











































































































4 Symmetric Groups

Now that we have a stronger understanding

of groups in general it's time to revisit

and more closely analyze the group Sn

4.1 Cycle Decomposition

Recall that every element of Sn can be

expressed as an array

D L
2 3 4 5 6 E S
I 4 6 5 3

If we apply 8 again and again we

may notice something interesting














































































































AL r 73 or a 5
r r v

2L Gr 4

Thus N consists of three disjoint cycles

Each cycle can be written compactly as

a
I 2 34 G 5
U U U U

Thus we may write

D I 2 34 6 5

to describe the permutation more compactly
This is called cycle notation

Ex L 2 4 I 4 23














































































































Ex I 2 3 4 5 14 2 5 3

4 5 3 2 1

Remarks

1 We can write a cycle in
many ways

e g I 2 3 2 3 l 3 2 1

Convention Begin with the smallest number

in the cycle

2 In cycle notation we often do not

write the terms fixed by r

i.e We write r I 2 3 46

instead of a I 2 34 6 5

and understand that 0 fixes 5














































































































Definition A permutation Ne Sn of the

form or a Az Am is called a

cycle of length m or an M cycle

A 2 cycle is called a transposition

Two cycles a a am f b be b a

are said to be disjoint if f j ai Bj

Ex Using cycle notation we can easily

list all 3 6 elements of Ss

identity transpositions 3 cycles

e l 2 l 2 3
i 3 l 3 2

23

y














































































































Just like with arrays we can compose

symmetries in cycle notation by reading

right to left

Ex In 55 if T I 2 4 357

I I 5 23 then

out I 2 4 3 5 I 5 23

We can simplify this product by tracing the

path of each number through the cycles from

right to left

1 I 2 4 3 5 I 5 23
3 L 34 5 a

3 I 2 4 3 5 I 5 23

4L 24 2L 2L 3














































































































4 12 4 3 5 I 5 23
1L 4s 4s 4s 4

2 12 4 3 5 I 5 23
5L 5L 3 3L 2

5 12 4 3 5 I 5 23
2L Is Ls 5L 5

Thus TT I 3 4 25

Note This simplified product consists of

disjoint cycles

Theorem4.1 Every permutation Sn can be

written as a product of disjoint cycles

Proof Start with any a E 11,2 n

Set Az T ai Az Haz 52 ai etc














































































































until we reach M such that om a a

Exercise why must such an m exist

D a a Am

If we have not exhausted 11,2 n choose

b c 1,2 n with b t ai i I m

Set bz 0 bi b 0 bz 62lb etc

until we reach K such that 0 bi b

Exercise Show that no bi appears in a ar and

Thus D a ar Am b b bk

disjoint

Eventually this process must stop appa














































































































Using the disjoint cycle decomposition for

TE Sn one can quickly identify many key

properties of o

For instance if P Pa PK are

disjoint cycles in Sn what is the order

of a p pre pie

Let's do an example with 14 1

g I 2 3

oh I 2 3 I 2 3 I 3 2

T I 3 2 I 23 1 2 3 e

lol 3














































































































In general

Proposition 4.2 If TE Sn is an M cycle then

lol m i.e the order of a cycle is its length

Proof Exercise agg

To extend Proposition 4.2 to products of arbitrary

length we require the following
lemma

Lemma4.3 Disjoint cycles commute

Proof Let a a as am

p b be bk

be disjoint cycles in Sn We show














































































































that XpXx px x the 11,2 n

If X Ai for some i then

xp x in plait Hai Ain

PL x p x ai plain Ait

If X bi for some i then

Cap x x Phi 2 bin bit

Ba x p x bi plbin bit

Finally if X t ai X t bi ti then

xp x x pix x x

pinkx placed pox














































































































In all cases Kpxx Cpa Cx7 so

xp pin Basma

Theorem4.4 If p Bz 13k are disjoint

cycles in Sn and t pipa 13k then

look 1cmftp.t.lpzl Ip

Proof We'll prove for K 2 general case is similar

Suppose on pipe Set m r and

l lcm Ipl 1pct We have that

e om pipe
m

pimpin

But 13 and Pz have distinct entries so

pimpin e pike and pin e






113,1 divides m ftp divides m

l divides m

l l l
But of course 0 13 132 e so n l

Consequently m l i e lol kmftp.t.lpzl

Ex If 5 1147 2 8 s 69 c Sg

then 1447 I I 56 9 I 3

and I 28 I 2

Thus lol lcm 3,3 2 6

Ex What are the orders of the elements

of Sy Well it comes down to

the possible cycle decompositions



Cycle Decomposition Order

7 7
6 l 6
5 Z lo
5 1 l 5
4 3 12
4 2 l 4
4 1 Iki 4
3 3 l 3
3 2 l 6
3 1 1 l 3
2 2 2 l 2
2 2 1 1 i Z
2 1 1 1 1 i Z

1 1 1 1 1 1 l 1

How many permutations in S have

order 3 They are of the form

abc or ab c def



an k 5 choices
Total 7 6.5 2106 choices

7 choices

But we've overcounted as a b c b c a cab

Thus we must divide by 3 Total 21 70

b Ihnen k
ji

total Yoyo4 choices
5 choices
6 choices
7 choices

Again we must divide by 3 for each 3 cycle
Also since a b c def de f abc

we must divide by 2 Total 504
3.2 280



Thus there are 70 280 350 elements in

57 of order 3

4.2 Even Odd Permutations

Here's an interesting decomposition

I 2 3 4 5 I 2 2 3 3 4 4 5

l 2 3 4 56 7 I 2 2 3 3 4 5 6 6 7

These permutations can be written as products

of non disjoint transpositions

Theorem 4.5 Every permutation is a product

of transpositions



Proof We will show that every cycle
a.az am is a product of transpositions
since every permutation is a product of

cycles this will be sufficient

Note that

a ar Am a a 2 areas Cam Am qggq

Note The way in which a permutation

decomposes into a product of transpositions
is not unique nor is the number of

transpositions

123 4 5 l 2 2 3 34K 45

45 25 I 2 2 5 23 13



What is the same is the parity of the
number of transpositions evenTodd

Theorem 4.6 Let Nesn If

T pipe 13k and D V K Vm

where pi f Vi are transpositions then either

K and m are both even or K and M

are both odd

To prove this result we require the

following Lemma

Lemma 4.7 If e pipe pm where each

Pi is a transposition then M is even



Proof m I No m 2 Done

So assume m 2 and proceed by induction

Write e pipa pm fm with pm ab

Look at pmIBM

Possibilities Pm Pm

_µ
b
ffa fabxbc

b c ab a c Cbc
c d a b a b Ccd

Notice that either

i pm ab in which case Pmipm can be

removed and e p pm 2 By induction

m z and hence m is even

ii pm it ab in which case the last



occurrence of a moves to the left

We can therefore repeat this process eventually

either deleting two transpositions in which case rn

is even or we move a all the way to

the left with no other a appearing to its

right But f the latter occurs then a

is not fixed by e a contradiction Thus

M is even Bad

Proof of Theorem 4.6

If 0 13,132 pm VVz Vk then

e 13miPmi pi V th Vk Since the



inverse of a transposition is again a

transposition C is a product of Mtk

transpositions Thus by Lemma 4.7 Mik is

even The result follows aaaaa

with the proof of Theorem 4.7 complete

we can now make the following definition

responsibly

Definition A permutation resn is called

even if i can be written as a product

of an even number of transpositions and

is called odd if it can be written as a

product of an odd number of transpositions



Ex 12 3 45 I 2 2 3 3 4 45

l 2 3 4 I 2 23 34

Exercise An M cycle is even if and

only if M is odd

Exercise If a 13 are cycles then

xp is even if and only if a 8 p
are both even or both odd

On Assignment 3 you will prove that

the set

An re Sn n is even



is a subgroup of Sn of order htt
We call An the alternating group

with the machinery from this chapter we

are able to say a lot more about Sn

This is exciting as many of our

other examples of groups show up as

subgroups of Sn


