$\S 1$ - Introduction to Groups
§1.1 - First Examples
Informally, a group is a set of objects in which we can "multiply" and "divide".

That's pretty much if!

With such a simple description, it should come as little surprise that groups show up a lot in math, physics, chemistry, etc... They appear in many different forms as we will soon see.

Before stating the formal definition, let's explore some familiar examples

Ex. The integers $(\mathbb{Z},+)$

$$
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

The operation + takes in two integers and spits out another one.
e.g. $3+5=8 \quad 0+4=4$

$$
\begin{array}{ll}
5+3=8 & (-9)+0=-9 \\
7+(-1)=6 & 2+(-2)=0
\end{array}
$$

Observations?
(i) O is special! It has the property that $a+0=0+a=a$ for all $a \in \mathbb{Z}$

We say that O is the identity of the group (are there any others?)
(ii) Elements like a and -a share a Special relationship:

$$
a+(-a)=0
$$

We say that $-a$ is the inverse of a. Likewise, a is the inverse of $-a$
(iii) Addition of integers behaves "nicely"

$$
(a+b)+c=a+(b+c) \text { for all } a, b, c \in \mathbb{Z}
$$

We say that this operation is associative.
(iv) In this case, our operation is particularly nice: order doesn't matter!

$$
a+b=b+a \text { for all } a, b \in \mathbb{Z}
$$

We say that this operation is commutative. Likewise we call this group commutative or Abelian.

Ex 2. The rationals $(\mathbb{Q},+)$
Again, + takes two rational numbers
and outputs another rational number:

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

Again, addition is associative:

$$
\begin{aligned}
& \left(\frac{a}{b}+\frac{c}{d}\right)+\frac{e}{f}=\frac{a d+b c}{b d}+\frac{e}{f}=\frac{a d f+b c f+b d e}{b d f} \\
& \frac{a}{b}+\left(\frac{c}{d}+\frac{e}{f}\right)=\frac{a}{b}+\left(\frac{c f+d e}{d f}\right)=\frac{a d f+b c f+b d e l}{b d f}
\end{aligned}
$$

and commutative: $\frac{a}{b}+\frac{c}{d}=\frac{c}{d}+\frac{a}{b}$

What's this group's identity element? O. What is the inverse of a / b ? $-a / b$.

Ex 3. The real numbers $(\mathbb{R},+)$
Ex 4. The complex numbers $(\mathbb{C},+)$
In each case, what is the identity?
What is the inverse of an element?
Is the operation associative? commutative?

Ex 5. $\left(\mathbb{Q}^{*}, \cdot\right)$
Do the rational numbers form a group under multiplication?

The identity should be 1 , as

$$
1 \cdot \frac{a}{b}=\frac{a}{b} \cdot 1=\frac{a}{b} \text { for all } \frac{a}{b}
$$

Then what about inverses? O doesn't have one!

OKay... new strategy! Consider $\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}$,
(rationals with multiplicative inverses)
Now the inverse of any $\frac{a}{b} \in \mathbb{Q}^{*}$ is

$$
\left(\frac{a}{b}\right)^{-1}=\frac{b}{a}
$$

Again, we can check that multiplication is associative. It is also commutative.

Ex 6. $(\{1,-1\}, \cdot)$
The only integers with multiplicative inverses are ± 1. These integers form a group under multiplication. We can write down their products in a Cayley table.

\cdot	1	-1
1	1	-1
-1	-1	1

We list the product (row $i) \cdot($ column j) in the $i^{\text {th }}$ row, $j^{\text {th }}$ column of the table (ORDER MATTERS!)

What is this group's identity?
What is the inverse of -1 ?

Ex 7. $\left(\mathbb{R}^{*}, \cdot\right)$, where $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$
Ex 8. $\left(\mathbb{C}^{*}, \cdot\right)$, where $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$
Ex 9. $(\{1, i,-1,-i\}, \cdot)$, where $i \in \mathbb{C}, i^{2}=-1$

Again, what are the identities? inverses?
Exercise: Write down the Cayley table in Ex. 9.

Ex 10. $(G \operatorname{Ln}(\mathbb{R}), \cdot)$
We can make $M_{n}(\mathbb{R})$ into a group under matrix multiplication by throwing away any non-invertible matrices:

$$
\begin{aligned}
G L_{n}(\mathbb{R}) & =\left\{A \in M_{n}(\mathbb{R}): A \text { is invertible }\right\} \\
& =\left\{A \in M_{n}(\mathbb{R}): \operatorname{det}(A) \neq 0\right\}
\end{aligned}
$$

If $A, B \in G L_{n}(\mathbb{R})$, does the product $A \cdot B$ again belong to $G L_{n}(\mathbb{R})$? Yes! Since $\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B) \neq 0, \quad A B \in G L_{n}(\mathbb{R})$

We say that $G L_{n}(\mathbb{R})$ is closed under the group operation.

The identity of this group is

$$
I_{n}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right]_{n \times n}
$$

From linear algebra, we know that matrix multiplication is associative, but NOT commutative!
e.g. When $n=2$, let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \quad B=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

Then $A, B \in G L_{2}(\mathbb{R})$, yet

$$
A B=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right], \quad B A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \quad \text { so } A B \neq B A!
$$

Thus, this is our first example of a non-Abelian group (a group whose operation is not commutative).

SO! What is a group??

Definition: A set G together with a binary operation $:: G \times G \longrightarrow G$ is a group if
(i) For all $a, b, c \in G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$ (ie., , is an associative operation)
(ii) There is an element $e \in G$ which we call the identity such that $a \cdot e=e \cdot a=a$ for all $a \in G$.
(iii) For every $a \in G$, there is an element $a^{-1} \in G$ such that $a \cdot a^{-1}=a^{-1} \cdot a=e$.

We call a^{-1} the inverse of a.

Remark: Notice that the group operation •
must take two elements of G to another element of G. We say that G is closed under the group operation. You must verify this fact when showing that something is a group, just as we did in Ex 10.

Definition: Elements a, b in a group $\left(G_{1} \cdot\right)$
are said to commute if $a \cdot b=b \cdot a$.
If $a \cdot b=b \cdot a$ for $a l l a, b \in G$, we say that G is Abelian (or commutative)

Otherwise we say the G is non-Abelian.

Why would we choose these conditions for our definition of a group?

To answer this question, first consider the following equation:

$$
x+4=7
$$

Obviously the solution is $x=3$. For fun let's write out the steps in excrutiating detail:

$$
x+4=7 \Rightarrow(x+4)+(-4)=7+(-4)
$$

$$
\begin{aligned}
& \Rightarrow \quad x+(4+(-4))=3 \\
& \Rightarrow \quad x+0=3 \\
& \Rightarrow \quad x=3
\end{aligned}
$$

Our first step required the existence of -4 , the inverse to 4

Next, we needed associativity of + to write $(x+4)+(-4)=x+(4+(-4))$.

Finally, we used the fact that there is an additive identity O to conclucle that $x=3$.

LOOK FAMILIAR?
$\xi 1.2$ Properties of Groups
Natural Questions: In the definition of a group, we say things like "the identity" and "the inverse of a ". Are these really unique? Yes! In this section we investigate these properties and other basic facts about groups.

In what follows, we will simply write the group operation as $a \cdot b=a b$.

Proposition: The identity element of a group is unique.

Proof Suppose a group G had two identity elements e and f.
Then $e f=f \quad$ (as e is identity)
and $e f=e \quad$ (as f is identity)
Thus, $e=f$.

Proposition: If a is an element of a group G, then $\frac{a^{-1} \text { is unique. }}{r}$

Proof: Assignment 1.

Proposition: Let G be a group and let $a, b, c \in G$.
(i) [Left cancellation] If $a b=a c$ then $b=c$.
(ii) [Right cancellation] If $b a=c a$ then $b=c$.

Proof: $a b=a c \Rightarrow a^{-1}(a b)=a^{-1}(a c)$

$$
\begin{aligned}
& \Rightarrow\left(a^{-1} a\right) b=\left(a^{-1} a\right) c \\
& \Rightarrow e b=e c \\
& \Rightarrow b=c
\end{aligned}
$$

This proves (i), and (ii) is similar.

Definition: If a is an element of a group $(G$,$) and k \in \mathbb{Z}$, define

$$
a^{k}=\left\{\begin{array}{cc}
\underbrace{a \cdot a \cdot \cdots \cdot a}_{k \text { times }} & \text { if } k>0 \\
e & \text { if } k=0
\end{array}\right.
$$

$$
(\underbrace{a^{-1} \cdot a^{-1} \cdot \cdots \cdot a^{-1}}_{k \text { times }} \text { if } k<0
$$

Exercise: Prove that the exponent laws

$$
a^{m+n}=a^{m} a^{n} \text { and }\left(a^{m}\right)^{n}=a^{m n}
$$

hold for all $a \in G$ and all $m, n \in \mathbb{Z}$.

Proposition: If a, b are elements of a group G. then $(a b)^{-1}=b^{-1} a^{-1}$

Proof: Exercise.
§1.3 - More Examples

Ex II. Integers modulo $n\left(\mathbb{Z}_{n},+\right)$
From MATH 135 we know that

$$
\mathbb{Z}_{n}=\{[0],[1], \ldots,[n-1]\}
$$

Where $[a]$ is an equivalence class

$$
[a]=\{b \in \mathbb{Z}: n \text { divides } b-a\}
$$

(We will not write [.] from here on.)
We can add elements from \mathbb{Z}_{n}, reducing $\bmod n . \operatorname{In}$ this way, $\left(\mathbb{Z}_{n},+\right)$ forms a group. Identity? O.

Inverse of a ? $n-a$.
e.g. The Cayley table for $\left(\mathbb{Z}_{4},+\right)$ is

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Ex 12. Group of units modulo $n\left(\mathbb{Z}_{n}^{*}, \cdot\right)$

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n}: a x=1 \bmod n \text { for some } x \in \mathbb{Z}_{n}\right\}
$$

(integers with multiplicative inverses mod n)

Recall from Math 135 that
$a \in \mathbb{Z}_{n}^{*}$ if and only if $\operatorname{gcd}(a, n)=1$.
[Indeed, first recall the following fact:
Bezout's Lemma: If $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=d$, then
there exist $x, y \in \mathbb{Z}$ such that $a x+b y=d$.

If $\operatorname{gcd}(a, n)=1$, then $\exists x, y \in \mathbb{Z}$ such that $a x+n y=1$. Thus $a x=1 \bmod n$, so $a \in \mathbb{Z}_{n}^{*}$.

Conversely, if $a x=1 \bmod n$, then $n \mid 1-a x$ and hence $1-a x=n y$ for some $y \in \mathbb{Z}$.

Since $\operatorname{gcd}(a, n)$ divides a and n, it divides $a x+n y=1$. Thus, $\operatorname{gcd}(a, n)=1$.

With the non-invertible elements removed, we may verify that \mathbb{Z}_{n}^{*} forms a group under multiplication. Identity? 1.
e.g. $\mathbb{Z}_{12}^{*}=\{1,5,7,11\}$.

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Definition: If G is a group, then the order of $G,|G|$, is the number of elements in G.
e.g. $|\mathbb{Z}|=\infty,\left|\mathbb{Z}_{n}\right|=n,|\{1,-1\}|=2$

Exercise: If $p \in \mathbb{N}$ is prime, what is $\left|\mathbb{Z}_{p}^{*}\right|$? Write down the Cayley table for \mathbb{Z}_{5}^{*}.

Ex 13. Dihedral Groups, D_{n}
For each integer $n \geqslant 3$, we define the dihedral group D_{n} to be the set
of all symmetries of a regular n-gon.

What's a symmetry?

It's any movement that can be done to the object while you aren't looking, that you won't know has happened.

For instance, let's look at D_{4}, the group of all symmetries of a square. Well put IMAGINARY labels on the vertices to keep track of the symmetry taking place.

How many symmetries are there?
(i.e., what is the order of D_{4} ?)

Well... we have 4 choices for where A goes.
Notice, however, that A 's neighbours are always B and D. Thus, we have two choices: either B is clockwise from A or D is clockwise from A.
\therefore At most $4 \cdot 2=8$ symmetries
Can we actually get all 8? Yes!

Identity

Rotation by 90° (counterclockwise)

Rotation by 180°

Rotation by 270°

Flip about horizontal axis

Flip about vertical axis

Flip about main diagonal

Flip about other diagonal

$$
\therefore D_{4}=\left\{e, R_{90}, R_{180}, R_{270}, H, V, D, D^{\prime}\right\}, \quad\left|D_{4}\right|=8
$$

We said that D_{n} is a group, but What's the group operation?

It's composition of symmetries!

For instance, suppose we rotate by 90° and then flip in the horizontal axis:

We can express this symmetry as $H R_{90}$, reading right to left as we would with functions.

Notice that the overall effect is the same as applying D, hence $H R_{90}=D$.

Note that $R_{90} H=D^{\prime} \neq D$

Thus, D_{n} is non-abelian.

Cayley Table:

	e	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
e	e	R_{90}	R_{180}	R_{270}	H	V	D	D^{\prime}
R_{90}	R_{90}	R_{180}	R_{270}	e	D^{\prime}	D	H	V
R_{180}	R_{180}	R_{270}	e	R_{90}	V	H	D^{\prime}	D
R_{270}	R_{270}	e	R_{90}	R_{180}	D	D^{\prime}	V	H
H	H	D	V	D^{\prime}	e	R_{180}	R_{270}	R_{90}
V	V	D^{\prime}	H	D	R_{180}	e	R_{90}	R_{270}
D	D	V	D^{\prime}	H	R_{270}	R_{90}	e	R_{180}
D^{\prime}	D^{\prime}	H	D	V	R_{90}	R_{270}	R_{180}	e

It's easy to check that, in fact, all of the symmetries in D_{4} can be built
using a rotation $R=R_{90}$, and flip $F=H$ (we can use $F=H, V, D$, or D^{\prime})

Indeed, $R^{0}=e, R=R_{90}, R^{2}=R_{180}, R^{3}=R_{270}$,

$$
F=H, \quad F R=D, \quad F R^{2}=V, \quad F R^{3}=D^{\prime}
$$

So, $D_{4}=\left\{R^{k}, F R^{k}: 0 \leq k \leq 3\right\}$

This is a much easier way of describing D_{n} for any $n \geqslant 3$.

If $R=$ counterclockwise rotation by $\frac{2 \pi}{n}$ radians and $F=$ any flip, then

$$
D_{n}=\left\{R^{k}, F R^{k}: 0 \leq k \leq n-1\right\}
$$

Ex 14. Symmetric Groups, S_{n}

For $n \geqslant 1$, define S_{n} to be the set of all permutations of $\{1,2,3, \ldots, n\}$. That is,

$$
S_{n}=\{\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\} \mid \sigma \text { is bijective }\}
$$

e.g., S_{3} consists of all permutations of $\{1,2,3\}$.

The functions f, g on $\{1,2,3\}$ given by

$$
\begin{array}{ll}
\sigma(1)=2, & \sigma(2)=3, \\
\tau(1)=1, & \tau(2)=3, \\
\tau(3)=2
\end{array}
$$

belong to S_{3}, whereas the function

$$
\varphi(1)=2, \quad \varphi(2)=3, \quad \varphi(3)=2
$$

does not (why?)

What's the group operation?
Function Composition!
Again, we read right to left:
With $\sigma, \tau \in S_{3}$ as above, then for $\psi=\sigma \cdot \tau$

$$
\begin{aligned}
& \psi(1)=\sigma(\tau(1))=\sigma(1)=2 \\
& \psi(2)=\sigma(\tau(2))=\sigma(3)=1 \\
& \psi(3)=\sigma(\tau(3))=\sigma(2)=3
\end{aligned}
$$

With this operation, S_{n} forms a group!

A more compact way of writing a permutation $\pi \in S_{n}$:

$$
\pi=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
\pi(1) & \pi(2) & \cdots & \pi(n)
\end{array}\right)
$$

e.g. With $\sigma, \tau, \psi \in S_{3}$ as above

$$
\begin{aligned}
& \sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \\
& \tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \\
& \psi=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Exercise: Write down the inverses of σ, τ.
Write $\tau \circ \sigma$ in the compact form above.
Is S_{3} abelian?

Arguably, S_{n} is the most important example of a finite group. Well l see why later in the course. For now, let's determine $\left|S_{n}\right|$.

To build a permutation σ of $\{1,2, \ldots, n\}$, we have n choices for $\sigma(1)$, then $n-1$ choices for $\sigma(2), n-2$ choices for $\sigma(3)$, etc...

Thus, there are $n(n-1)(n-2) \cdots(2)(1)=n$! permutations in S_{n} :

$$
\left|S_{n}\right|=n!
$$

$\xi 1.4$ - Building New Groups from Old.
Given groups $(G, *)$ and $(H, *)$, we can form a new group $(G \times H, \cdot)$, the external direct product of G and H.

Here,

$$
\begin{gathered}
G \times H=\{(g, h): g \in G, h \in H\} \\
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} * g_{2}, h_{1} * h_{2}\right)
\end{gathered}
$$

Exercise: Prove that $G \times H$ is a group.
e.g. Consider the direct product

$$
\begin{gathered}
G L_{2}(\mathbb{R}) \times \mathbb{Z} \\
\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], 2\right) \cdot\left(\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right], 5\right) \\
=\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right], 2+5\right)=\left(\left[\begin{array}{ll}
3 & -1 \\
1 & -1
\end{array}\right], 7\right)
\end{gathered}
$$

Exercise: Write down the Cayley table for
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. In general, what is $|G \times H|$ in terms of $|G|,|H|$?
$\xi 1.5$ - Isomorphisms via Cayley Tables.

At this point we have built a nice library of examples of groups:
Additive: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{\text {n }}$
Multiplicative: $\{ \pm 1\},\{1, i,-1, i\}, \mathbb{Q}^{*}, \mathbb{R}^{*}, \mathbb{C}^{*}, \mathbb{Z}_{n}^{*}$
Matrix Groups: $\quad G L_{n}(\mathbb{Q}), G L_{n}(\mathbb{R}), G L_{n}(\mathbb{C})$
Dihedral Groups: D_{n}
Symmetric Groups: S_{n}

Although all of these around are distinct.

Some operate in much the same way.
Take for example, the groups

	\mathbb{Z}_{2}	$\{ \pm 1\}$	\mathbb{Z}_{6}^{*}			
+	0	1		-1	-1	$\dot{1}$
0	0	1	1	1	-1	1
1	1	0	-1	-1	1	5

These groups all have order 2, and their Cayley tables look more than a little similar.

Essentially, these groups all consist of an identity e, and one other element a such that $a^{2}=e$.

In each case, a has a distinct label but names aside, the groups look identical. Definition: Two finite groups G, H are said to be isomorphic if, after relabelling and reordering their elements, their Cayley tables look identical. In this case we write $G \cong H$.

We have that $\mathbb{Z}_{2} \cong\{ \pm 1\} \cong \mathbb{Z}_{5}^{*}$

Fact: Any two groups of order 2 are isomorphic!

Why?

Exercise: In the Cayley table of a
$\checkmark \cup$
finite group G, every element of G must appear exactly once in each row and column.

So if $G=\{e, a\}$ is a group of order 2, then there is only one way to build its Cayley table:

	e	a
e	e	a
a	a	e

Thus, there is only one group of order 2, up to isomorphism!

Exercise: Show that there is exactly one Cayley table for a group of order 3 . Conclude that there is only one such
group up to isomorphism. What's an example?

Exercise: Write down the Cayley tables for \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Are these groups isomorphic?

