence A is closed in the weak-operator
topology, which is weaker than the weak∗-topology on B(H). Thus A is weak∗-closed
as well, and so

(C1(B(H))/(⊥A))∗ ≃ A,
where the isomorphism is once again isometric.
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◻

To complete the analysis, one needs to show that if a C*-algebra A is isometri-
cally isomorphic to the dual space of some Banach space X, then A is a von Neumann
algebra. This is by far the more difficult implication.

We begin with the following Proposition, which may be found in [50].
B.7. Proposition. Let A be a C*-algebra and let S denote its unit sphere.

Then S has an extreme point if and only if A has an identity.

Proof. Suppose first that A has an identity, say 1. We shall show that 1 is an
extreme point in S. If 1 = (a + b)/2 with a, b ∈ S, then put c = (a + a∗)/2 and
d = (b + b∗)/2. Then 1 = (c + d)/2 with c, d ∈ S. Since d = 2 − c, d commutes with c
and both c and d are self-adjoint.

Representing the C*-algebra generated by 1, c, and d as continuous functions on
some compact Hausdorff space, we can easily see that c = d = 1. Hence a∗ = 2− a, so
that a is normal. But then a = a∗ = 1, again by norm considerations, so that b = 1
and thus 1 is an extreme point.

Conversely, suppose x is an extreme point in S. Let C0(Ω) be the C*-subalgebra
of A generated by x∗x. Then, since every C*-algebra has an approximate identity,
we can take a sequence {yn} of positive elements in C0(Ω) such that ∥yn∥ ≤ 1 for all
n, limn→∞ ∥(x∗x)yn − (x∗x)∥ = 0, and limn→∞ ∥(x∗x)y2

n − (x∗x)∥ = 0. (This last step
follows from the fact that if {yn} is a bounded approximate identity for C0(Ω), then
so is {y2

n}.)
Suppose that at some point t of Ω, x∗x takes a non-zero value less than one.

Then we can take a positive element c of C0(Ω), non-zero at t, such that γn =
yn + c, sn = yn − c, ∥(x∗x)γ2

n∥ ≤ 1, and ∥(x∗x)s2
n∥ ≤ 1. Hence xγn and xsn are in S.

On the other hand,

∥(xyn − x)∗(xyn − x)∥ = ∥x∗xy2
n − x∗xyn − x∗xyn + x∗x∥,

and this tends to 0 as n tends to ∞. Hence limn→∞ xyn = x, so that xγn → x + xc
and xsn → x − xc.

Since x + xc, x − xc ∈ S and x = (x + xc) + (x − xc)
2

, x = x + xc = x − xc. Hence

xc = 0 and so ∥cx∗xc∥ = ∥x∗xc2∥ = 0. This is a contradiction, because x∗x(t)c2(t) /= 0.
Therefore, x∗x has no non-zero value less than one in Ω. In other words, x∗x is

a projection.
Put x∗x+xx∗ = h, and let B be a maximal commutative C*-algebra of A contain-

ing h. Suppose h is not invertible in B. Then there exists a sequence {zn} of positive
elements belonging to B which satisfies ∥z2

n∥ = 1 for all n and limn→∞ ∥hz2
n∥ = 0.

Hence,

∥xzn∥ = ∥znx∗∥ = ∥znx∗xzn∥
1
2 ≤ ∥znhzn∥

1
2 → 0 (n→∞),

and analogously, ∥znx∥ = ∥x∗zn∥→ 0 (n→∞). Therefore

lim
n→∞

∥zn − xx∗zn − znx∗x + xx∗znx∗x∥ = 1.
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Now we use the symbolic notation: y(1 − x) = y − yx, (1 − x)y = y − xy.
We shall show that (1 − xx∗)A(1 − x∗x) = 0. Suppose

a ∈ (1 − xx∗)A(1 − x∗x),
and ∥a∥ ≤ 1. Then

∥x ± a∥ = ∥(x∗ ± a∗)(x ± a)∥
1
2 = ∥x∗x ± (x∗a + a∗x) + a∗a∥

1
2 .

Since a∗xx∗a = 0, x∗a = a∗x = 0 and x∗xa∗a = x∗x(1−x∗x)a∗a = 0. Hence∥x±a∥ =
max(∥x∗x∥

1
2 , ∥a∗a∥

1
2 ) ≤ 1, so that by the extremity of x, a = 0.

On the other hand,

zn − xx∗zn − znx∗x + xx∗znx∗x ∈ (1 − xx∗)A(1 − x∗x);
hence it is zero, a contradiction.

Therefore h is invertible in B, h−1h is the identity of B, and so it is a projection
in A and the identity of h−1hAh−1h.

Suppose A(1−h−1h) /= 0. Then there exists an element a /= 0 in A(1−h−1h). Since
a∗ah−1h = 0, a∗a commutes with h−1hAh−1h ⊇ B. But a /∈ B, since a /= 0, h−1h = 1B,
and ah−1h = 0. This contradicts the maximality of B. Hence h−1h is the identity of
A, completing the proof.

◻

Recall the following:

B.8. Theorem. [The Krein-Smulian Theorem] A convex set in the
dual space X∗ of a Banach space X is weak∗-closed if and only if its intersection with
every positive multiple of the closed unit ball in X∗ is weak∗-closed.

We shall use the Krein-Smulian Theorem to prove the following Lemma.

B.9. Lemma. Let A be a C*-algebra and X be a Banach space such that A
is isomorphic as a Banach space to X∗. Then Ah ∶= {a ∈ A ∶ a = a∗}is weak∗-closed.

Furthermore, the positive cone A+ of A is also weak∗-closed.

Proof. By the Krein-Smulian Theorem above, it is sufficient to show that the unit
ball B1(Ah) is weak∗-closed, for Ah is clearly convex. To that end, let {xα} be a
weak∗-convergent net in B1(Ah) and write the limit as x + iy, with x, y ∈ Ah. Here,
x + iy ∈ B1(A), which is weak∗-closed by Alaoglu’s Theorem. Then {xα + in} is

weak∗-convergent to x + i(y + n) for every n. Since ∥xα + in∥ ≤ (1 + n2)
1
2 and the

norm is weak∗-lower semicontinuous, we have

(1 + n2)
1
2 ≥ ∥x + i(n + y)∥ ≥ ∥n + y∥.

If y /= 0, we may assume that σ(y) contains a number λ > 0 (passing, if necessary, to
{−xα}). But then

λ + n ≤ ∥n + y∥ ≤ (1 + n2)
1
2



262 APPENDIX B. VON NEUMANN ALGEBRAS AS DUAL SPACES

for all n, a contradiction. Thus y = 0. Again, since the norm is weak∗-lower semi-
continuous, we also have ∥x∥ ≤ 1, that is, x ∈ B1(Ah).

As for the positive cone, it again suffices to show that the unit ball B1(A+) of A
is weak∗-closed. But then simply note that B1(A+) = 1

2(B1(Ah)+1), and translation
and contraction do not affect weak∗-closures.

◻

B.10. Definition. A C*-algebra A is said to be monotone complete if
each bounded increasing net in Ah has a least upper bound in Ah.

B.11. Example. The most important example of a monotone complete
C*-algebra for our purposes is the space B(H) of bounded operators on a Hilbert
space H. To see that this is indeed monotone complete, it suffices (by translation)
to show that increasing bounded nets of positive operators have a least upper bound.
We do this by showing that such nets converge strongly.

Let H be a Hilbert space and let {Pα}α∈Λ be a net of positive operators on H
such that 0 ≤ Pα ≤ Pβ ≤ I for α, β ∈ Λ with α ≤ β. Then there exits P ∈ B(H) such
that 0 ≤ Pα ≤ P ≤ I for all α and the net {Pα}α∈Λ converges to P strongly.
Proof. Indeed, if Q ∈ B(H) with 0 ≤ Q ≤ 1, then 0 ≤ Q ≤ Q2 ≤ I, since Q commutes

with (I −Q)
1
2 by the functional calculus and

< (Q −Q2)x,x > = < Q(I −Q)
1
2x, (I −Q)

1
2x >

≥ 0

for all x ∈H.
Moreover, for all x, the net {< Pαx,x >} is nondecreasing and is bounded above

by ∥x∥2, and thus is a Cauchy net. Now for α ≤ β, we have

∥(Pβ − Pα)x∥2 = < (Pβ − Pα)2x,x >
≤ < (Pβ − Pα)x,x >

= < Pβx,x > − < Pαx,x >
and so {Pαx} is a Cauchy net with respect to the Hilbert space norm.

For x ∈H, let Px = limα Pαx. Then P is linear and ∥Px∥ = limα ∥Pαx∥ ≤ ∥x∥, so
that ∥P ∥ ≤ 1. Also,

0 ≤ lim
α

< Pαx,x >=< Px,x >,

so that P ≥ 0. This completes the proof.

◻

B.12. Lemma. Let A be a C*-algebra and X be a Banach space such that A
is isomorphic as a Banach space to X∗. Then A is monotone complete.
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Proof. Let {xi} be a bounded increasing monotone net of self-adjoint elements of A.
Since B1(Ah) is weak∗-compact (being convex, norm bounded and weak∗-closed),
there is a subnet {xj} of {xi} which is weak∗-convergent to an element x ∈ Ah.

For each xi we eventually have xj ≥ xi for j ≥ i, and thus x ≥ xi since A+ is
weak∗-closed. That is, consider the subnet {xj − xi}j≥i which eventually lie in A+
and converges in the weak∗-topology to x − xi. In particular, x is an upper bound
for {xi} in Ah.

If y ∈ Ah and y ≥ xi for all i then y ≥ xj for all j, so that

y ≥ weak∗ − limxj = x

as above. As such, x is the least upper bound for xi and so A is monotone complete.

◻

B.13. Definition. Given a subset M of self-adjoint operators on some Hilbert
space H, we denote by Mm (resp. Mm) the set of operators obtained by taking strong
limits of increasing (resp. decreasing) nets in M.

Note that if A is a C*-algebra and M = Asa, then Mm =Mm.

B.14. Lemma. Let A be a C*-subalgebra of B(H) for some Hilbert space H,
and let M denote the strong operator closure of A. If P is a projection in M then
given x ∈ ranP and y ∈ ranP ⊥ there is an element B ∈ (Msa)m such that Bx = x and
By = 0.

Proof. By Kaplansky’s Density Theorem, we find find operators An ∈ M1
+ such

that ∥Anx − x∥ < 1
2 and ∥Any∥ < 1

n2−n.

For n <m define Bnm = (1+∑mk=n kAk)−1∑mk=n kAk. By spectral theory, ∥Bnm∥ ≤
1, Bnm ∈M+, and Bnm ≤ ∑mk=n kAk.

Thus < Bnmy, y >≤< ∑mk=n kAky, y >≤ ∑
m
k=n 2−k < 2−n+1.

Since ∑mk=n kAk ≥ mAm, we have Bnm ≥ (1 +mAm)−1mAm and so 1 − Bnm ≤
(1+mAm)−1. But Am ∈M1

+ implies that (1+mAm) ≤ (1+m), and hence (1+m)−1 ≤
(1 +mAm)−1. Then (mAm)

1
2 (1 +m)−1(mAm)

1
2 ≤ (mAm)

1
2 (1 +mAm)−1(mAm)

1
2 ,

and hence (mAm)(1 +m)−1 ≤ (mAm)(1 +mAm)−1. It follows that 1 − (mAm)(1 +
mAm)−1 ≤ 1 − (mAm)(1 +m)−1, i.e. (1 +mAm)−1 ≤ (1 +m)−1 ((1 +m) −mAm), so
that

1 −Bnm ≤ ((1 +m) −mAm) .
Thus

< (1 −Bnm)x,x > ≤< (1 +m)−1(1 +m(1 −Am))x,x >
= (1 +m)−1(< x,x > +m < (1 −Am)x,x >)

≤ (1 +m)−1(1 +m( 1
m))

= 2(1 +m)−1.
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For fixed n, the sequence {Bnm} is monotone increasing, and since it is norm
bounded, it is strongly convergent to an element 0 ≤ Bn ∈ (Msa)m. Moreover,
∥Bn∥ ≤ 1.

Since Bn+1m ≤ Bnm for each m > (n + 1), we see that Bn+1 ≤ Bn, so that the
sequence {Bn} is monotone decreasing and bounded. Again, it is strongly convergent
to an element B ≥ 0, which lies in (Msa)m, again, as (Msa)m = (Msa)m.

Note that ∥ < Bny, y > ∥ = ∥ limm < Bnmy, y > ∥ ≤ 2−n+1, and ∥ < (1−Bn)x,x > ∥ =
∥ limm(1 −Bnm)x,x > ∥ ≤ 0. Since 0 ≤ Bn ≤ 1, we deduce that < (1 −Bn)x,x >= 0,
and hence that Bnx = x.

Finally, as 0 ≤ B ≤ 1, ∥ < By, y > ∥ = ∥ limn < Bny, y > ∥ = 0, implying that
By = 0. Similarly, Bx = limnBnx = x, completing the proof.

◻

B.15. Theorem. Let H be a Hilbert space. A unital C*-algebra M of B(H)
is a von Neumann algebra if and only if (Msa)m =Msa.

Proof. Suppose that M is a von Neumann algebra. Let T ∈ (Msa)m. Then T ∈M as
the latter is closed in the strong operator topology. Since T ∈ B(H)sa by definition,
T ∈Msa.

Conversely, to prove that M is a von Neumann algebra, it suffices to show that
each projection P in the strong closure of M actually belongs to M.

Suppose that x ∈ PH and y ∈ (I−P )H. Then Lemma B.14 shows that there exists
R ∈M+ such that Rx = x and Ry = 0. The range projection P(x,y) of R belongs to M.

Indeed, the sequence ( 1
n + R)−1 is monotone increasing, and converges strongly to

P(x,y). Thus P(x,y)x = x, and P(x,y)y = 0. The projections P(x,y1)∧P(x,y2)∧. . .∧P(x,yn)
form a decreasing net in M+, when {y1, y2, . . . , yn} runs through the finite subsets
of (I − P )H. Thus the limit projection Px ≤ P , and lies in Msa. Clearly, P is the
limit of the increasing net of projections Px1 ∨Px2 ∨ . . . ∨Pxk where {x1, x2, . . . , xk}
runs over the finite subsets of PH. Thus P ∈ (Msa)m ⊆M, completing the proof.

◻

B.16. Definition. Let A be a von Neumann algebra. Then φ ∈ A∗ is said to
be normal if for each bounded monotone increasing net {xi} in Ah with limxi = x
we have {φ(xi)} converging to φ(x).

More generally, if A and B are von Neumann algebras, then a positive linear
map ρ of A into B is said to be normal if for each bounded monotone increasing
net {xi} in Ah, the net {ρ(xi)} increases to ρ(x) in Bh.

B.17. Lemma. If A is a unital monotone complete C*-algebra with a
separating family of normal states, then there is a normal isomorphism of A onto a
von Neumann algebra.
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Proof. Let F denote the separating family of normal states of A and consider the
representation πF = ⊕φ∈Fπφ, acting on HF = ⊕φ∈FHφ. Then (πF ,HF) is faithful.
Indeed, if x ≥ 0 lies in the kernel of πF , then

φ(x) =< πφ(x)ξφ, ξφ >
= 0

for each φ ∈ F , so that x = 0. Since kerπF is a C*-algebra, it is spanned by its
positive elements, and therefore kerπF = {0}.

Now if {xα} is a bounded montone increasing net in Asa, then {xα} has a least
upper bound x ∈ Asa, as A is monotone complete. Also {πF(xα)}α is a bounded
monotone decreasing net in B(HF) as πF ≥ 0, and thus {πF(xα)}α has a least
upper bound y in B(HF), as B(HF) is monotone complete. Since x ≥ xα for all α,
πF(x) ≥ πF(xα) for all α, and hence πF(x) ≥ y.

However, if φ ∈ F , and (πφ,Hφ, zφ) is the cyclic representation associated with
φ via the GNS construction, then for all unitaries u in A,

< πφ(x)πφ(u)zφ, πφ(u)zφ > = φ(u∗xu)
= limφ(u∗xαu) as φ is normal

= lim < πφ(xα)πφ(u)zφ, πφ(u)zφ > .
Thus (πφ(x) − y)πφ(u)zφ = 0. But A is spanned by its unitaries, and hence

(πφ(x) − y) [πφ(A)zφ] = 0.

As HF = ⊕φ∈FHφ, we conclude that πF(x) = y. Thus πF(A) is monotone
complete. By Theorem B.15, πF(A) is a von Neumann algebra.

◻
B.18. Theorem. Let A be a C*-algebra and X be a Banach space such that

A is isomorphic as a Banach space to X∗. Then A has a faithful representation as
a von Neumann algebra with A∗ = X.

Proof. Consider the weak∗-topology on A arising from X, and identify X with the
weak∗-continuous elements of X∗. Since the unit ball B1(A) is weak∗-compact, it
has an extremal point, by the Krein-Milman Theorem. Hence A is unital, by
Proposition B.7.

By Lemma B.9, Ah is weak∗-closed, as well as the positive cone A+ of A.
It now follows that the positive cone of X, namely X+, is separating for A. For if

a ∈ Ah and −a /∈ A+, then since A+ is a weak∗-closed cone in Ah, by the Hahn-Banach
Theorem there exists an element φ ∈ Xh such that φ(A+) ≥ 0 and φ(a) > 0. Namely,
we can think of Ah as a real vector space and obtain a real linear functional on Ah
satisfying these conditions. Then we complexify φ to A.

By Lemma B.12, A is monotone complete.
Suppose φ ∈ X+. Then φ is normal, since if {xi} is a monotone increasing net in

A with least upper bound x, then

limφ(xi) ≤ φ(x) = weak∗ − limφ(xj) ≤ limφ(xi).
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Note that limφ(xi) exists since it is a bounded monotone increasing net in R. Thus
A is a monotone complete C*-algebra with a separating family (namely B1(X)+) of
normal states.

By Lemma B.17, A has a faithful representation as a von Neumann algebra.
Moreover, from the GNS construction, we has that X+ ⊆ A∗.

Also, if x ∈ Ah and x /= 0, then φ(x) /= 0 for some φ ∈ X+. Thus the linear span of
X+ is norm dense in X, from which we conclude that X ⊆ A∗.

Since the compact topology in B1(A) is unique, the weak∗- and the σ-weak
topologies coincide. Hence A∗ = X.

◻



Exercises

Hedgehogs. Why can’t they just share the hedge?

Dan Antopolski

Question 1. A spectral estimate
Let A be a Banach algebra. For a ∈ A and λ ∈ ρ(a), show that

∥(λ − a)−1∥ ≥ 1

dist(λ,σ(a))
.

Question 2. Similarity orbits
Let A ∈Mn for some n ≥ 1. We define the similarity orbit of A to be the set

S(A) = {T ∈Mn ∶ T = S−1AS for some S ∈M−1
n }.

Show that there exists T ∈ S(A) for which ∥T ∥ = spr(T ) = spr(A). Can this always
be done if we ask T to lie in S(A) rather than in the norm closure of S(A)?

Question 3. Weighted Shifts I
Let H be an infinite dimensional, separable, complex Hilbert space. An operator

W ∈ B(H) is said to be a unilateral forward weighted shift if there exists an
orthonormal basis {en}∞n=1 for H and a sequence (wn)n ∈ `∞ so that Wen = wnen+1

for all n ≥ 1. Recall also from PMath 753 that a bijective operator U ∈ B(H) is said
to be unitary if ⟨Ux,Uy⟩ = ⟨x, y⟩ for all x, y ∈H, and that unitaries are precisely the
Hilbert space isomorphisms. Note that this relation is equivalent to the condition
that U∗ = U−1, where U∗ denotes the Hilbert space adjoint of U .

(a) Find ∥W ∥ in terms of the sequence (wn)n of weights for W .
(b) Show that there exists a unitary operator U ∈ B(H) so that U∗WU is a

unilateral forward weighted shift with weight sequence (∣wn∣)n.

267
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If A,B ∈ B(H), V ∈ B(H) is unitary and A = V ∗BV , then we say that A and
B are unitarily equivalent. Unitary equivalence of operators is easily seen to be
an equivalence relation on B(H), and we write A ≃ B to denote that A and B are
unitarily equivalent. If there exists S ∈ B(H) so that S is invertible and A = S−1BS,
then we say that A and B are similar, and write A ∼ B. From the paragraph above,
we see that unitarily equivalent operators are similar.

(c) Show that if W is a unilateral forward weighted shift and λ ∈ T ∶= {z ∈ C ∶
∣z∣ = 1}, then W ≃ λW .

(d) Prove that σ(W ) has circular symmetry; that is, if α ∈ σ(W ), then
αT ∶= {z ∈ C ∶ ∣z∣ = α} ⊆ σ(W ).

Question 4. Weighted Shifts II
LetH be an infinite dimensional, separable complex Hilbert space with orthonor-

mal basis {en}∞n=1. Let W be the unilateral forward weighted shift operator satisfying
Wen = wnen+1 where wn = (gcd(n,2n))−1.

(a) Prove that the spectral radius of W is greater than zero.

Hint. calculate W 2k , k ≥ 1.
(b) Prove that there exist nilpotent weighted shifts Vn (with respect to the

same orthonormal basis {en}∞n=1) so that limn→∞ Vn = W . (Recall that an
element a of an algebra A is said to be nilpotent of order k if ak−1 /= 0 = ak.
For this question, we are not imposing any restrictions on the order of
nilpotence of Vn.)

(c) Conclude that the spectral radius function spr ∶ B(H) → R is not continu-
ous.

Question 5. The functional calculus

Let A =
⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

2 1 0
0 2 0
0 0 3

⎤⎥⎥⎥⎥⎥⎦
be two elements of M3(C).

Let

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 −4 0 0
0 4 −1 0 −4 2
0 0 6 0 0 −6
2 0 0 −2 1 0
0 2 −1 0 −2 2
0 0 3 0 0 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈M6(C).

(a) Let exp(z) = ez, z ∈ C. Find exp(T ).

Hint. S ∶= [1 2
1 1

] is invertible and

[1 2
1 1

] [x 0
0 y

] [−1 2
1 −1

] = [−x + 2y 2x − 2y
−x + y 2x − y ] .
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(b) Let g(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if ∣z∣ < 1
2

0 if ∣z − 2∣ < 1
2

0 if ∣z − 3∣ < 1
2

. Find g(T ).

Question 6. exponentials
Let A be a unital Banach algebra, and let a, b ∈ A, and exp(z) = ez, z ∈ C.

(a) If ab = ba, prove that exp(a) exp(b) = exp(a + b).
(b) Does this necessarily hold if ab ≠ ba?

Question 7. Diagonal operators
Let H be an infinite dimensional, separable, complex Hilbert space with or-

thonormal basis {en}∞n=1. Recall that an operator D ∈ B(H) is said to be diagonal
if there exists a sequence (dn)n ∈ `∞ so that Den = dnen for all n ≥ 1. (Of course,
the reason for the terminology is that the matrix of D relative to this basis is the
diagonal matrix diag(dn)n.)

(a) Find ∥D∥ ∶= sup{∥Dx∥ ∶ ∥x∥ ≤ 1} in terms of the sequence (dn)n.
(b) Find σ(D), the spectrum of D in B(H). Conclude that if Ω ⊆ C is compact,

then there exists T ∈ B(H) such that σ(T ) = Ω.
(c) Determine the set of eigenvalues of D.
(d) State (and prove) necessary and sufficient conditions on the sequence (dn)n

for the operator D to be compact.

Let π denote the canonical quotient map from B(H) onto the Calkin algebraQ(H) ∶=
B(H)/K(H). If T ∈ B(H), the spectrum σ(π(T )) of π(T ) in Q(H) is known as the
essential spectrum of T . It is also denoted by σe(T ).

(e) Find the essential spectrum σ(π(D)) of the diagonal operator D.

Question 8. Weighted Shifts III
Let H be an infinite-dimensional complex Hilbert space. Recall that an operator

N ∈ B(H) is said to be normal if N∗N = NN∗, where N∗ denotes the Hilbert space
adjoint of N . We say that M ∈ B(H) is essentially normal if the image π(M)
of M in the Calkin algebra Q(H) under the canonical quotient map π ∶ B(H) →
Q(H) is normal in the sense that π(M)π(M∗) = π(M∗)π(M). [We may define an
involution onQ(H) by setting π(M)∗ ∶= π(M∗), so that M will be essentially normal
if π(M)π(M)∗ = π(M)∗π(M), which looks like the usual notion of “normality”.] It
is clear that if N ∈ B(H) is normal and K ∈ K(H) is compact, then M = N +K is
essentially normal.

Suppose now that H is also separable. Recall from the first assignment that
an operator W ∈ B(H) is said to be a unilateral forward weighted shift if
there exists an orthonormal basis {en}∞n=1 for H and a sequence (wn)n ∈ `∞ so
that Wen = wnen+1 for all n ≥ 1. The unilateral (unweighted) forward shift
operator S ∈ B(H) is the unilateral forward weighted shift with constant weight
sequence (wn)n, where wn = 1 for all n ≥ 1. [Of course, such an operator may be



270 EXERCISES

chosen for any orthonormal basis {en}∞n=1 for H, but it is straightforward to show
that all such operators are unitarily equivalent. For this reason, people usually refer
to “the” unilateral forward shift, as opposed to “a” unilateral forward shift.]

(a) Prove that the unilateral (unweighted) forward shift S is essentially normal.
(b) Prove that there do not exist N ∈ B(H) normal and K ∈ K(H) such that

S = N +K.
(c) Suppose that W is a unilateral forward weighted shift with weight sequence

(wn)∞n=1. If W is compact, find σ(W ).
(d) State and prove a necessary and sufficient condition on the weight sequence

(wn)n of a unilateral forward shift W for W to be essentially normal.
(e) An operator V ∈ B(H) is said to be a bilateral weighted shift if there

exists an orthonormal basis (fn)n∈Z for H and a weight sequence (vn)n∈Z ∈
`∞(Z) so that V fn = vnfn+1 for all n ∈ Z. As with “the unilateral forward
shift”, we refer to V as “the bilateral shift” if all weights vn are equal to 1.
Note that in the case of bilateral shifts, we do not refer to “forward” nor
“backward” shifts (why not?). A proof similar to the one appearing in As-
signment One shows that any bilateral weighted shift is unitarily equivalent
to a weighted shift with non-negative weights, and so we usually assume a
priori that vn ≥ 0 for all n ∈ Z.

Let V be a bilateral weighted shift with weight sequence (vn)n∈Z, where
vn ≥ 0 for all n ∈ Z. Suppose furthermore that there exists δ > 0 so that
δ ≤ vn ≤ 1 for all n ∈ Z. Show that

σ(V ) ⊆ {z ∈ C ∶ δ ≤ ∣z∣ ≤ 1}.

(f) Find an example of a bilateral weighted shift U ∈ B(`2(Z)) and a rank-one
operator F ∈ B(`2(Z)) so that
(i) σ(U) = T, and

(ii) σ(U + F ) = D.

Question 9. Weyl’s Theorem
Prove the following Theorem due to Weyl (1909):

Theorem. Let H be an infinite dimensional, separable Hilbert space and
let A, B ∈ B(H). If A −B ∈ K(H), and if λ ∈ σ(A) ∖ σp(A), or if λ is an
eigenvalue of infinite multiplicity, then λ ∈ σ(B).

Hint: We can assume without loss of generality that λ = 0 (why?). Then write
A = B + (A −B) = ....
Remark: Let K ∶= B −A ∈ K(H). Then B = A+K is called a compact perturbation
of A. The underlying notion is that compact perturbations lie in an ideal of B(H),
and hence are in some sense “small”. As such, they shouldn’t cause radical changes
in the “essential” behaviour of the operator.

Question 10. The closure of the set of finite rank nilpotent operators
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Let F(H) = {T ∈ B(H) ∶ rankT <∞}, and

Nil0(H) = {T ∈ F(H) ∶ T k = 0 for some k ≥ 1}.

Calculate the norm closure Nil0(H) of Nil0(H) in B(H).

Question 11. Isometries on Hilbert space
First let us establish some notation. Given a family {Hβ}β∈Γ of complex Hilbert

spaces, we define the Hilbert space H = ⊕β∈ΓHβ to be the Hilbert space H = {(xβ)β ∶
∥(xβ)β∥ ∶= (∑β ∥xβ∥2)1/2 <∞}. Given operators Tβ ∈ B(Hβ) with supβ ∥Tβ∥ <∞, we
can define a bounded linear operator T = ⊕βTβ on H via T (xβ)β = (Tβxβ)β. If the

cardinality of Γ is α, we write T (α) to denote the operator T (α) = ⊕β∈ΓT acting on

H(α) = ⊕β∈ΓH.
Finally, for two Hilbert spaces M and N and two operators A ∈ B(M) and

B ∈ B(N ), we write A ≃ B, and say that A is unitarily equivalent to B, if there
exists a unitary operator U ∶M→ N such that B = UAU∗.

Let H be an infinite dimensional, complex Hilbert space. Suppose that W ∶H →
H is an isometry; that is, ∥Wx∥ = ∥x∥ for all x ∈ H. Prove that there is a unitary

operator U and a cardinal α such that W ≃ U ⊕S(α), where S denotes the unilateral
forward shift (all of whose weights are 1). That is, S acts on an infinite-dimensional,
complex, separable Hilbert space H0 with orthonormal basis {en}∞n=1 and Sen = en+1

for all n ≥ 1.

Question 12. Spectrum for unital abelian Banach algebras
Let A be a unital abelian Banach algebra

(a) Show that σ(a + b) ⊆ σ(a) + σ(b) and σ(ab) ⊆ σ(a)σ(b) for all a, b ∈ A.
Show by example that there exist (non-unital) Banach algebras for which
this fails.

(b) Suppose a1 and a2 lie in A. Let B be the Banach subalgebra of A generated
by a1 and a2 - that is, B is the smallest unital Banach subalgebra of A
containing both a1 and a2. Show that ΣB is homeomorphic to the compact
set σ(a1, a2) ∶= {(τ(a1), τ(a2)) ∶ τ ∈ ΣB}. (It should be clear from your
proof that this result extends to Banach algebras generated by n elements
for any n > 1.)

Question 13. Idempotents in Banach algebras
Let A and B be unital Banach algebras.

(a) Show that if A is abelian and it contains an idempotent e other than 0 and
1, then ΣA is disconnected.

(b) Show that if A is abelian and the idempotents in A have dense linear span,
then ΣA is totally disconnected.

(c) Show that the linear span E of the idempotents in B forms a Lie ideal of B;
that is, they form a vector subspace of B which satisfies [b,m] ∶= bm−mb ∈ E
whenever b ∈ B and m ∈ E .
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Question 14. Ideals of spaces of continuous functions
Let X be a locally compact, Hausdorff space. Show that every closed ideal of

C0(X) has the form

KE = {f ∈ C0(X) ∶ f ∣E = 0}
for some closed subset E of X.

Question 15. The Gelfand Map need not be surjective nor isometric
Let A = {f ∈ C([0,1]) ∶ f ′ ∈ C([0,1])}, and for f ∈ A, define ∥f∥ = ∥f∥∞ +

∥f ′∥∞, where ∥ ⋅ ∥∞ denotes the usual supremum norm on C([0,1]). Then A can be
shown to be a commutative Banach algebra under the usual pointwise operations
for multiplication and addition. (Although you don’t have to hand in the proof of
that statement, you should at least verify it for yourselves.)

Show that the Gelfand map is neither isometric nor surjective in this case.

Question 16. Sets with property S for abelian, unital Banach algebras
Let A be an abelian, unital Banach algebra. We shall say that a weak∗-closed

subset F ⊆ ΣA has property S for A if for each x ∈ A,

sup{∣x̂(ϕ)∣ ∶ ϕ ∈ F} = spr(x).
(a) Show that A admits a set ∆ which is minimal (with respect to inclusion)

amongst all sets with property S for A.
(b) Let A = A(D) be the disk algebra. Find a minimal set ∆ as above for A.

Question 17. Unitary groups in C∗-algebras.
Let A be a unital C∗-algebra and let U = {u ∈ A ∶ uu∗ = u∗u = 1} denote the

unitary group of A.

(a) Show that if u ∈ U and ∥u − 1∥ < 2, then there exists a self-adjoint element
h ∈ A such that u = exp(ih).

(b) Define U○ = {exp(ih1)exp(ih2) . . . exp(ihn) ∶ hk = h∗k ∈ A,1 ≤ k ≤ n}. Show
that U○ is both open and closed in U , and hence that U○ is the connected
component of the identity in U . (Of course, U is just a group, not an
algebra!)

(c) If A is abelian, show that U○ = {exp(ih) ∶ h = h∗ ∈ A}.

Question 18. Every idempotent in a C∗-algebra is similar to a projection.

Question 19. Let H be a complex Hilbert space and A,B ∈ B(H). Prove that if
⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ H, then A = B. (Hint: prove that the above condition
implies that ⟨Ax, y⟩ = ⟨Bx, y⟩ for all x, y ∈H.)

Question 20. The Jacobson radical
Let A be a unital C∗-algebra.

(a) Show that if a ∈ A and λ ∈ σ(a∗a), then a∗a − λ1 has neither a left nor a
right inverse in A.
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(b) Show that the intersection of the maximal left ideals of A is {0}. That is,
C∗-algebras are semisimple.

Question 21. Multiplier algebras
Let A be a C∗-algebra. A double centraliser for A is a pair (L,R) of bounded

linear maps on A satisfying

L(ab) = L(a)b, R(ab) = aR(b), and R(a)b = aL(b).

For example, if c ∈ A, set Lc(b) = cb and Rc(b) = bc for all b ∈ A. Then (Lc,Rc) is a
double centraliser for A.

(a) Show that if (L,R) is a double centraliser for A, then ∥L∥ = ∥R∥.
Let M(A) denote the set of all double centralisers for A.
For (L1,R1), (L2,R2) ∈M(A) and α,β ∈ C, we define

(i) α(L1,R1) + β(L2,R2) = (αL1 + βL2, αR1 + βR2);
(ii) (L1,R1)(L2,R2) = (L1L2,R2R1);
(iii) (L1,R1)∗ = (R∗

1 , L
∗
1), where a map B ∶ A → A induces the map B∗ ∶

A→ A via B∗(a) ∶= (B(a∗))∗.
(b) Show thatM(A) is a unital C∗-algebra (called the multiplier algebra of A)

under the norm ∥(L,R)∥ = ∥L∥(= ∣R∥).
Culture: One way to add a unit to a non-unital C∗-algebra A is to embed the Ba-
nach algebra unitisation of A, namely Au ∶= {(a, λ) ∶ a ∈ A, λ ∈ C} with (a, λ)(b, β) =
(ab + λb + βa,λβ) into M(A) via the map

Φ ∶ Au → M(A)
(a, λ) ↦ (La,Ra) + (λI, λI).

(Here, I ∶ A → A is the identity map.) If, for (a, λ) ∈ Au, we define (a, λ) = (a∗, λ),
then this gives us an involution. The map Φ proves to be a ∗-isomorphism, so that
we may impose a C∗-algebra norm on Au via ∥(a, λ)∥ ∶= ∥Φ(a, λ)∥.

Question 22. Lifting elements from quotient C∗-algebras
Let A denote a unital C*-algebra and K denote a closed, two-sided ideal of A.

Let π ∶ A→ A/K denote the canonical ∗-homomorphism.

(a) Suppose r is a self-adjoint element of A/K. Show that there exists R =
R∗ ∈ A such that π(R) = r.

(b) Suppose r is a positive element of A/K. Show that there exists R positive
in A such that π(R) = r.

(c) Suppose u ∈ A/K is unitary and that σ(u) = {λ ∈ T ∶ Re(λ) ≥ 0}. Show that
there exists U ∈ A unitary such that π(U) = u.

(d) Does the result hold for all unitaries in A/K? For example, suppose that
u ∈ B(H)/K(H) is a unitary element. Does there exist a unitary operator
U ∈ B(H) such that π(U) = u, where π ∶ B(H) → B(H)/K(H) is the
canonical quotient map?
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Question 23. Representations of the Calkin algebra
Let H be an infinite-dimensional, complex, separable Hilbert space. The GNS

construction may be applied to the Calkin algebra B(H)/K(H). Thus, we obtain
an isometric ∗-monomorphism (i.e. an injective ∗-homomorphism which is then
automatically isometric) ρ ∶ B(H)/K(H)→ B(H0) for some Hilbert space H0. Prove
that in this case, H0 can not be separable.
Hints:

● Show that there exist uncountably many infinite subsets {Fα}α∈Λ of the
rational numbers Q with the property that Fα ∩ Fβ is a finite set for all
α /= β.

● Let {eq}q∈Q be an orthonormal basis for H. Consider the orthogonal pro-
jections Pα of H onto span {eq ∶ q ∈ Fα}. What can you say about
{π(Pα) ∶ α ∈ Λ}?



Bibliography

[1] Apostol, C. The correction by compact perturbations of the singular behaviour of operators.
Rev. Roumaine Math. Pures Appl. 21 (1976), 155–175.

[2] Apostol, C., Fialkow, L., Herrero, D., and Voiculescu, D. Approximation of Hilbert
space operators II, vol. 102 of Research Notes in Math. Pitman Advanced Publishing Program,
Boston, London, Melbourne, 1984.
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