e.g.
$$Z = Q = R = C$$
, and all of these
sets form groups under addition.
e.g. {1,-1} = {1, i, -1, -i} = C*, and all of
these sets form groups under multiplication.

If H is a subset of G and
$$(H, \cdot)$$

is a group, we say that H is a
Subgroup of G, and write $H \leq G$.

Remarks:

is called a proper subgroup of G.
Ex: Consider the set of even integers

$$2Z = \{..., -4, -2, 0, 2, 4, ...\}$$

sitting inside the additive group Z. It is
easy to see that $2Z$ also forms a group
under addition, and hence $2Z = Z$.

Notice that in every example we have seen, the group G and its subgroup H share the same identity element. This is always the case. <u>Proposition</u>: If G is a group with identity e_{G} and H = G with identity e_{H} , then $e_{G} = e_{H}$.

Proof:
$$e_{H} = e_{H}^{2}$$
, as $e_{H} = identify$ for H.
Let e_{H}^{-1} be the inverse of e_{H} in G. Then
 $e_{G} = e_{H}e_{H}^{-1} = e_{H}^{2}e_{H}^{-1} = e_{H}(e_{H}e_{H}^{-1}) = e_{H}e_{G} = e_{H}$

<u>Ex:</u> Is $\mathbb{Z}_8^* = \{1, 3, 5, 7\}$ a subgroup of $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}?$ No! Z's = Z's, but the operations are different. <u>Ex</u>: Is $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ a subgroup of \mathbb{Z} ? No! Zn & Zn (remember, the elements of Zn are really equivalence classes of integers!) The operations in these groups are also not

Proof:
$$(\Rightarrow)$$
 Suppose that $H \neq G$.
Since H is a group, it contains the product
of any of its elements (i.e., (i) holds) and
the inverse of any of its elements (i.e., (ii)
holds).

 (\Rightarrow) Now suppose that $\emptyset \neq H \subseteq G$ is such that (i) & (ii) hold. [Closure] By (:), H is closed under the group operation. [Associativity] The operation on H is associative because it is the same as the operation on G, which is associative since G is a group. [Identity] H+Ø, so let a EH. By (ii), a EH and hence e=aa⁻¹ = H (remember, H is closed under the group operation!). [Inverses] By (ii), every aEH has an an inverse in H.

Exercise [One-Step Subgroup Test]: Let G be a group. Prove that a non-empty subset H=G is a subgroup of G if and only if a b e H for all a, b e H.

Ex: Let
$$SL_n(R) = \{A \in M_n(R) : det(A) = 1\}$$
.
This is called the special linear group.
Is $SL_n(R) \leq GL_n(R)$ (under matrix mult?)
Let's see!

•
$$I = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in SL_n(\mathbb{R}), \text{ So } SL_n(\mathbb{R}) \neq \emptyset.$$

• If $A \in SL_n(\mathbb{R})$, then $det(A) = 1 \neq 0$. Thus, $A \in GL_n(\mathbb{R})$, so $SL_n(\mathbb{R}) \subseteq GL_n(\mathbb{R})$.

- It's a non-empty subset. Now let's use the subgroup test. • If $A, B \in SL_n(R)$, then det(A) = det(B) = 1. Thus det(AB) = det(A) det(B) = 1, so $AB \in SL_n(R)$.
- If $A \in SL_n(\mathbb{R})$, then $det(A^{-1}) = \underbrace{1}{det(A)} = 1$, hence $A^{-1} \in SL_n(\mathbb{R})$. By the subgroup test, $SL_n(\mathbb{R}) = GL_n(\mathbb{R})$
- Next we describe the simplest way to construct subgroups within a group G.

Definition: If a is an element of a
group G, define
$$\langle a \rangle = \{a^{\kappa}: \kappa \in \mathbb{Z}\}$$

Note that $\langle a \rangle \in G$ and $\langle a \rangle \neq \emptyset$.
In particular, $e = a^{\circ} \in \langle a \rangle$. Moreover,
if $a^{n}, a^{m} \in \langle a \rangle$, then $a^{n+m} \in \langle a \rangle$
and $(a^{n})^{-1} = a^{-n} \in \langle a \rangle$. Thus, by
the subgroup test, $\langle a \rangle \leq G$. We
call $\langle a \rangle$ the subgroup generated by a.

Exercise: Prove that
$$\langle a \rangle$$
 is the smallest
subgroup of G containing a (i.e., if $H \leq G$
and $a \in H$, then $\langle a \rangle \leq H$).

$$E_{X}: In \mathbb{Z}_{10}^{*},$$

$$\langle 1 \rangle = \{1\},$$

$$\langle 3 \rangle = \{3^{K} : K \in \mathbb{Z}\} = \{1, 3, 7, 9\} = \mathbb{Z}_{10}^{*},$$

$$\langle 7 \rangle = \{7^{K} : K \in \mathbb{Z}\} = \{1, 3, 7, 9\} = \mathbb{Z}_{10}^{*},$$

$$\langle 9 \rangle = \{9^{K} : K \in \mathbb{Z}\} = \{1, 9\}.$$

$$E_{X}: In \mathbb{Z}, \text{ for } n \neq 0,$$

$$= \{n^{K}: K \in \mathbb{Z}\}$$

$$= \{..., -3n, -2n, -n, 0, n, 2n, 3n, ...\}$$

$$= n\mathbb{Z}.$$

 $\frac{E_{X}}{K} = \{R^{K}: K \in \mathbb{Z}\} = \{e, R, R^{2}, ..., R^{n-1}\}$ $\langle F \rangle = \{F^{K}: K \in \mathbb{Z}\} = \{e, F\}$

Definition: If a is an element of a
group G, we define the order of a,
$$|a|$$
,
to be the smallest positive integer k such
that $a^{k} = e$. If no such K exists, we
write $|a| = \infty$.

$$E_{X}: I_{n} \mathbb{Z}_{0}^{*} = \{1, 3, 7, 9\},$$

$$|\underline{1}| = \underline{1}$$

$$3^{t} = 3, \quad 3^{2} = 9, \quad 3^{3} = 7, \quad 3^{4} = \underline{1} \implies |\underline{3}| = \underline{4}$$

$$7^{t} = 7, \quad 7^{2} = 9, \quad 7^{3} = 3, \quad 7^{4} = \underline{1} \implies |\overline{7}| = \underline{4}$$

$$9^{2} = 9, \quad 9^{2} = \underline{1} \implies |\underline{9}| = \underline{1}.$$

Ex: In \mathbb{Z} , |0| = 1 and $|a| = \infty$ for

(ii) If
$$|a| = n < \infty$$
, then $\langle a \rangle = \{e, a, a^2, ..., a^{n-n}\}$
and $a^i = a^j \iff n | i - j$.

Proof: If
$$|a| = \infty$$
, then there is no $K \neq 0$
such that $a^{k} = e$. Thus, if $a^{i} = a^{j}$, we
have $a^{i-j} = e$ and hence $i-j=0$. We
conclude that $i=j$, thereby proving (i).

Next, suppose that
$$|a| = n < \infty$$
. We will show
that $\langle a \rangle = \{e, a, a^2, ..., a^{n-1}\}$.
It is clear that \supseteq holds. But if a^k is
an arbitrary element in $\langle a \rangle$, then
 $K = nq + r$ for some $r \in \{0, 1, ..., n-1\}$

by the division algorithm. We have that

$$a^{k} = a^{n_{2}+r} = (a^{n})^{2} a^{r} = e^{2} a^{r} = a^{r} \in \{e, a, a^{2}, ..., a^{n-1}\}$$

This demonstrates \leq , so $\langle a \rangle = \{e, a, a^{2}, ..., a^{n-1}\}$
It remains to show that $a^{i} = a^{j} \Leftrightarrow n \mid i = j$.
(\leq) If $n \mid i = j$, then $i = j = nq$ for some $q \in \mathbb{Z}$.
Thus, $a^{i} = a^{j+nq} = a^{j} (a^{n})^{2} = a^{j} e^{a} = a^{j}$.
(\Rightarrow) If $a^{i} = a^{j}$, then $a^{i-j} = e$. Using the
division algorithm, write
 $i = j = nq + r$ for some $r \in \{o, j, ..., n-1\}$
Then $e = a^{i-j} = a^{nq+r} = a^{r}$. Since $r < n$,
yet n is the smallest positive integer with $a^{n} = e$,

it must be that
$$r=0$$
. Therefore $i-j=nq$,
so $n \mid i-j$. This proves (ii).

Corollary 1: If a is an element of a group G,
then $\mid a \mid = \mid \langle a \rangle \mid$.

Corollary 2: If a is an element of a group G
and
$$a^{k} = e$$
, then |a| divides K.

Proof: If
$$a^{k} = e$$
, then $a^{k} = a^{\circ}$. Thus,
by the above lemma, n divides $K-O = K$.