(i.e., if
$$aH = a'H$$
 and $bH = b'H$, then
 $aH \cdot bH$ should be the same as $a'H \cdot b'H$)

This would mean that
$$\forall h \in H$$
, $\forall a \in G$,
 $ha H = hH \cdot aH$
 $= eH \cdot aH = eaH = aH$
 $\Rightarrow ha \in aH \quad \forall a \in G$, $\forall h \in H$
 $\Rightarrow Ha \in aH \quad \forall a \in G$.

By replacing a with
$$a^{-1}$$
, we also deduce
that $Ha^{-1} \in a'H$ $\forall A \in G$, so
 $a(Ha^{-1})a \in a(a^{-1}H)a \Rightarrow aH \in Ha \forall a \in G$
 $\therefore aH = Ha !!$

Remarks:

(1) Not every subgroup of a group
$$G$$
 is
normal (e.g., you show on A3 that
the subgroup $\langle V \rangle \leq D_{4}$ is not normal.)

Theorem 6.1 [Normal Subgroup Test]
Let G be a group and
$$H = G$$
. Then
 $H \neq G \Rightarrow XHX^{-1} = H \forall X \in G$.

Proof: The forward direction holds by statement 6 of Proposition 5.1. Now assume that xHx -1 = H YxeG. Fix a & G. With x=a we have a Ha' = H, so a H= Ha. Likewise with x= a" we have $a'Ha \leq H$, so $Ha \leq aH$. We conclude that aH = Ha, so H = G. Ex: If H = {REDn | R is a rotation }, then

 $H \neq D_n$. Indeed, let $x \in D_n$ and $R \in H$. If X is a rotation, then so is $x R x^{-1}$, so $X R x^{-1} \in H$. If instead x is a flip,

then
$$XRx^{-1} = R^{-1}$$
 is a rotation (A1).
Thus $XHx^{-1} \subseteq H$ $\forall X \in Dn$, so $H \triangleq Dn$.
Ex: An \triangleq Sn. Indeed, let $\sigma \in An$ and $\tau \in Sn$.
If T is even then so is T^{-1} and hence
 $T\sigma T^{-1}$ is (even)(even)(even) = even.
If T is odd then so is T^{-1} and hence
 $T\sigma T^{-1}$ is (odd)(even)(odd) = even
add
Thus, $TAnT^{-1} \subseteq An$ $\forall T \in Sn$, so $An \triangleq Sn$.

Theorem 6.2: Let G be a group and
$$H \in G$$
. If $|G:H| = 2$ then $H \leq G$.

Proof: Since |G:H|=2, there are 2 left

cosets and 2 right cosets. Since the left
cosets partition the group, they are H
and
$$\{g \in G : g \notin H\}$$
. Likewise, the right cosets
are H and $\{g \in G : g \notin H\}$.

If
$$a \in H$$
, then $aH = H = Ha$
If $a \notin H$, then $aH = \{g \in G : g \notin H\} = Ha$.

Remark: Given
$$H \triangleq G$$
, we can think of the
elements of H as "almost commuting" with each
a \in G. That is, we can move a to the other
side of a product ah (heH), but it
may come at the cost of replacing h with

some other h'EH:
$$ah = h'a$$

In some special cases it will turn out
that $h = h'$!

Ex: Recall from Quiz 2 that the centre
of a group G is defined as
$$Z(G) = \{a \in G \mid ab = ba \forall b \in G \}$$

There you also proved that $Z(G) \leq G$. Actually, $Z(G) \leq G$! Indeed, if $a \in Z(G)$ and $b \in G$, then $bab^{-1} = bb^{-1}a = a \in Z(G)$.

= $a'h, b' h_2 H$

$$= A' \frac{h_1 b'}{H} H$$

$$= a' b' \frac{h_3 H}{H}$$

$$= a' b' \frac{h_3 H}{H}$$

$$= a' b' H = a' H \cdot b' H.$$

Thus, the operation is well-defined.

$$[Inverses]$$
 $aH \cdot a'H = aa'H = H$

a"H: aH = a"a H = H
Thus,
$$(aH)^{-1} = a$$
"H.
By the arguments above, G/H is a group.
Note: IF H = G, we call the group
 G/H the quotient group of G by H
(or sometimes "G mod H"). The order
of G/H is $|G:H|$ (# of left cosels).
IF G is finite, then
 $|G/H| = |G:H| = |G|$ (Lagrange)

$$\underline{Ex}$$
: Consider $G = \mathbb{Z}$ and $H = 3\mathbb{Z}$.
We have that

 $\mathbb{Z}/3\mathbb{Z} = \{\alpha + 3\mathbb{Z} : \alpha \in \mathbb{Z}\}$ $= \{0+3\mathbb{Z}, 1+3\mathbb{Z}, 2+3\mathbb{Z}\}$ But $a+3\mathbb{Z} = \{a+3\mathbb{K} : \mathbb{K}\in\mathbb{Z}\}$ = { b e Z : 3 b - a } = [a] ! ... The elements of Z/3Z and Z3 are the same! So is the operation: (a+3Z)(b+3Z) = (a+b) + 3Z[a] + [b] = [a+b]Thus, Z/3Z and Z3 are the same group! We've been working with quotients all along! <u>Remark</u>; There is nothing special here about n=3. In general, $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}n$.

$$E_{X}: \text{ Consider } \langle R_{90} \rangle = \{e, R_{90}, R_{150}, R_{270}\} \leq D_{y}.$$
The quotient group has order
$$|D_{y}/\langle R_{10} \rangle| = \frac{|D_{4}|}{|\langle R_{90} \rangle|} = \frac{g}{4} = 2.$$
The elements are $\langle R_{90} \rangle$ and $\bigvee \langle R_{90} \rangle = \{V, H, D, D'\}.$
The Cayley table for $D_{4}/\langle R_{90} \rangle$ is
$$\langle R_{90} \rangle \quad \bigvee \langle R_{90} \rangle$$

$$\langle R_{90} \rangle \quad \bigvee \langle R_{90} \rangle$$

$$\langle R_{90} \rangle \quad \bigvee \langle R_{90} \rangle$$

The cool thing is that we can see the Cayley table for $D_4/\langle R_{ao} \rangle$ in the Cayley table for $D_4!$

Ex: Recall that $K = \{e, R_{180}\} = Z(D_4) \triangleq D_4$. The quotient group has order $|D_4/K| = \frac{|D_4|}{|K|} = \frac{8}{4} = Z$. The elements: $K = \{e, R_{180}\}, R_{90}K = \{R_{90}, R_{270}\}$ $HK = \{H, V\}, DK = \{D, D'\}$

By rearranging the table for
$$D_4$$
, we can
once again see the structure of the quotient.

	e	R180	Rgo	R270	Н	V	D	D
e	e	R180	R90	Rzzo	Н	\lor	D	DÍ
R 180	R180	e	R270	R 90	V	H	\square'	D
R90	Rgo	R270	Rao	e	D'	D	Н	\vee
R270	R270	Rgo	e	R 180	D	D'	\checkmark	Н
Н	Н	\vee	D	$D^{'}$	e	R180	Rgo	R270
V	\vee	Н	\mathcal{D}'	D	R180	e	R270	Rgo
D	D	D'	V	Н	R270	Rao	e	R180
D'	Ď	D	Н	\vee	Rau	R 270	R180	e

Exercise: Let G be a group and H
$$\leq G$$
.
(i) Prove that if G is Abelian, so is G/H.
(ii) Prove that if G is cyclic, so is G/H.
Not only are quotient groups interesting examples,
they can tell us quite a bit about the parent
group G.
Theorem 6.4: Let G be a group. If G/Z(G)
is cyclic, then G is Abelian.
Proof: Suppose that G/Z(G) = $\langle gZ(G) \rangle$ for
some geG, so G/Z(G) = $\{g^{k}Z(G) : k \in \mathbb{Z}\}$.
Thus, given a, b eG, we can write $a = g^{i}Z$.

and
$$b = g^{j} z_{z}$$
 for some $i, j \in \mathbb{Z}$ and $z_{i}, z_{z} \in \mathbb{Z}(G)$
But then $ab = g^{j} z_{i} g^{j} z_{z}$
 $= g^{i} g^{j} z_{z} z_{i} \qquad (z_{i}, z_{z} \in \mathbb{Z}(G))$
 $= g^{j} g^{i} z_{i} z_{z}$
 $= g^{j} z_{z} g^{i} z_{i} \qquad (z_{z} \in \mathbb{Z}(G))$
 $= ba$.

Exercise: If |G| = pq where p, q are primes, then G is Abelian or $Z(G) = \{e\}$.

First, note that G contains an element of
prime order. Indeed, let
$$x \in G \setminus \{e\}$$
.
If $|x| = m$, then $m = nq$ for some prime q.
Hence $|x^n| = \frac{|x|}{gcd(|x|,n)} = \frac{nq}{gcd(nq,n)} = q$

So we may assume that
$$|x| = q$$
, q prime.

If
$$q = p$$
 then we're done! So assume that
 $q \neq p$. Since G is Abelian, $\langle X \rangle$ is normal
and hence we can consider the quotient $G/\langle X \rangle$.
This group has order $\frac{|G|}{2}$, and hence p
divides $|G/\langle X \rangle|$. By induction, there is
an element $y \langle X \rangle \in G/\langle X \rangle$ of order p.
Hence, $y^{p} \in \langle X \rangle = \{e, X, X^{2}, ..., X^{2^{-1}}\}$. Note
that $y \neq e$ (else $|y \langle X \rangle| = 1$)

Case I:
$$y^{P}=e$$
.
In this case $|y|$ divides p, so $|y|=p$

(as p prime and
$$y \neq e$$
).
Case $I : y^{p} \neq e$
Since $|\langle x \rangle| = |x| = q$ (prime), we have
 $|y^{p}| = q$. We claim that $|y^{p}| = p$. Indeed,
 $(y^{p})^{p} = (y^{p})^{q} = e$, so $|y^{q}|$ divides p and
hence $|y^{q}| = 1$ or p . But if $|y^{q}| = 1$ then
 $y^{n} = e \implies (y \langle x \rangle)^{q} = \langle x \rangle$

 \Rightarrow p= |y<x>| divides q

·: | y 2 | = p.

(Can't happen as p, q are prime and $p \neq q$)