$\oint 6$ - Quotients \& Normal Subgroups

Let G be a group and $H \leqslant G$.
Define $G / H=\{a H: a \in G\}$, the set of left coset of H in G.

Q: Can we turn G / H into a group? What could the operation be?

It would be natural to define

$$
a H \cdot b H=(a b) H
$$

but does this make sense? For this operation to be well-defined, it should not depend on the coset representatives.
(i.e., if $a H=a^{\prime} H$ and $b H=b^{\prime} H$, then $a H \cdot b H$ should be the same as $a^{\prime} H \cdot b^{\prime} H$)

This would mean that $\forall h \in H, \forall a \in G$,

$$
\begin{aligned}
h a H & =h H \cdot a H \\
& =e H \cdot a H=e a H=a H
\end{aligned}
$$

$\Rightarrow h a \in a H \quad \forall a \in G, \quad \forall h \in H$

$$
\Rightarrow H a \leq a H \quad \forall a \in G .
$$

By replacing a with a^{-1}, we also deduce that $H a^{-1} \leq a^{-1} H \quad \forall a \in G$, so

$$
\begin{gathered}
a\left(H a^{-1}\right) a \leq a\left(a^{-1} H\right) a \Rightarrow a H \leq H a \quad \forall a \in G \\
\therefore a H=H a!!
\end{gathered}
$$

Summary: To turn G / H into a group with the operation $a H \cdot b H=a b H$, We need every left coset of H to also be a right coset!

Definition: A subgroup H of a group G is called normal if $a H=H a \quad \forall a \in G$. In this case we write $H \unlhd G$.

Remarks:
(1) Not every subgroup of a group G is normal (e.g., you show on A3 that the subgroup $\langle V\rangle \leq D_{4}$ is not normal.)
(2) If G is Abelian, however, then every subgroup $H \leqslant G$ is normal.
(3) In $\S 5$ we proved that for $H \leq G$, $a H=H a \quad \forall a \in G \quad \Leftrightarrow \quad a H a^{-1}=H \quad \forall a \in G$. i.e., $H \unlhd G \Leftrightarrow a H a^{-1}=H \quad \forall a \in G$

The following result is a modification of the above. In practice, we use this result to test if subgroups are normal.

Theorem 6.1 [Normal Subgroup Test]
Let G be a group and $H \leq G$. Then $H \pm G \Leftrightarrow x H x^{-1} \leq H \quad \forall x \in G$.

Proof: The forward direction holds by statement 6 of Proposition 5.1.

Now assume that $x H x^{-1} \leq H \quad \forall x \in G$.
Fix $a \in G$. With $x=a$ we have $a H a^{-1} \subseteq H$,
so $a H \subseteq H a$. Likewise with $x=a^{-1}$ we have $a^{-1} H a \leq H$, so $H a \leq a H$. We conclude that $a H=H a$, so $H \Delta G$.

Ex: If $H=\left\{R \in D_{n} \mid R\right.$ is a rotation $\}$, then $H \Delta D_{n}$. Indeed, let $x \in D_{n}$ and $R \in H$.

If x is a rotation, then so is $x R x^{-1}$, so $x R x^{-1} \in H$. If instead x is a flip,
then $x R_{x}^{-1}=R^{-1}$ is a rotation (A1).
Thus $x H x^{-1} \leq H \quad \forall x \in D_{n}$, so $H \leq D_{n}$.

Ex: $A_{n} \llbracket S_{n}$. Indeed, let $\sigma \in A_{n}$ and $\tau \in S_{n}$.
If τ is even then so is τ^{-1} and hence $\tau \sigma \tau^{-1}$ is (even)(even)(even) = even.

If τ is odd then so is τ^{-1} and hence $\tau \sigma \tau^{-1}$ is (odd) $\underbrace{(\text { even })(\text { odd })}_{\text {odd }})=($ odd $)($ odd $)=$ even
Thus, $\tau A_{n} \tau^{-1} \subseteq A_{n} \quad \forall \tau \in S_{n}$, so $A_{n} \leq S_{n}$.

Theorem 6.2: Let G be a group and $H \leq G$. If $|G: H|=2$ then $H \unlhd G$.

Proof: Since $|G: H|=2$, there are 2 left
coset and 2 right cosets. Since the left cosets partition the group, they are H and $\{g \in G: g \notin H\}$. Likewise, the right coset are H and $\{g \in G: g \notin H\}$.

If $a \in H$, then $a H=H=H a$
If $a \notin H$, then $a H=\{g \in G: g \& H\}=H a$.

Remark: Given $H \unlhd G$, we can think of the elements of H as "almost commuting" with each $a \in G$. That is, we can move a to the other side of a product $a h(h \in H)$, but it may come at the cost of replacing h with
some other $h^{\prime} \in H: \quad a h=h^{\prime} a$
In some special cases it will turn out that $h=h^{\prime}$!

Ex: Recall from Quiz 2 that the centre of a group G is defined as

$$
Z(G)=\{a \in G \mid a b=b a \quad \forall b \in G\}
$$

There you also proved that $Z(G) \leq G$.
Actually, $Z(G) \unlhd G!$ Indeed, if $a \in Z(G)$ and $b \in G$, then $b a b^{-1}=b b^{-1} a=a \in Z(G)$.

Theorem 6.3 Let G be a group and
$H \triangleq G$. Then $G / H=\{a H: a \in G\}$ is
a group under the operation

$$
a H \cdot b H=a b H
$$

Proof:
[Well-defined] Let's make sure that our operation doesn't depend on our choice of coset representative. [i.e., if $a H=a^{\prime} H$ \& $b H=b^{\prime} H$ then $\left.a H \cdot b H=a^{\prime} H \cdot b^{\prime} H.\right]$

Suppose $a H=a^{\prime} H$ and $b H=b^{\prime} H$.
Then $a=a^{\prime} h_{1}$ and $b=b^{\prime} h_{2}$ for some $h_{1}, h_{2} \in H$.

We have $a H \cdot b H=a b H$

$$
=a^{\prime} h_{1} b^{\prime} \underline{h_{2}} H
$$

$$
\begin{aligned}
& =H \\
& =a^{\prime} \frac{h_{1} b^{\prime} H}{=b^{\prime} h_{3}} \text { for some } h_{3} \in H \\
& =a^{\prime} b^{\prime} \frac{h_{3} H}{=H} \\
& =a^{\prime} b^{\prime} H=a^{\prime} H \cdot b^{\prime} H .
\end{aligned}
$$

Thus, the operation is well-defined.
[Associativity] This follows from associativity of the operation in G.
[Identity] Note that $e H \cdot a H=e a H=a H$

$$
a H \cdot e H=a e H=a H
$$

Thus, $e H=H$ is the identity of G / H.
[Inverses] $a H \cdot a^{-1} H=a a^{-1} H=H$

$$
a^{-1} H \cdot a H=a^{-1} a H=H
$$

Thus, $(a H)^{-1}=a^{-1} H$.

By the arguments above, G / H is a group.

Note: If $H \Delta G$, we call the group G / H the quotient group of G by H (or sometimes " $G \bmod H^{\prime \prime}$). The order of G / H is $|G: H|$ (\# of left coset).

If G is finite, then

$$
|G / H|=|G: H|=\frac{|G|}{|H|} \text { (Lagrange) }
$$

Ex: Consider $G=\mathbb{Z}$ and $H=3 \mathbb{Z}$.
We have that

$$
\begin{aligned}
\mathbb{Z} / 3 \mathbb{Z} & =\{a+3 \mathbb{Z}: a \in \mathbb{Z}\} \\
& =\{0+3 \mathbb{Z}, 1+3 \mathbb{Z}, 2+3 \mathbb{Z}\}
\end{aligned}
$$

But $a+3 \mathbb{Z}=\{a+3 k: k \in \mathbb{Z}\}$

$$
=\{b \in \mathbb{Z}: 3 \mid b-a\}=[a]!
$$

\therefore The elements of $\mathbb{Z} / 3 \mathbb{Z}$ and \mathbb{Z}_{3} are the same!

So is the operation: $(a+3 \mathbb{Z})(b+3 \mathbb{Z})=(a+b)+3 \mathbb{Z}$

$$
[a]+[b]=[a+b]
$$

Thus, $\mathbb{Z} / 3 \mathbb{Z}$ and \mathbb{Z}_{3} are the same group!
We've been working with quotients all along!

Remark: There is nothing special here about $n=3$.
In general, $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$.

Ex: Consider $\left\langle R_{90}\right\rangle=\left\{e, R_{90}, R_{180}, R_{270}\right\} \unlhd D_{4}$.
The quotient group has order

$$
\left|D_{4} /\left\langle R_{90}\right\rangle\right|=\frac{\left|D_{4}\right|}{\left|\left\langle R_{90}\right\rangle\right|}=\frac{8}{4}=2 .
$$

The elements are $\left\langle R_{90}\right\rangle$ and $\frac{V}{\tau_{\text {could }} \text { use any flip her. }}\left\langle R_{90}\right\rangle=\left\{V, H, D, D^{\prime}\right\}$.
The Cayley table for $D_{4} /\left\langle R_{90}\right\rangle$ is

	$\left\langle R_{90}\right\rangle$	$V\left\langle R_{90}\right\rangle$
$\left\langle R_{90}\right\rangle$	$\left\langle R_{90}\right\rangle$	$V\left\langle R_{90}\right\rangle$
$V\left\langle R_{90}\right\rangle$	$V\left\langle R_{90}\right\rangle$	$\left\langle R_{90}\right\rangle$

The cool thing is that we can see the Cayley table for $D_{4} /\left\langle R_{90}\right\rangle$ in the Cayley table for D_{4} !

	e	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
e	e	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
R_{90}	R_{90}	R_{180}	R_{270}	e	D^{\prime}	D	H	V
R_{180}	R_{180}	R_{270}	e	R_{90}	V	H	D^{\prime}	D
R_{270}	R_{270}	e	R_{90}	R_{180}	D	D^{\prime}	V	H
H	H	D	V	D^{\prime}	e	R_{180}	R_{90}	R_{270}
V	V	D^{\prime}	H	D	R_{180}	e	R_{270}	R_{10}
D	D	V	D^{\prime}	H	R_{270}	R_{90}	e	R_{180}
D^{\prime}	D^{\prime}	H	D	V	R_{90}	R_{270}	R_{180}	e

Ex: Recall that $K=\left\{e, R_{180}\right\}=Z\left(D_{4}\right) \unlhd D_{4}$.
The quotient group has order

$$
\left|D_{4} / K\right|=\frac{\left|D_{4}\right|}{|K|}=\frac{8}{4}=2 .
$$

The elements: $K=\left\{e, R_{180}\right\}, \quad R_{90} K=\left\{R_{90}, R_{270}\right\}$

$$
H K=\{H, V\}, \quad D K=\left\{D, D^{\prime}\right\}
$$

Cayley table: | | K | $R_{90} K$ | $H K$ | $D K$ |
| ---: | :---: | :---: | :---: | :---: |
| K | K | $R_{90} K$ | $H K$ | $D K$ |
| $R_{90} K$ | $R_{90} K$ | K | $D K$ | $H K$ |
| $H K$ | $H K$ | $D K$ | K | $R_{90} K$ |
| $D K$ | $D K$ | $H K$ | $R 9 K$ | K |

By rearranging the table for D_{4}, we can once again see the structure of the quotient.

	e	R_{180}	R_{90}	R_{270}	H	V	D	D^{\prime}
e	e	R_{180}	R_{90}	R_{270}	H	V	D	D^{\prime}
R_{180}	R_{180}	e	R_{270}	R_{90}	V	H	D^{\prime}	D
R_{90}	R_{90}	R_{270}	R_{90}	e	D^{\prime}	D	H	V
R_{270}	R_{270}	R_{90}	e	R_{180}	D	D^{\prime}	V	H
H	H	V	D	D^{\prime}	e	R_{180}	R_{90}	R_{270}
V	V	H	D^{\prime}	D	R_{180}	e	R_{270}	R_{90}
D	D	D^{\prime}	V	H	R_{270}	R_{90}	e	R_{180}
D^{\prime}	D^{\prime}	D	H	V	R_{90}	R_{270}	R_{180}	e

Exercise: Let G be a group and $H \unlhd G$.
(i) Prove that if G is Abelian, so is G / H.
(ii) Prove that if G is cyclic, so is G / H.

Not only are quotient groups interesting examples, they can tell us quite a bit about the parent group G

Theorem 6.4: Let G be a group. If $G / Z(G)$ is cyclic, then G is Abelian.

Proof: Suppose that $G / Z(G)=\langle g Z(G)\rangle$ for some $g \in G$, so $G / Z(G)=\left\{g^{k} Z(G): k \in \mathbb{Z}\right\}$. Thus, given $a, b \in G$, we can write $a=g^{i} z_{1}$
and $b=g^{j} z_{2}$ for some $i, j \in \mathbb{Z}$ and $z_{1}, z_{2} \in Z(G)$
But then $a b=g^{i} z_{1} g^{j} z_{2}$

$$
\begin{aligned}
& =g^{i} g^{j} z_{2} z_{1} \quad\left(z_{1}, z_{2} \in z(G)\right) \\
& =g^{j} g^{i} z_{1} z_{2} \\
& =g^{j} z_{2} g^{i} z_{1} \quad\left(z_{2} \in z(G)\right) \\
& =b a
\end{aligned}
$$

Since $a b=b a \quad \forall a, b \in G, \quad G$ is Abelian.

Exercise: If $|G|=p q$ where p, q are primes, then G is Abelian or $Z(G)=\{e\}$.

Theorem 6.5 [Cauchy's Theorem for Abelian Groups]
Let G be a finite Abelian group. If P
is a prime and p divides $|G|$, then G contains an element of order P.

Proof: Clearly this holds when G has order 2. Proceeding by induction, Suppose that the result holds for all groups of order $<|G|$, and let p be a prime that divides $|G|$.

First, note that G contains an element of prime order. Indeed, let $x \in G \backslash\{e\}$.

If $|x|=m$, then $m=n q$ for some prime q.
Hence $\left|x^{n}\right|=\frac{|x|}{\operatorname{gcd}(|x|, n)}=\frac{n q}{\operatorname{gcd}(n q, n)}=q$

So we may assume that $|x|=q, q$ prime.

If $q=p$ then we're done! So assume that $q \neq p$. Since G is Abelian, $\langle x\rangle$ is normal and hence we can consider the quotient $G /\langle x\rangle$. This group has order $\frac{|G|}{q}$, and hence p divides $|G /\langle x\rangle|$. By induction, there is an element $y\langle x\rangle \in G /\langle x\rangle$ of order P. Hence, $y^{p} \in\langle x\rangle=\left\{e, x, x^{2}, \cdots, x^{q-1}\right\}$. Note that $y \neq e \quad($ else $|y\langle x\rangle|=1)$

Case I: $\quad y^{P}=e$.
In this case $|y|$ divides p, so $|y|=p$
(as p prime and $y \neq e$).

Case II: $\quad y^{p} \neq e$
Since $|\langle x\rangle|=|x|=q$ (prime), we have
$\left|y^{p}\right|=q$. We claim that $\left|y^{q}\right|=p$. Indeed, $\left(y^{q}\right)^{p}=\left(y^{p}\right)^{q}=e$, so $\left|y^{q}\right|$ divides p and hence $\left|y^{q}\right|=1$ or p. But if $\left|y^{q}\right|=1$ then

$$
\begin{aligned}
y^{2}=e & \Rightarrow(y\langle x\rangle)^{q}=\langle x\rangle \\
& \Rightarrow p=|y\langle x\rangle| \text { divides } q
\end{aligned}
$$

$$
\therefore\left|y^{q}\right|=p .
$$

