
PMATH 336 - Practice Problems

The purpose of this document is to provide you with as many exercises as possible for you
to get some extra practice. More problems can be found in the texts for the course, and
in the exercises I give in class. There may be overlap with questions here and questions in
your assignments and quizzes, and maybe even your midterm and final exam! Although no
solutions will be provided, I would be happy to discuss any of these problems in office hours.

1 Modular Arithmetic (Math 135 Review)

1. (a) (Assignment 1) Let n be a positive integer. Prove that for an integer a, there is
an x ∈ Z such that ax = 1 if and only if gcd(a, n) = 1.

(b) Complete the following table of inverses in Z15:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x−1 ∗ 1 8 ∗

2 Introduction to Groups

1. (Assignment 1) Determine whether or not each of the following sets forms a group
under the given operation.

(a) (Q+, ∗), where Q+ = {a ∈ Q : a > 0} and a ∗ b = ab
2

(b) (R, ?), where a ? b = a+ b+ ab.

(c) G =

{[
a a
a a

]
: a ∈ R∗

}
under matrix multiplication.

2. Let G be a set and · : G × G → G be a binary operation on G. Suppose that (G, ·)
satisfies the first two properties of a group (associativity and identity). Prove that if
a, b, c ∈ G are such that ab = e and ca = e, then b = c.

This shows that we could change the third axiom of a group to the following and we
would still define a group: For every a ∈ G, there are elements b, c ∈ G such that
ab = e and ca = e.

3. (Assignment 1) Let G be a group.

(a) Let a be an element of G. Show that the inverse of a is unique.

(b) If a1, a2, . . . , an ∈ G, what is (a1a2 . . . an−1an)−1?

4. Let a be an element of a group G. Prove that (a−1)−1 = a.
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5. Let a be an element of a group (G, ·). Given an integer n, define

an =


n times︷ ︸︸ ︷

a · a · · · · · a if n > 0
e if n = 0
a−1 · a−1 · · · · · a−1︸ ︷︷ ︸

n times

if n < 0.

Prove that aman = am+n and (am)n = amn.

6. Let G be a group. Prove that if (ab)2 = a2b2 for all a, b ∈ G, then G is Abelian.

7. (Assignment 1) Let (G, ∗) and (H, ?) be groups. Consider the set

G×H = {(g, h) : g ∈ G, h ∈ H} ,

and the operation (g1, h2) · (g2, h2) = (g1 ∗ g2, h1 ? h2).

(a) Prove that (G ×H, ·) is a group. This group is called the direct product of G
and H.

(b) What is |Z2 × Z3|?

(c) In general, what is |G×H| in terms of |G| and |H|? No proof is required.

8. (Assignment 1) Let g be an element of a group G. Prove that the function φg : G→ G
defined by φg(h) = gh is bijective. (This fact is extremely important!)

9. (Assignment 1) Let n be a positive integer.

(a) Let a be a positive integer. Prove that there is an x ∈ Z such that ax = 1 mod n
if and only if gcd(a, n) = 1.

(b) What are the elements of Z∗9? Determine the inverse of each element.

(c) What is |Z∗p| when p is prime?

10. For any positive integers n and k, define

GLn(Zk) = {A ∈Mn(Zk) : det(A) ∈ Z∗k} .

It can be shown that GLn(Zk) is a group under matrix multiplication (where the
operations are performed modulo k). You do not need to show this.

(a) Does

[
12 2
4 1

]
belong to GLn(Z15)? If so, determine its inverse in this group.

(b) List every element of GL2(Z2). Is this group Abelian?
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11. (Assignment 1) Let G be a group with identity e. The order of an element a ∈ G,
denoted |a|, is the smallest positive integer n such that an = e. If no such n exists, we
say that |a| =∞.

Determine the order of each group element.

(a) The element 3 of Z∗14.
(b) The element i of the multiplicative group {1, i,−1,−i}.
(c) F , a flip in Dn.

(d) R, a counterclockwise rotation by 2π/n radians in Dn.

(e) The matrix

[
1 1
0 1

]
in GL2(R).

12. Determine the order of every element in Z4. Do the same for Z∗9 and D4. Notice
anything interesting?

13. (Assignment 1) Let G be a group with the property that a2 = e for all g ∈ G.

(a) Prove that G is Abelian.

(b) Find an example of such a group G with |G| > 2.

14. (Assignment 1) We say that two finite groups G and H are isomorphic if, after
relabelling and reordering their elements, the Cayley tables for G and H are identical.

(a) Are Z4 and Z2 × Z2? Explain.

(b) Let G be a finite group. Prove that every group element appears exactly once in
every row and column of the Cayley table for G.

(c) Prove that any two groups of order 3 are isomorphic.

15. (a) What feature of a Cayley table would indicate that a group G is Abelian?

(b) According to the definition of isomorphic groups given in the problem above, can
two finite groups G and H be isomorphic if G is Abelian and H is non-Abelian?
Explain.

(c) Can two finite groups G and H be isomorphic if G has an element of order 2 but
H does not? Explain.

(d) Give examples of non-isomorphic groups G and H of order 6. Find two non-
isomorphic groups of order 8.

16. Let G = {e, a, b, c, d} be a group. Complete the Cayley table for G:
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e a b c d
e e
a b e
b c d e
c d a b
d

17. Let G = {e, a, b, c} be a group of order 4. Write down the possible Cayley tables of G.
How many non-isomorphic groups of order 4 exist?

18. (Assignment 1 Bonus) Let G be a group with identity e. Suppose that a88 = e and
a18 = e for all a ∈ G. Prove that G is Abelian.

19. (Assignment 2) In class we saw that for every a ∈ Zn, the order of a divides n = |Zn|.
In this question you will prove that if G is any finite Abelian group, then the order of
a group element divides |G|. Think about whether or not this should hold when G is
non-Abelian.

Let G = {g1, g2, . . . , gn} be an Abelian group of order n <∞. Fix an element a ∈ G.

(a) Prove that g1g2 · · · gn = (ag1)(ag2) · · · (agn).

(b) Deduce that |a| divides |G|.

(c) Prove Euler’s Theorem: If a and n are integers with gcd(a, n) = 1, then

aϕ(n) = 1 mod n.

Here, ϕ denotes the Euler totient function as in problem 7.

20. Given an example of an infinite Abelian group with exactly two elements of order 4.

3 Dihedral Groups

1. Consider the group D3 of symmetries of an equilateral triangle.

(a) (Assignment 1) Describe the elements of D3 and write down the group’s Cayley
table.

(b) Let R ∈ D3 be a counterclockwise rotation by 2π/3 radians, and let F ∈ D3 be
any flip. Show explicitly that every symmetry from (a) can be written as Rk or
FRk for some k ≥ 0.

2. What is |Dn|?

3. Let n ≥ 3. Let R ∈ Dn be a rotation and F ∈ Dn be a flip.

(a) Prove that for any integer k, FRk is a flip. Deduce that FRkF = R−k.

(b) Conclude that Dn is non-Abelian.

4. Compute the order of every element of D4.
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4 Symmetric Groups

1. Prove that Sn is a group for all n ≥ 1.

2. Consider the elements σ =

(
1 2 3 4 5
1 4 3 2 5

)
and τ =

(
1 2 3 4 5
5 3 2 1 4

)
. Compute τσ,

στ , σ2, τ 2, σ−1 and τ−1.

3. Write down the Cayley table for S3. Compare this with the Cayley table for D3. Are
these groups isomorphic?

4. (Assignment 1) For each k ∈ {1, 2, 3, 4, 5}, find a permutation π ∈ S5 such that |π| = k.

5. (a) Explain how one can view Dn as a subgroup of Sn.

(b) Based on your answer in (a), write down the elements of D4 as products of disjoint
cycles in S4.

6. Write each permutation as a product of disjoint cycles

(a) (1234)(2543)

(b) (12)(12345)(12)

(c) (12)(13)(24)(23)(153)

(d) (15423)(25143)(354)(1234)

7. For each permutation σ, find |σ| and σ−1.

(a) σ = (12467)

(b) σ = (1, 2)(3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13)

(c) σ = (12 · · ·n)(12 · · ·n)

(d) σ = (12)(123)(1234)

8. Determine whether each permutation is even or odd.

(a) (12345)

(b) (1345)(142)

(c) (12)(123)(1234)

(d) (12)(123)(1234) · · · (12 · · ·n).

(e) (12 · · ·m)(12 · · ·n).

9. What are the possible orders of elements in S6?

10. Determine the number of elements of order 5 in S7
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11. Determine the number of elements of order 10 in S9

12. (Assignment 3)

(a) Determine the number of elements of order 4 in S6.

(b) How many elements in A6 have order 4? Explain.

13. Show that the equation x2 = (1234) has no solution in S7.

14. Determine whether each permutation is even or odd.

(a) (1234)

(b) (123)(45678)

(c) (12)(123)(1234)

(d) (12)(123)(1234) · · · (1 · · ·n)

(e) (1523)(14375)(237)(1365)

(f) (1 · · ·n)(1 · · ·m)

15. Prove that an m-cycle in Sn is even if and only if m is odd.

16. Let σ be an m-cycle in Sn. Prove that if m is odd, then σ2 is also an m-cycle.

17. Prove that if σ ∈ Sn has odd order, then σ is an even permutation.

18. (Assignment 3) For each positive integer n ≥ 3, let An denote the subset of Sn con-
sisting of all even permutations.

(a) Prove that An is a subgroup of Sn. We call An the alternating group.

(b) Find a bijection between An and Sn \ An (the set of odd permutations in Sn).
Deduce that |An| = n!/2.

(c) Write all 12 elements of A4 in cycle notation.

(d) Show that An is non-Abelian for all n ≥ 4.

19. Prove that if H is a subgroup of Sn, then either every member of H is even or exactly
half of the members of H are even.

20. (a) Watch Futurama Season 10, Episode 6: The Prisoner of Benda (if you’re not sure
where to find this episode, maybe Google knows?)

(b) Solve the problem in this episode by proving the following fact: If σ is a permuta-
tion in Sn, then σ can be written as a product of distinct transpositions in Sn+2,
each involving at least one of the elements n+ 1 or n+ 2.
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5 Subgroups

1. This question concerns the intersection of subgroups.

(a) Let H and K be subgroups of a group G. Prove that H ∩K is a subgroup of G.

(b) More generally, prove that if Hi, i ∈ I is an arbitrary collection of subgroups of
G, then

⋂
i∈I Hi is a subgroup of G.

2. Let a be an element of a group G. The centralizer of a is the set

C(a) = {b ∈ G : ab = ba} .

Prove that C(a) ≤ G.

3. Let G be a group. Define the centre of G to be the set

Z(G) = {a ∈ G : ab = ba for all b ∈ G} .

(a) Prove that Z(G) ≤ G.

(b) Determine the centre of each of the following groups:

i. Zn

ii. D3

iii. D4

iv. S3

v. S4

4. Let a be an element of a group G. Prove that 〈a〉 is a subgroup of G. Prove that
|a| = |〈a〉|.

5. Let a be an element of a group G. Prove that 〈a〉 is the smallest subgroup of G
containing a. That is, prove that if H is a subgroup of G that contains a, then
〈a〉 ⊆ H.

6. Let G be a group. Prove that if H ≤ G and K ≤ H, then K ≤ G.

7. (Assignment 2) Let G be a group. Prove the one-step subgroup test: A non-empty
subset H of G is a subgroup of G if and only if ab−1 ∈ H for all a, b ∈ H.

8. Prove the finite subgroup test: Given a finite group G, a non-empty subset H of
G is a subgroup of G if and only if H is closed under the group operation. (i.e., you
don’t need to check inverses!)

9. Prove of disprove:
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(a) If G is a finite group, then every element of G has finite order.

(b) If G is an infinite group, then G has at least one element of G has infinite order.

10. (Assignment 2) We know from linear algebra that a rotation in R2 can be expressed
as a matrix [

cos θ − sin θ
sin θ cos θ

]
for some θ ∈ R.

Prove that G =

{[
cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}
is a subgroup of SL2(R). This group is

the rotational symmetry group of a circle.

11. Let G be a finite group of order n > 2. Prove that G does not contain a subgroup of
order n− 1.

12. Let a and b be elements of a group. Prove that |ab| = |ba|.

13. Prove or disprove: For all group elements a and b, |ab| = |a||b|.

14. Let a be an element of a group G, let b be an element of a group H, and assume that
|a|, |b| <∞. Prove that the order of (a, b) ∈ G×H is lcm(|a|, |b|).

15. Draw the subgroup lattice for Z30

16. Draw the subgroup lattice for Z∗18.

17. Draw the subgroup lattice for Zpq where p and q are distinct primes.

18. Draw the subgroup lattice for Z. Note that this lattice will be infinite, so start at the
top and draw as much as you can.

6 Cyclic Groups

1. Determine whether or not each of the following groups is cyclic. If it is cyclic, find all
generators of the group.

(a) Z12

(b) Zp where p is prime

(c) D3

(d) Z∗25
(e) S4

(f) {±1,±i}
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(g) The subgroup

{[
1 n
0 1

]
: n ∈ Z

}
of GL2(R).

2. Find a cyclic subgroup of Dn of order n.

3. We know that any subgroup of a cyclic group is cyclic. Furthermore, we know from
one of the questions above that the intersection of two subgroups is again a subgroup.
With these facts in mind...

(a) Find a generator for 6Z ∩ 15Z, the intersection of two subgroups of the cyclic
group Z

(b) More generally, find a generator for nZ ∩mZ.

4. (Assignment 2)

(a) Let n be a positive integer. Prove that the set

G = {z ∈ C : zn = 1}

of all nth roots of unity is a cyclic subgroup of C∗. What is |G|?

(b) Let G be the group of 12th roots of unity.

(ii) Find all generators of G.

(iii) Find all subgroups of G.

5. (a) How many subgroups does Z10 have?

(b) How many subgroups does Z600 have?

6. What are the subgroups of Z60?

7. Find all elements of Z42 with order 6.

8. Let a and b be elements of a group. If |a| = 10 and |b| = 21, show that 〈a〉∩ 〈b〉 = {e}.

9. Let a and b be elements of a group. If |a| = 48 and |b| = 72, what are the possibilities
for |〈a〉 ∩ 〈b〉|?

10. Let a be an element of a group. If |a28| = 10 and |a22| = 20, determine |a|.

11. (Assignment 2)

(a) Find the order of 85 in Z105.

(b) Let G = 〈a〉 be a cyclic group of order 72. Find all elements of G of order 18.

(c) If p is prime, what are the subgroups of Zp2? What about Zpk for k ∈ N?
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12. (Assignment 2) This question concerns cyclic groups and direct products.

(a) Let G and H be groups with |G| ≥ 2 and |H| ≥ 2. Prove that if G×H is cyclic,
then G is cyclic and finite (the same is true of H but you don’t need to prove it!)

(b) Show that Z4 × Z5 is cyclic. What are the generators of this group?

(c) Show that Z4 × Z6 is not cyclic.

(Hmm... This demonstrates that a direct product of finite cyclic groups may or
may not be cyclic. Think about what conditions one could put on finite cyclic
groups G and H to guarantee that G×H is cyclic.)

13. (Assignment 2)

(a) Prove or disprove that (Q,+) cyclic.

(b) Prove or disprove that (R,+) cyclic.

14. (Assignment 2) In this question you will use group theory to prove an important fact
about the Euler totient function ϕ. Recall that for a positive integer n, we define

ϕ(n) = |{1 ≤ a ≤ n : gcd(a, n) = 1}|.

i.e., ϕ(n) is the number of positive integers less than n that are coprime to n.

(a) Prove that for each integer n ≥ 3, Zn has an even number of generators.

(b) Conclude that ϕ(n) is even for n > 2. What does this tell you about Z∗n?

15. Let G be a group. Prove that if p is a prime and G has more than p − 1 elements of
order p, then G is not cyclic.

16. Let G = 〈a〉 be a cyclic group of order 100. Draw the subgroup lattice for G.

7 Cosets and Lagrange’s Theorem

1. Find all left cosets of {0, 5} in Z10

2. Find all left cosets of {1, 11} in Z∗20.

3. Find all left cosets of {e} in D4

4. Consider Z as a subgroup of Q. What would it mean for a, b ∈ Q to satisfy a+Z = b+Z?

5. (Assignment 3) Find all left cosets of 5Z in Z.

6. (Assignment 3)

10



(a) Let V be the vertical flip in D4. Find all left cosets of 〈V 〉 in D4, and find all
right cosets of 〈V 〉 in D4. Notice that there are the same number of each.

(b) Find an element a ∈ D4 such that a〈V 〉 6= 〈V 〉a.

7. (Assignment 3) Consider the subgroup SLn(R) of GLn(R). Find a condition on A,B ∈
GLn(R) that characterizes when A · SLn(R) = B · SLn(R).

8. The set Mn(C) of all n × n complex matrices forms a group under matrix addition.
The set

S = {A ∈Mn(C) : Tr(A) = 0}

is a subgroup of Mn(C) (recall from linear algebra that Tr(A) denotes the trace A, the
sum of A’s diagonal entries). Find a condition on A,B ∈ Mn(C) that characterizes
when A+ S = B + S.

9. The set F = {f : R → R | f is bijective } is a group under function composition. The
set

S = {f ∈ F : f(0) = 0}

is a subgroup of F . Find a condition on f, g ∈ F that characterizes when f ◦S = g ◦S.

10. Let H be a subgroup of G. Prove that for a, b ∈ G, either aH = bH or aH ∩ bH = ∅.

11. Let H be a subgroup of G. Prove that |aH| = |H| for all a ∈ G.

12. Prove that if G is a finite group and H ≤ G, then |G : H| = |G|/|H|.

13. Let G be a finite group, H ≤ G, and K ≤ G. Prove that |G : K| = |G : H| · |H : K|.

14. (Assignment 3) Let a be a group element of order 30. Determine the number of left
cosets of 〈a4〉 in 〈a〉. Write down the cosets.

15. Prove that if a is an element of a finite group G, then |a| divides |G|.

16. Prove that if p is a prime and G is a group of order p, then G is cyclic.

17. Prove that if a is an element of a finite group G, then a|G| = e.

18. Prove Fermat’s Little Theorem: If p is a prime and a is a positive integer such that
p does not divide a, then ap−1 = 1 mod p.

19. (Assignment 3) Let p and q be primes and let G be a group of order pq. Prove that
every proper subgroup of G is cyclic.

20. Show that the converse to Lagrange’s Theorem is false. That is, find a finite group G
and positive divisor n of |G| such that G has no subgroup of order n.
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21. Let G be a group of order 155. Suppose that a, b ∈ G are non-identity elements of
different orders. Prove that the only subgroup of G containing a and b is G itself.

22. Let H and K be subgroups of a group G. If |H| = 22 and |K| = 35, prove that
H ∩K = {e}.

23. (Assignment 3 Bonus) Let m1,m2, . . . ,mk be positive integers and define n = m1 +
m2 + · · ·+mk. Prove that (m1!)(m2!) · · · (mk!) divides n!.

24. Let m and n be positive integers. Prove that (m!)n(n!) divides (mn)!.

25. (Assignment 3) Prove that if H ≤ Sn and |H| is odd, then H ≤ An.

26. (Assignment 3) Let G = {a1, a2, . . . , an} be an Abelian group of order n. Prove that
if n is odd, then a1a2 · · · an = e.

27. On Assignment 2 you proved that |Z∗n| is even for all n > 2. Prove this fact in one line
using the following corollary to Lagrange’s theorem: for all a ∈ G, |a| divides |G|.

8 Quotient Groups and Normal Subgroups

1. Prove that every subgroup of an Abelian group is normal.

2. Prove that for all n ≥ 3, An E Sn.

3. Let H be the subgroup of rotations in Dn. Prove that H E Dn.

4. Let G be a group. Prove that the centre Z(G) is a normal subgroup of G.

5. (Assignment 4) Prove that SLn(R) E GLn(R).

6. Prove that the subgroup 〈(12)〉 = {e, (12)} of S3 is not normal.

7. Let G be a group and H be a subgroup of G of order n. Prove that if H is the only
subgroup of G with order n, then H E G.

8. Let G be a group and H be a subgroup of G of order n. Prove that the intersection of
all subgroups of G of order n is a normal subgroup of G.

9. (Assignment 4) Let G be a group and H E G. Prove that if |G : H| = n < ∞, then
an ∈ H for all a ∈ G.

10. A group G is called simple if the only normal subgroups of G are {e} and G.

(a) Determine all finite simple Abelian groups.
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(b) Let G and H be groups with |G| ≥ 2 and |H| ≥ 2. Prove that G × H is not
simple.

(c) Prove that Dn is not simple for all n ≥ 3.

(d) Prove that A4 is not simple.

11. (Assignment 4) This question is about the group Q8, known as the quaternions. As
a set,

Q8 = {1,−1, i,−i, j,−j, k,−k}.

We can define a group operation on Q8 using the relations

i2 = j2 = k2 = −1,

12 = (−1)2 = 1,

(−1)i = −i, (−1)j = −j, (−1)k = −k,

ij = k, jk = i, ki = j.

This operation turns Q8 into a group—you don’t need to prove this.

(a) Using the relations above, write down the Cayley table for Q8.

(b) Determine all subgroups of Q8. Which of these subgroups is Z(Q8)?

(c) Prove that although Q8 is non-Abelian, every subgroup of Q8 is normal.

12. Let G be a group and consider the group G×G. We define the diagonal of G×G as
the set

∆G = {(a, a) : a ∈ G} .

One can show that ∆G ≤ G×G. Prove that G is Abelian if and only if ∆G is normal.

13. Let G be a group of order 2p where p is prime. Prove that if H ≤ G and H is not
normal, then |H| = 2.

14. (Assignment 4) Let G be a group and H,K ≤ G. Prove that if H E G then HK ≤ G.

15. Prove that if G is an Abelian group and H E G, then G/H is Abelian. Is the converse
true?

16. Prove that if G is a cyclic group and H E G, then G/H is cyclic. Is the converse true?

17. What is the order of 14 + 〈8〉 in the quotient group Z24/〈8〉?

18. Let G be a group and H E G. Suppose that |G| = 48, |H| = 3, and G/H = 〈aH〉 is
cyclic. What is the order of (aH)6?

19. Recall that Z(D4) = {e, R180}. Write down the Cayley table for D4/Z(D4).
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20. Let G be a group and N E G. Let H be a subgroup of G such that N ⊆ H.

(a) Prove that N E H.

(b) Prove that H/N is a subgroup of G/N .

(c) Prove that H/N E G/N if and only if H E G.

21. Prove that if G is a group of order pq where p and q are primes, then either G is
Abelian or Z(G) = {e}.

22. (Assignment 4) Find an example of a group G such that |G : Z(G)| is prime, or show
that no such group exists.

23. Prove that an Abelian group of order 33 is cyclic.

24. (Assignment 4) Prove that if G is an Abelian group of order pq where p and q are
distinct primes, then G is cyclic.

9 Homomorphisms and Isomorphisms

1. We have seen two definitions of isomorphisms:

(i) (Assignment 1) Two finite groups G and H are isomorphic if, after relabelling
and reordering their elements, the Cayley tables for G and H are identical.

(ii) (Section 7 from class) Two groups G and H are isomorphic if there is a bijective
homomorphism ϕ : G→ H.

Compare these two definitions. Explain why they are equivalent (at least for finite
groups!)

2. Let G, H, and K be group. Prove that ∼= is an equivalence relation. That is,

(a) Prove that G ∼= G.

(b) Prove that if G ∼= H, then H ∼= G.

(c) Prove that if G ∼= H and H ∼= K, then G ∼= K.

3. Let ϕ : G→ H be a group homomorphism.

(a) Prove that ϕ(e) = e′, where e and e′ are the identities for G and H, respectively.

(b) Let a ∈ G. Prove that ϕ(a−1) = ϕ(a)−1.

(c) Let a ∈ G. Prove that |ϕ(a)| divides |a|.

4. Let ϕ : G→ H and ψ : H → K be group homomorphisms. Prove that ψ ◦ ϕ : G→ K
is a homomorphism.
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5. (Assignment 4) Recall from a previous problem that SLn(R) is a normal subgroup
of GLn(R). Construct an isomorphism ϕ : GLn(R)/SLn(R) → R∗. Justify that ϕ is
indeed an isomorphism.

6. (Assignment 4) Prove that Zm × Zn
∼= Zmn if and only if gcd(m,n) = 1.

7. Determine, with justification, whether or not the following groups are isomorphic.

(a) (Z,+) and (Z× Z,+).

(b) (Z× Z,+) and (Q,+).

(c) (Q,+) and (Q∗, ·).

(d) (R∗, ·) and (C∗, ·).

(e) GL2(R) and

{[
a 0
0 b

]
: a, b ∈ R∗

}
under matrix multiplication.

(f) (Z,+) and

{[
1 n
0 1

]
: n ∈ Z

}
under matrix multiplication.

(g) Z∗7 and Z∗14.

(h) Z2 × Z5 and Z10.

(i) Z2 × Z4 and Z8.

(j) Q8 and D4.

(k) S3 and D3.

(l) S4 and D12.

8. (Assignment 4)

(a) If ϕ : Z15 → Z5 is a homomorphism with ϕ(1) = 3, what is ϕ(12)?

(b) If ϕ : S3 → S3 is a homomorphism with ϕ((123)) = e and ϕ((12)) = (23), what
is ϕ((13))?

(c) If ϕ : Z4 × Z3 → Z24 is a homomorphism with ϕ((1, 0)) = 6 and ϕ((0, 1)) = 16,
find ϕ((1, 1)) and ϕ((3, 2)).

(d) What are the kernels and images of the homomorphisms above?

9. (Assignment 4) Prove that if p and q are distinct primes, then there is only one homo-
morphism ϕ : Zp → Zq.

10. (Assignment 4) Determine the number of surjective homomorphisms ϕ : Z20 → Z10.
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11. Let G be a group and a ∈ G.

(a) Consider the function ϕ : G → G given by ϕ(b) = ab. Is ϕ an isomorphism?
Explain.

(b) Consider the function ϕ : G → G given by ϕ(b) = aba−1. Is ϕ an isomorphism?
Explain.

12. Consider the function sgn : Sn → Z2 given by

sgn(σ) =

{
0 if σ is even
1 if σ is odd

.

Prove that sgn is a homomorphism. What is its kernel?

13. Let ϕ : G→ H be a group homomorphism.

(a) Prove that im(ϕ) is a subgroup of H.

(b) Prove that ker(ϕ) is a normal subgroup of G.

(c) Find an example of a group homomorphism ϕ : G → H such that im(ϕ) is not
normal in H.

14. Prove the First Isomorphism Theorem: If G,H are groups and ϕ : G → H is a
group homomorphism, then G/ ker(ϕ) ∼= im(ϕ).

15. Let G and H be finite groups and ϕ : G → H a group homomorphism. Prove that
| ker(ϕ)| and |im(ϕ)| divide |G|.

16. Let ϕ : G → H be a surjective group homomorphism. If |G| = 20 and |H| = 4, find
| ker(ϕ)|.

17. Let ϕ : G → H be a group homomorphism. If |H| = 60 and |H : im(ϕ)| = 12,
determine |G : ker(ϕ)|.

18. Let ϕ be a surjective group homomorphism from Z30 to a group of order 6. Determine
ker(ϕ).

19. Use the First Isomorphism Theorem to show that GLn(R)/SLn(R) ∼= R∗.

20. Prove that Sn/An
∼= Z2. Conclude that |Sn : An| = 2.

21. In this question we will use the symbol | · | to denote the modulus (or absolute value)
of a complex number: if z = a + ib ∈ C, then |z| =

√
a2 + b2. Consider the set

T = {z ∈ C : |z| = 1}.

(a) Prove that T is a normal subgroup of C∗.
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(b) Prove that C∗/T ∼= R>0, where R>0 = {x ∈ R : x > 0} is a group under
multiplication.

22. Let G1 and G2 be groups, and suppose that N1 E G1 and N2 E G2.

(a) Prove that N1 ×N2 E G1 ×G2.

(b) Prove that (G1 ×G2)/(N1 ×N2) ∼= (G1/N1)× (G2/N2).

23. (Assignment 5) Let G be a group and N E G. By the correspondence theorem, every
subgroup of G/N is of the form H/N , where H ≤ G and N ⊆ H. Moreover, by a
previous practice problem we know that H/N E G/N if and only if H E G.

Let H be a normal subgroup of G with N ⊆ H. Prove that (G/N)/(H/N) ∼= G/H.
This result is the Third Isomorphism Theorem.

24. (Assignment 5) Consider the groups R and Z under addition, as well as the subgroup

T = {z ∈ C∗ : |z| = 1}

of C∗—you don’t need to prove that T is a subgroup. Prove that R/Z ∼= T.

25. (Assignment 5) If ϕ : Z15 → S3 × S3 is a non-trivial homomorphism, what is ker(ϕ)?
Explain.

26. (Assignment 5) Let G be a group and N E G. Complete the proof of the correspon-
dence theorem by showing that every K ≤ G/N can be written as K = H/N for some
subgroup H ≤ G with N ⊆ H.

27. (Assignment 5) Use the correspondence theorem to find all subgroups of D4/Z(D4).

28. Let Z[x] be the set of all polynomials with coefficients in Z. It can be shown that Z[x]
is a group under polynomial addition. Consider the derivative map d

dx
: Z[x] → Z[x]

given by

d

dx

(
a0 + a1x+ a2x

2 + · · ·+ amx
m
)

= a1 + 2a2x+ 3a3x
2 + · · ·+mamx

m−1.

(a) Show that d
dx

is a homomorphism.

(b) Find the kernel and image of d
dx

.

29. Let R[x] be the set of all polynomials with coefficients in R. It can be shown that R[x]
is a group under polynomial addition. Consider the derivative map d

dx
: R[x] → R[x]

given by

d

dx

(
a0 + a1x+ a2x

2 + · · ·+ amx
m
)

= a1 + 2a2x+ 3a3x
2 + · · ·+mamx

m−1,
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and the anti-derivative map
∫

: R[x]→ R[x] given by∫ (
a0 + a1x+ a2x

2 + · · ·+ amx
m
)

= a0x+
a1
2
x2 +

a2
3
x3 + · · ·+ am

m+ 1
xm+1

(in this case we define
∫

so that the “+C” term is 0).

(a) Show that d
dx

and
∫

are homomorphisms.

(b) Find the kernel and image of d
dx

, and the kernel and image of
∫

.

30. Let p be a prime and consider the set Zp[x] of all polynomials with coefficients in Zp. It
can be shown that Zp[x] is a group under polynomial addition. Consider the derivative
map d

dx
: Zp[x]→ Zp[x] given by

d

dx

(
a0 + a1x+ a2x

2 + · · ·+ amx
m
)

= a1 + 2a2x+ 3a3x
2 + · · ·+mamx

m−1

where the coefficients are reduced mod p.

(a) Show that d
dx

is a homomorphism.

(b) Find the kernel and image of d
dx

.

10 Automorphisms

1. Let G be a group. Prove that Aut(G) is a group under function composition.

2. Let G be a group. Prove that Inn(G) is a normal subgroup of Aut(G).

3. Let G be a group. Prove that the map ϕ : G → G given by ϕ(a) = a−1 is an
automorphism of G if and only if G is Abelian.

4. Determine Aut(Z).

5. Prove that Aut(Zn) ∼= Z∗n.

6. Let G be a group. Show that Aut(G×G) contains an automorphism of order 2.

7. Let G be a group. Prove that there is a subgroup of Aut(G×G×G) that is isomorphic
to S3.

8. (a) Prove Eduardo’s Theorem: if G ∼= H, then Aut(G) ∼= Aut(H).

(b) Show that the converse to part (a) is false.

9. (Assignment 5) Let G be a group. Prove that G/Z(G) ∼= Inn(G).

10. (Assignment 5) Let G be a group. Prove that if Aut(G) is cyclic, then G is Abelian.
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11. (Assignment 5 Bonus) Let n ≥ 3 be an odd integer. Prove that there is no finite group
G such that Aut(G) ∼= Zn.

12. Let G be a group with Z(G) = {e}. Prove that Z(Aut(G)) = {id}.
Hint: What would it mean for an automorphism ϕ to commute with an inner auto-
morphism ϕg?

11 Group Actions

1. Let X be a non-empty set, and define

SX = {f : X → X | f is bijective } .

(a) Prove that SX is a group under function composition.

(b) Prove that if |X| = n <∞, then SX
∼= Sn.

2. Let Gy X be a group action.

(a) Prove that for every a ∈ G, the map ψa : X → X given by ψa(x) = a · x is a
bijection. That is, prove that ψa ∈ SX .

(b) Prove that the map Φ : G→ SX given by Φ(a) = ψa is a group homomorphism.

3. Let Gy X be a group action. Prove that for each a ∈ G, Staba ≤ G.

4. Let G be a group.

(a) Prove that the map a · b = ab is an action of G on itself.

(b) Prove that the map a · b = aba−1 is an action of G on itself.

5. The quaternion group Q8 acts on itself by conjugation. Find the orbit of i, Oi, under
this action.

6. Consider the subgroup

G =

{[
a b
0 1

]
: a, b ∈ R, a 6= 0

}
of GL2(R). Define a (potential) action of G on X = R by

[
a b
0 1

]
· x = ax+ b.

(a) Prove that this is indeed an action.

(b) Determine Stab0 and O0.

7. Let G y X be a group action. Prove the Orbit-Stabilizer Theorem: For every
x ∈ X, |G : Stabx| = |Ox|.
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8. It is well-known that an n×n matrix A with integer entries has an inverse with integer
entries if and only if det(A) = ±1 (this is a fun exercise in linear algebra—try it!).
With this in mind, the set

GLn(Z) := {A ∈Mn(Z) : det(A) = ±1}

forms a group under matrix multiplication. Define a (potential) action of GL2(Z) on
X = Z2 by matrix-vector multiplication: A · x = Ax.

(a) Prove that this is indeed an action.

(b) Given a vector x =

[
m
n

]
∈ Z2, prove that

Ox =

{[
p
q

]
∈ Z2 : gcd(p, q) = gcd(m,n)

}
.

9. Let G be a group.

(a) Prove Cayley’s Theorem: Every group G is isomorphic to a subgroup of SX

for some set X.

(b) Deduce that if |G| = n <∞, then G is isomorphic to a subgroup of Sn.

10. (Assignment 5) Let G be a group acting on a set X. Prove that the orbits of this
action partition X. That is, prove that

(a) X =
⋃

x∈X Ox, and

(b) for any x, y ∈ X, either Ox = Oy or Ox ∩ Oy = ∅.

11. (Assignment 5)

(a) Determine Aut(Z8).

(b) Let G = Aut(Z8) and X = Z8. Define an action G y X by ϕ · a = ϕ(a). For
each element a ∈ Z8, compute Oa and Staba.

12. (Referenced on Assignment 5) Let G be a group and H ≤ G.

(a) Prove that a · (gH) = agH defines an action of G on the set X = {gH : g ∈ G}.
(b) Consider the element H ∈ X. Determine OH and StabH .

(c) Suppose now that G is finite. Becky says that she has a new proof of Lagrange’s
Theorem using the action above. “Use the Orbit-Stabilizer theorem,” she snarls.
“Since |G| = |OH | · |StabH |, the result is immediate from (b).”

You would like to believe Becky, but you’re a bit skeptical; she’s lied to you in
the past, and frankly you have some trust issues.

Explain why Becky’s argument does not give an alternate proof of Lagrange’s
theorem.
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13. (Assignment 5) Let G be a finite group, and let H and K be subgroups of G. Consider
the set X = HK = {hk : h ∈ H, k ∈ K}.

(a) Prove that (h, k) · x = hxk−1 is an action of H ×K on X.

(b) Use the Orbit-Stabilizer Theorem to prove that |HK| = |H||K|
|H ∩K|

.

14. (Assignment 5) In this problem you will use group actions to establish an extremely
important formula.

(a) Let G be a group acting on itself by conjugation. Given any a ∈ G, prove that
Staba is equal to

C(a) = {g ∈ G : ga = ag}.

This set is known as the centralizer of a.

(b) Let G be a finite group acting on itself by conjugation. Since G is finite, G
has finitely many orbits. Let Og1 ,Og2 , . . . ,Ogr denote the orbits that are not
contained in Z(G). Prove that

|G| = |Z(G)|+
r∑

i=1

|G : C(gi)|.

This formula is known as the class equation.

15. (Assignment 5) Let p be a prime. Prove that if G is a group of order pk for some
positive integer k, then Z(G) 6= {e}.

16. (Assignment 5) Let p be a prime. Prove that every group of order p2 is Abelian.

17. (Assignment 5) A group action Gy X is said to be transitive if for any two elements
x, y ∈ X, there exists an a ∈ G such that a · x = y.

(a) Consider the action of the group G = GLn(R) on the set X = Rn given by
A · x = Ax. Determine with justification whether or not this action is transitive.

(b) Let G be a finite group that acts transitively on a set X. Prove that |X| divides
|G|.

18. Prove the Orbit-Stabilizer Theorem: If G y X is a group action, then for any
x ∈ X, |G : Stabx| = |Ox|. In particular, if |G| <∞, then |G| = |Stabx||Ox|.

19. Determine the number of rotational symmetries of a cube.

20. Determine the number of rotational symmetries of a tetrahedron:
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21. Determine the number of rotational symmetries of an octahedron:

22. Determine the number of rotational symmetries of a soccer ball:

A traditional soccer ball has 12 black pentagonal faces and 20 white hexagonal faces.

23. Determine the number of rotational symmetries of a methane molecule:
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A methane molecule consists of a carbon atom surrounded by four equidistant hydrogen
atoms.

24. Show that the only action of Z7 on X = {1, 2, 3, 4} is the trivial action g · x = x.

12 Burnside Enumeration

1. How many 2× 2 chess boards can be made using black and white tiles?
Answer: 6

2. How many 4× 4 chess boards can be made using black and white tiles?
Answer: 16456

3. Determine the number of five bead necklaces that can be made using black beads and
white beads.
Answer: 8

4. Determine the number of six bead necklaces that can be made using 1 red bead, 2
white beads, and 3 blue beads.
Answer: 6

5. Flags are to be made using 6 vertical stripes, each coloured either red, blue, green, or
yellow. How many such flags can be made? Remember that one can view the flag from
the front or back.
Answer: 2080

6. Determine the number of ways in which one can label the sides of a 6-sided die using
each of the numbers 1 to 6 exactly once.
Answer: 30

7. Any Dungeons & Dragons fans? Determine the number of ways in which one can label
the sides of a 20-sided die using each of the numbers 1 to 20 exactly once.
Answer: 20!

60

8. It’s Becky’s birthday! She is going to celebrate by eating a (circular) 6-piece cake. In
how many ways can she place 2 red candles and 2 blue candles on the cake, assuming
that multiple candles can be placed on the same piece of cake?
Answer: 75

9. Determine the number of ways in which on can paint the faces of a tetrahedron red,
blue, or green.
Answer: 15

10. Determine the number of ways in which on can colour the edges of a tetrahedron if 3
colours are available. What if n colours are available?
Answer: 87; 1

12
(n6 + 3n4 + 8n2)
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11. Determine the number of ways in which one can colour the vertices of a cube if exactly
8 colours are available. What if n colours are available?
Answer: 701968; 1

24
(n8 + 17n4 + 6n2)

12. In a game of Tsuro, players defeat their opponents using square tiles consisting of 8
nodes (2 nodes along each edge) and 4 lines (each connecting a distinct pair of nodes).
For example, here are three possible tiles from the game:

Players may rotate their tiles freely, so two tiles should be considered the same if one
can be rotated into the other. Determine the number of distinct Tsuro tiles.
Answer: 35

13 Finite Abelian Groups

1. Let G and H be groups. Prove that the order of an element (g, h) ∈ G × H, is
lcm(|g|, |h|).

2. More generally, let G1, G2, . . . , Gn be groups, and consider an element (g1, g2, . . . , gn)
in G1 ×G2 × · · · ×Gn. Prove that |(g1, g2, . . . , gn)| = lcm(|g1|, |g2|, . . . , |gn|).

3. Let p be a prime. Find all Abelian groups of order p2 up to isomorphism. Does the
answer change if we remove the word “Abelian?”

4. Let p be a prime and k ∈ N. Find all Abelian groups of order pk up to isomorphism.

5. Write down all Abelian groups of order 45 up to isomorphism.

6. Write down all Abelian groups of order 36 up to isomorphism.

7. Write down all Abelian groups of order 900 up to isomorphism.

8. Let p1, p2, . . . pk be distinct primes. Prove that any Abelian group of order p1p2 · · · pk
is isomorphic to Zp1p2···pk .

9. Let G be an Abelian group of order 8. Suppose that g2 = e for all g ∈ G. Prove that
G ∼= Z2 × Z2 × Z2.
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10. Let G be an Abelian group of order 75 with exactly 4 elements of order 5. Find a
concrete example of a group that is isomorphic to G.

11. Let G be an Abelian group of order 100 with exactly 3 elements of order 2 and exactly
4 elements of order 5. Find a concrete example of group that is isomorphic to G.
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