$\$ 4$ - Symmetric Groups
Now that we have a stronger understanding of groups in general, it's time to revisit and more closely analyze the group S_{n}.
§4.1 Cycle Decomposition.
Recall that every element of S_{n} can be expressed as an array:

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 4 & 6 & 5 & 3
\end{array}\right) \in S_{6}
$$

If we apply σ again and again, we may notice something interesting...

Thus, σ consists of three disjoint cycles Each cycle can be written compactly as

$$
\begin{equation*}
(1 \sqrt[2]{2}) \quad(3 \sqrt[4]{6}) \tag{5}
\end{equation*}
$$

Thus, we may write

$$
\sigma=(122)(346)(5)
$$

to describe the permutation more compactly. This is called cycle notation.

Ex: $\quad\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)$

Ex: $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 2 & 1\end{array}\right)=\left(\begin{array}{llll}1 & 4 & 2 & 5\end{array}\right)(3)$
Remarks
(1) We can write a cycle in many ways
e.g. $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=\left(\begin{array}{lll}2 & 3 & 1\end{array}\right)=\left(\begin{array}{lll}3 & 2 & 1\end{array}\right)$

Convention: Begin with the smallest number in the cycle.
(2) In cycle notation, we often do not write the terms fixed by σ :
i.e. We write $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array} 6\right)$ instead of $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{lll}3 & 4 & 6\end{array}\right)(5)$ and understand that σ fixes 5 .

Definition: A permutation $\sigma \in S_{n}$ of the form $\quad \sigma=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{m}\end{array}\right)$ is called a cycle of length m, or an m-cycle.
A 2-cycle is called a transposition.
Two cycles $\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & \left.a_{m}\right) ~ \& ~\left(b_{1}\right. \\ b_{2} & \cdots & b_{k}\end{array}\right)$ are said to be disjoint if $\forall i, j, a_{i} \neq b_{j}$.

Ex: Using cycle notation, we can easily list all $3!=6$ elements of S_{3}.

| identity | $\left.\begin{array}{cc}\text { transpositions } & 3-\text { cycles } \\ e & \left(\begin{array}{ll}1 & 2\end{array}\right) \\ & \left(\begin{array}{lll}1 & 3\end{array}\right) \\ \left(\begin{array}{ll}2 & 3\end{array}\right) & \left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \\ & \end{array} \begin{array}{ll}1 & 3\end{array}\right)$ |
| :---: | :---: | :---: |

Just like with arrays, we can compose symmetries in cycle notation by reading right to left.

Ex: In S_{5}, if $\sigma=\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)\left(\begin{array}{ll}3 & 5\end{array}\right)$

$$
\begin{array}{r}
\tau=\left(\begin{array}{ll}
1 & 5
\end{array}\right)(23) \text { then } \\
\sigma \tau=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(35)(15)(23)
\end{array}
$$

We can simplify this product by tracing the path of each number through the cycles from right to left.

$$
\begin{array}{ll}
1: & (124)(35)(15)(23) \\
& 3 \longleftarrow 3 \longleftarrow 5 \longleftarrow 1< \\
3: & (124)(35)(15)(23) \\
& 4 \longleftarrow 4 \longleftarrow 2 \longleftarrow
\end{array}
$$

$$
\begin{aligned}
& \text { 4: } \begin{array}{l}
(124)(35)(15)(23) \\
1 \longleftarrow 4 \longleftarrow 4 \longleftarrow 4<4
\end{array} \\
& \text { 2: } \begin{array}{l}
(124)(35)(15)(23) \\
5 \longleftarrow 5 \longleftarrow 3 \longleftarrow 2
\end{array} \\
& \text { 5: } \begin{array}{l}
(124)(35)(15)(23) \\
2 \longleftarrow 1 \longleftarrow 1 \longleftarrow 5<-5
\end{array} \\
& \text { Thus, } \sigma \tau=\left(\begin{array}{lll}
1 & 3 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 5
\end{array}\right)
\end{aligned}
$$

Note: This simplified product consists of disjoint cycles!

Theorem 4.1 Every permutation $\sigma \in S_{n}$ can be written as a product of disjoint cycles.

Proof: Start with any $a_{1} \in\{1,2, \ldots, n\}$.
Set $a_{2}=\sigma\left(a_{1}\right), a_{3}=\sigma\left(a_{2}\right)=\sigma^{2}\left(a_{1}\right)$, etc...
until We reach m such that $\sigma^{m}\left(a_{1}\right)=a_{1}$.
[Exercise: why must such an m exist??]

$$
\sigma=\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{m}
\end{array}\right) \cdots
$$

If we have not exhausted $\{1,2, \ldots, n\}$, choose $b_{1} \in\{1,2, \ldots, n\}$ with $b_{1} \neq a_{i}, i=1, \ldots, m$.

Set $b_{2}=\sigma\left(b_{1}\right), b_{3}=\sigma\left(b_{2}\right)=\sigma^{2}\left(b_{1}\right)$, etc...
until we reach K such that $\sigma^{k}\left(b_{1}\right)=b_{1}$
[Exercise: Show that no b_{i} appears in $\left(a_{1} a_{2} \cdots a_{m}\right)$]

Thus, $\sigma=\underbrace{\left(a_{1} a_{2} \cdots a_{m}\right)\left(b_{1} b_{2} \cdots b_{k}\right) \cdots}_{\text {disjoint }}$
Eventually this process must stop.

Using the disjoint cycle decomposition for $\sigma \in S_{n}$, one can quickly identify many key properties of σ.

For instance, if $\beta_{1}, \beta_{2}, \cdots, \beta_{k}$ are disjoint cycles in S_{n}, what is the order of $\sigma=\beta_{1} \beta_{2} \cdots \beta_{k}$?

Let's do an example with $k=1$:

$$
\left.\begin{array}{l}
\sigma^{=}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
\sigma^{2}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \\
\sigma^{3}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{l}
1
\end{array}\right)(2)(3)=e \\
\Rightarrow \mid \sigma
\end{array}\right)=3
$$

In general:

Proposition 4.2: If $\sigma \in S_{n}$ is an m-cycle, then $|\sigma|=m \quad$ (i.e., the order of a cycle is its length.)

Proof: Exercise.

To extend Proposition 4.2 to products of arbitrary length, we require the following lemma.

Lemma 4.3: Disjoint cycles commute.
Proof: Let $\alpha=\left(\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{m}\end{array}\right)$

$$
\beta=\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{k}
\end{array}\right)
$$

be disjoint cycles in S_{n}. We show
that $(\alpha \beta)(x)=(\beta \alpha)(x) \quad \forall x \in\{1,2, \ldots, n\}$

- If $x=a_{i}$ for some i, then

$$
\begin{aligned}
& (\alpha \beta)(x)=\alpha\left(\beta\left(a_{i}\right)\right)=\alpha\left(a_{i}\right)=a_{i+1} \\
& (\beta \alpha)(x)=\beta\left(\alpha\left(a_{i}\right)\right)=\beta\left(a_{i+1}\right)=a_{i+1}
\end{aligned}
$$

- If $x=b_{i}$ for some i, then

$$
\begin{aligned}
& (\alpha \beta)(x)=\alpha\left(\beta\left(b_{i}\right)\right)=\alpha\left(b_{i+1}\right)=b_{i+1} \\
& (\beta \alpha)(x)=\beta\left(\alpha\left(b_{i}\right)\right)=\beta\left(b_{i+1}\right)=b_{i+1}
\end{aligned}
$$

- Finally, if $x \neq a_{i}, x \neq b_{i} \quad \forall i$, then

$$
\begin{aligned}
& (\alpha \beta)(x)=\alpha(\beta(x))=\alpha(x)=x \\
& (\beta \alpha)(x)=\beta(\alpha(x))=\beta(x)=x
\end{aligned}
$$

In all cases, $(\alpha \beta)(x)=(\beta \alpha)(x)$, so

$$
\alpha \beta=\beta \alpha .
$$

Theorem 4.4: If $\beta_{1}, \beta_{2}, \cdots, \beta_{k}$ are disjoint cycles in S_{n} and $\sigma=\beta_{1} \beta_{2} \cdots \beta_{k}$, then

$$
|\sigma|=\operatorname{lcm}\left(\left|\beta_{1}\right|,\left|\beta_{2}\right|, \ldots,\left|\beta_{k}\right|\right)
$$

Proof: Well prove for $k=2$ (general case is similar)
Suppose $\sigma=\beta_{1} \beta_{2}$. Set $m=|\sigma|$ and
$l=\operatorname{lcm}\left(\left|\beta_{1}\right|,\left|\beta_{2}\right|\right)$. We have that

$$
e=\sigma^{m}=\left(\beta_{1} \beta_{2}\right)^{m}=\beta_{1}^{m} \beta_{2}^{m}
$$

But β_{1} and β_{2} have distinct entries, so

$$
\beta_{1}^{m} \beta_{2}^{m}=e \Rightarrow \beta_{1}^{m}=e \text { and } \beta_{2}^{m}=e
$$

$\Rightarrow\left|\beta_{1}\right|$ divides $m \&\left|\beta_{2}\right|$ divides m.
$\Rightarrow l$ divides m
But of course $\sigma^{l}=\beta_{1}^{l} \beta_{2}^{l}=e$, so $m \mid l$.
Consequently, $m=\ell$. i.e., $|\sigma|=\operatorname{lcm}\left(\left|\beta_{1}\right|,\left|\beta_{2}\right|\right)$

Ex: If $\sigma=(147)(28)(569) \in S_{9}$,
then $\left|\left(\begin{array}{lll}1 & 4 & 7\end{array}\right)\right|=\left|\left(\begin{array}{lll}5 & 6 & 9\end{array}\right)\right|=3$
and $|(28)|=2$.
Thus, $|\sigma|=\operatorname{lcm}(3,3,2)=6$.

Ex: What are the orders of the elements of S_{7} ? Well... it comes down to the possible cycle decompositions

Cycle Decomposition	Order
(7)	7
$(6)(1)$	6
$(5)(2)$	10
$(5)(1)(1)$	5
$(4)(3)$	12
$(4)(2)(1)$	4
$(4)(1)(1)(1)$	4
$(3)(3)(1)$	3
$(3)(2)(1)$	6
$(3)(1)(1)(1)$	3
$(2)(2)(2)(1)$	2
$(2)(2)(1)(1)(1)$	2
$(2)(1)(1)(1)(1)(1)$	2
$(1)(1)(1)(1)(1)(1)(1)$	1

How many permutations in S_{7} have order 3? They are of the form $\left(\begin{array}{ll}a & b \\ c\end{array}\right)$ or $\left(\begin{array}{lll}a & b & c\end{array}\right)\left(\begin{array}{l}d\end{array}\right)$

$$
\left.\begin{array}{lll}
\left.\begin{array}{lll}
a & b & c
\end{array}\right) \\
\uparrow & \uparrow & 5 \\
& \text { choices } \\
6 & \text { choices } \\
7 & \text { choices }
\end{array}\right\} \text { Total }=7.6 .5=210
$$

But we've overcounted, as $\left(\begin{array}{lll}a & b & c\end{array}\right)=\left(\begin{array}{lll}b & c & a\end{array}\right)=\left(\begin{array}{lll}c & a & b\end{array}\right)$
Thus, we must divide by 3. \quad Total: $210 / 3=70$.

$$
\left.\begin{array}{llll}
a \\
\uparrow & c
\end{array}\right)\left(\begin{array}{lll}
d & e & f
\end{array}\right)
$$

Again, we must divide by 3 for each 3 cycle.
Also, since $\left(\begin{array}{lll}a & b & c\end{array}\right)(d e f)=(d e f)\left(\begin{array}{ll}a b c\end{array}\right)$,
we must divide by 2. Total: $5040 / 3.3 .2=280$

Thus, there are $70+280=350$ elements in S_{7} of order 3 .
$\$ 4.2$ - Even / Odd Permutations
Here's an interesting decomposition:

$$
\left.\begin{array}{l}
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(23
\end{array}\right)(34)(45) ~\left(\begin{array}{lll}
4 & 5
\end{array}\right)
$$

These permutations can be written as products of (non-disjoint) transpositions.

Theorem 4.5: Every permutation is a product of transpositions.

Proof: We will show that every cycle $\left(a_{1} a_{2} \cdots a_{m}\right)$ is a product of transpositions Since every permutation is a product of cycles, this will be sufficient.

Note that

$$
\left(a_{1} a_{2} \cdots a_{m}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \cdots\left(a_{m-1}, a_{m}\right)
$$

Note: The way in which a permutation decomposes into a product of transpositions is not unique, nor is the number of transpositions:

$$
\left.\begin{array}{rl}
(123 & 4 \\
1 & 5
\end{array}\right)=(12)(23)(34)(45)
$$

What is the same is the parity of the number of transpositions (even /odd)

Theorem 4.6: Let $\sigma \in S_{n}$. If

$$
\sigma=\beta_{1} \beta_{2} \cdots \beta_{k} \text { and } \sigma=\gamma_{1} \gamma_{2} \ldots \gamma_{m}
$$

where β_{i} \& γ_{i} are transpositions, then either K and m are both even, or K and m are both odd.

To prove this result, we require the following Lemma:

Lemma 4.7: If $e=\beta_{1} \beta_{2} \cdots \beta_{m}$ where each β_{i} is a transposition, then m is even.

Proof: $m=1$? No. $m=2$? Done!
So assume $m>2$ and proceed by induction.
Write $c=\beta_{1} \beta_{2} \cdots \beta_{m-1} \beta_{m}$ with $\beta_{m}=(a b)$
Look at $\beta_{m-1} \beta_{m}$.
Possibilities: $\quad \beta_{M-1} \beta_{m}=\left\{\begin{array}{l}(a b)(a b)=e \\ (a c)(a b)=(a b)(b c) \\ (b c)(a b)=(a c)(b c) \\ (c d)(a b)=(a b)(c d)\end{array}\right.$

Notice that either
(i) $\beta_{m-1}=(a b)$, in which case $\beta_{m-1} \beta_{m}$ can be removed and $e=\beta_{1} \cdots \beta_{m-2}$. By induction $m-2$ (and hence m) is even
(ii) $\beta_{m-1} \neq\left(\begin{array}{ll}a & b\end{array}\right)$, in which case the last
occurrence of a "moves" to the left.

We can therefore repeat this process, eventually either deleting two transpositions (in which case m is even) or we move a all the way to the left with no other a appearing to its right. But if the latter occurs, then a is not fixed by e, a contradiction. Thus, m is even.

Proof of Theorem 4.6:
If $\sigma=\beta_{1} \beta_{2} \cdots \beta_{m}=\gamma_{1} \gamma_{2} \cdots \gamma_{k}$, then $e=\beta_{m}^{-1} \beta_{m-1}^{-1} \cdots \beta_{1}^{-1} \gamma_{1} \gamma_{2} \cdots \gamma_{k}$. Since the
inverse of a transposition is again a transposition, e is a product of $m+k$ transpositions. Thus, by Lemma 4.7, $m+k$ is even. The result follows.

With the proof of Theorem 4.7 complete, we can now make the following definition responsibly:

Definition: A permutation $\sigma \in S_{n}$ is called even if σ can be written as a product of an even number of transpositions, and is called odd if it can be written as a product of an odd number of transpositions.

Ex: $\quad(12345)=(12)(23)(34)(45)$

$$
(1234)=(12)(23)(34)
$$

Exercise: An m-cycle is even if and only if m is odd.

Exercise: If α, β are cycles, then $\alpha \beta$ is even if and only if $\alpha \& \beta$ are both even or both odd.

On Assignment 3, you will prove that the set

$$
A_{n}=\left\{\begin{array}{l|l}
\sigma \in S_{n} & \sigma \text { is even }\}
\end{array}\right.
$$

is a subgroup of S_{n} of order $n!/ 2$.
We call A_{n} the alternating group

With the machinery from this chapter, we are able to say a lot more about S_{n}. This is exciting, as many of our other examples of groups show up as subgroups of S_{n}.

