\$2 - Subgroups

By now we have seen many examples of groups. Some of these groups arise as subsets of a larger group with the same operation.
e.g. $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$, and all of these sets form groups under addition.
e.g. $\{1,-1\} \leqslant\{1, i,-1,-i\} \leq \mathbb{C}^{*}$, and all of these sets form groups under multiplication.

Definition: Let (G, \cdot) be a group.

If H is a subset of G and $(H$, is a group, we say that H is a subgroup of G, and write $H \leqslant G$.

Remarks:
(i) For a subset H of a group G to be a subgroup, it must form a group with respect to the same operation as G.
(ii) Every group G is accompanied by two subgroups: $\{e\}$ (the trivial group) $G \quad$ (the group itself) A subgroup $H \leq G$ not equal to $\{e\}$ or G
is called a proper subgroup of G.

Ex:- Consider the set of even integers

$$
2 \mathbb{Z}=\{\ldots,-4,-2,0,2,4, \ldots\}
$$

sitting inside the additive group \mathbb{Z}. It is easy to see that $2 \mathbb{Z}$ also forms a group under addition, and hence $2 \mathbb{Z} \leq \mathbb{Z}$.

Notice that in every example we have seen, the group G and its subgroup H share the same identity element. This is always the case.

Proposition: If G is a group with identity e_{G} and $H \leq G$ with identity e_{H}, then $e_{G}=e_{H}$.

Proof: $e_{H}=e_{H}^{2}$, as $e_{H}=$ identity for H.
Let e_{H}^{-1} be the inverse of e_{H} in G. Then

$$
e_{G}=e_{H} e_{H}^{-1}=e_{H}^{2} e_{H}^{-1}=e_{H}\left(e_{H} e_{H}^{-1}\right)=e_{H} e_{G}=e_{H}
$$

Ex: Is $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$ a subgroup of

$$
\mathbb{Z}_{8}=\{0,1,2,3,4,5,6,7\} ? \quad \text { No! }
$$

$\mathbb{Z}_{8}^{*} \subseteq \mathbb{Z}_{8}$, but the operations are different.

Ex: Is $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ a subgroup of \mathbb{Z} ?

No! $\mathbb{Z}_{n} \notin \mathbb{Z}_{n}$ (remember, the elements of \mathbb{Z}_{n} are really equivalence classes of integers!)

The operations in these groups are also not

$$
\sim
$$

the same: \mathbb{Z} is a group under addition,
\mathbb{Z}_{n} is a group under addition $\bmod n$.

Theorem (The Subgroup Test):
Let G be a group. A non-empty subset $H \subseteq G$ is a subgroup if and only if
(i) $a b \in H$ for all $a, b \in H$, and
(ii) $a^{-1} \in H$ for all $a \in H$.

Proof: (\Rightarrow) Suppose that $H \leq G$.
Since H is a group, it contains the product of any of its elements (i.e., (i) holds) and the inverse of any of its elements (i.e., (ii) holds).
(Now suppose that $\varnothing \neq H \subseteq G$ is such that (i) \& (ii) hold.
[Closure] By (i), H is closed under the group operation.
[Associativity] The operation on H is associative because it is the same as the operation on G, which is associative since G is a group.
[Identity] $H \neq \varnothing$, so let $a \in H$. By (ii), $a^{-1} \in H$ and hence $e=a a^{-1} \in H \quad$ (remember, H is closed under the group operation!).
[Inverses] By (ii), every $a \in H$ has an a_{n} inverse in H.

Exercise [One-Step Subgroup Test]:
Let G be a group. Prove that a non-empty subset $H \subseteq G$ is a subgroup of G if and only if $a^{-1} b \in H$ for $a l l a, b \in H$.

Ex: Let $S L_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}): \operatorname{det}(A)=1\right\}$.
This is called the special linear group.
Is $S L_{n}(\mathbb{R}) \leq G L_{n}(\mathbb{R}) \quad$ (under matrix milt?)
Let's see!

- $I=\left[\begin{array}{lll}1 & & \\ & \ddots & \\ & & 1\end{array}\right] \in S \operatorname{Ln}_{n}(\mathbb{R})$, So $\quad S \operatorname{Ln}_{n}(\mathbb{R}) \neq \varnothing$.
- If $A \in S L_{n}(\mathbb{R})$, then $\operatorname{det}(A)=1 \neq 0$.

Thus, $A \in G L_{n}(\mathbb{R})$, so $S L_{n}(\mathbb{R}) \subseteq G L_{n}(\mathbb{R})$.

It's a non-empty subset.
Now let's use the subgroup test.

- If $A, B \in \operatorname{SL}(\mathbb{R})$, then $\operatorname{det}(A)=\operatorname{det}(B)=1$.

Thus $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1$, so $A B \in S \operatorname{Ln}(\mathbb{R})$.

- If $A \in S L_{n}(\mathbb{R})$, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=1$, hence $A^{-1} \in S L_{n}(\mathbb{R})$.

By the subgroup test, $S \operatorname{Ln}(\mathbb{R}) \leq G \operatorname{Ln}(\mathbb{R})$

Next we describe the simplest way to construct subgroups within a group G.

Definition: If a is an element of a group G, define $\langle a\rangle=\left\{a^{k}: k \in \mathbb{Z}\right\}$

Note that $\langle a\rangle \subseteq G$ and $\langle a\rangle \neq \varnothing$.
In particular, $e=a^{0} \in\langle a\rangle$. Moreover, if $a^{n}, a^{m} \in\langle a\rangle$, then $a^{n+m} \in\langle a\rangle$ and $\left(a^{n}\right)^{-1}=a^{-n} \in\langle a\rangle$. Thus, by the subgroup test, $\langle a\rangle \leq G$. We call $\langle a\rangle$ the subgroup generated by a.

Exercise: Prove that $\langle a\rangle$ is the smallest subgroup of G containing a (i.e., if $H \leq G$ and $a \in H$, then $\langle a\rangle \leq H$).

Ex: In \mathbb{Z}_{10}^{*},

$$
\begin{aligned}
& \langle 1\rangle=\{1\}, \\
& \langle 3\rangle=\left\{3^{k}: k \in \mathbb{Z}\right\}=\{1,3,7,9\}=\mathbb{Z}_{10}^{*}, \\
& \langle 7\rangle=\left\{7^{k}: k \in \mathbb{Z}\right\}=\{1,3,7,9\}=\mathbb{Z}_{10}^{*}, \\
& \langle 9\rangle=\left\{9^{k}: k \in \mathbb{Z}\right\}=\{1,9\} .
\end{aligned}
$$

Ex: In \mathbb{Z}, for $n \neq 0$,

$$
\begin{aligned}
\langle n\rangle & =\left\{n^{k}: k \in \mathbb{Z}\right\} \\
& =\{\ldots,-3 n,-2 n,-n, 0, n, 2 n, 3 n, \ldots\} \\
& =n \mathbb{Z}
\end{aligned}
$$

Ex: In D_{n},

$$
\begin{aligned}
& \langle R\rangle=\left\{R^{k}: k \in \mathbb{Z}\right\}=\left\{e, R, R^{2}, \ldots, R^{n-1}\right\} \\
& \langle F\rangle=\left\{F^{k}: k \in \mathbb{Z}\right\}=\{e, F\}
\end{aligned}
$$

Definition: If a is an element of a group G, we define the order of $a,|a|$, to be the smallest positive integer k such that $a^{k}=e$. If no such k exists, we write $|a|=\infty$.

Ex: $\operatorname{In} \mathbb{Z}_{10}^{*}=\{1,3,7,9\}$,

$$
|1|=1
$$

$$
3^{2}=3, \quad 3^{2}=9, \quad 3^{3}=7, \quad 3^{4}=1 \quad \Rightarrow \quad 3 \mid=4
$$

$$
7^{1}=7, \quad 7^{2}=9, \quad 7^{3}=3, \quad 7^{4}=1 \Rightarrow|7|=4
$$

$$
q^{2}=9, \quad 9^{2}=1 \Rightarrow|9|=1 .
$$

Ex: In $\mathbb{Z},|0|=1$ and $|a|=\infty$ for
all $a \neq 0$.

Ex: In D_{n}, what is $|R|=n,|F|=2$.

Notice anything interesting?
It appears that the order of an element $a \in G$ is the same as the order of the group $\langle a\rangle$. This will turn out to be the case, and it's why we call $|a|$ the order of a Before proving this fact, we investigate the following lemma.

Lemma 2.1: Let a be an element of a group G.
(i) If $|a|=\infty$ then $a^{i}=a^{j} \Leftrightarrow i=i$
(ii) If $|a|=n\left\langle\infty\right.$, then $\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$ and $a^{i}=a^{j} \Leftrightarrow h \mid i-j$.

Proof: If $|a|=\infty$, then there is no $k \neq 0$ such that $a^{k}=e$. Thus, if $a^{i}=a^{j}$, we have $a^{i-j}=e$ and hence $i-j=0$. We conclude that $i=j$, thereby proving (i).

Next, suppose that $|a|=n<\infty$. We will show that $\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$.

It is clear that \supseteq holds. But if a^{k} is an arbitrary element in $\langle a\rangle$, then

$$
K=n q+r \text { for some } r \in\{0,1, \ldots, n-1\}
$$

by the division algorithm. We have that

$$
a^{k}=a^{n q+r}=\left(a^{n}\right)^{q} a^{r}=e^{q} a^{r}=a^{r} \in\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}
$$

This demonstrates \leq, so $\langle a\rangle=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\}$.

It remains to show that $a^{i}=a^{j} \Leftrightarrow n \mid i-j$.
(\Leftarrow) If $n \mid i-j$, then $i-j=n q$ for some $q \in \mathbb{Z}$.
Thus, $a^{i}=a^{j+n q}=a^{j}\left(a^{n}\right)^{q}=a^{j} e^{q}=a^{j}$.
\Leftrightarrow If $a^{i}=a^{j}$, then $a^{i-j}=e$. Using the division algorithm, write

$$
i-j=n q+r \text { for some } r \in\{0,1, \ldots, n-1\}
$$

Then $e=a^{i-j}=a^{n q+r}=a^{r}$. Since $r<n$, yet n is the smallest positive integer with $a^{n}=e$,
it must be that $r=0$. Therefore $i-j=n q$, so $n \mid i-j$. This proves (ii).

Corollary 1: If a is an element of a group G, then $|a|=|\langle a\rangle|$.

Corollary 2: If a is an element of a group G and $a^{k}=e$, then $|a|$ divides k.

Proof: If $a^{k}=e$, then $a^{k}=a^{0}$. Thus, by the above lemma, n divides $k-0=k$.

