Consider the groups $\mathbb{Z}_{y} = \{0, 1, 2, 3\}$ and $\mathbb{Z}_{8}^{*} = \{1, 3, 5, 7\}$. On the surface these groups look different, but even at a structural level there are many ways to tell them apart: $O \mathbb{Z}_{4}$ is cyclic ; \mathbb{Z}_{8}^{*} is not. $O \mathbb{Z}_{4}$ has two elements of order 2; \mathbb{Z}_{8}^{*} has three.

How could one prove this rigorously? First, we would need a way to "relabel" the elements in
$$\mathbb{Z}_4$$
 to elements in \mathbb{Z}_{10}^* . This can be accomplished by a bijection $\mathcal{Q}: \mathbb{Z}_4 \longrightarrow \mathbb{Z}_{10}^*$.
Of course, a bijection is not enough! We need to relabel in a way that preserves the group structure of \mathbb{Z}_4 . Specifically, we want the elements to multiply the same way both before and after relabelling. We need
$$\mathcal{Q}(a+b) = \mathcal{Q}(a)\mathcal{Q}(b) \quad \forall a, b \in \mathbb{Z}_4.$$
In our case we can take $\mathcal{Q}:\mathbb{Z}_4 \longrightarrow \mathbb{Z}_{10}^*$

$$\begin{aligned} &\mathcal{P}(0) = 1, \ \mathcal{P}(1) = 3, \ \mathcal{P}(2) = 9, \ \mathcal{P}(3) = 7. \end{aligned}$$

$$This \ \mathcal{P} \quad is \quad bijective \quad and \quad preserves \quad the \quad group$$

$$structure \quad of \quad Zy. \quad For \quad example:$$

$$\begin{cases} \ \mathcal{P}(1+2) = \ \mathcal{P}(3) = 7\\ \ \mathcal{P}(1) \ \mathcal{P}(2) = \ 3.9 = 7 \end{aligned}$$

Ex1: Consider the groups
$$(R, t)$$
 and
 $(R_{>0}, \cdot)$ where $R_{>0} = \{x \in R : x > 0\}$.

We know from Calculus
that the function

$$Q: \mathbb{R} \rightarrow \mathbb{R} > 0$$
 given
by $Q(\alpha) = e^{\alpha}$ is
bijective (prove this!)
Also
 $Q(x+y) = e^{x+y} = e^{x}e^{y} = Q(x)Q(y)$,

so
$$\underline{q}$$
 is a homomorphism. Consequently,
 \underline{q} is an isomorphism, so $(\underline{R}, +) \cong (\underline{R}, -, -)$.
For our next two examples, it will be
helpful to recall the following result from §2.
Lemma 2.1 Let a be a group element.
(i) If $|a| = \infty$, then $\forall i, j \in \mathbb{Z}$, $a^i = a^j \Leftrightarrow i = j$
(ii) If $|a| = n < \infty$, then $\forall i, j \in \mathbb{Z}$, $a^i = a^j \Leftrightarrow i = j$
(ii) If $|a| = n < \infty$, then $\forall i, j \in \mathbb{Z}$, $a^i = a^j \Leftrightarrow n | (i - j)$
 $\underline{Ex 2}$: If $G = \langle a \rangle$ is an infinite cyclic group,
then $G \cong \mathbb{Z}$. Indeed, consider the function
 $\underline{q}: \mathbb{Z} \longrightarrow G$ given by $\underline{q}(\mathbf{k}) = a^{\mathbf{k}}$.

Clearly <u>q</u> is surjective, as

$$G = \langle a \rangle = \{a^{\kappa} : \kappa \in \mathbb{Z} \}.$$

We have that $\underline{\varphi}$ is injective. Finally, $\underline{\varphi}(K+m) = a^{K+m} = a^{K}a^{m} = \underline{\varphi}(K)\underline{\varphi}(m)$ for all $K, m \in \mathbb{Z}$, so $\underline{\varphi}$ is a homomorphism. Thus, $\underline{\varphi}$ is an isomorphism, so $\underline{G} \cong \mathbb{Z}$.

Ex 3: If $G = \langle a \rangle = \{e_1, a_1, a_1, a_1, a_1\}$ is a cyclic group of order $n \neq \infty$, then $G \cong \mathbb{Z}_n$. Indeed, consider the map $\mathcal{Q}: \mathbb{Z}_n \longrightarrow G$ given by $\mathcal{Q}(K) = a^K$. As before, $\underline{\mathcal{Q}}$ is surjective,

and we can use Lemma 2.1 (ii) to show that I is injective: $\ell(\kappa) = \ell(m) \iff \alpha^{\kappa} = \alpha^{m}$ $\iff \eta | (k-m)$ K=m mod n \iff K=m in \mathbb{Z}_{n} . The same proof in Ex2. shows that I is a homomorphism. We conclude that I is an isomorphism, so $G \cong \mathbb{Z}_n$.

- \mathbb{Z}_{18}^{*} is a cyclic group of order 6, so $\mathbb{Z}_{18}^{*} \cong \mathbb{Z}_{6}$.
- The group of nth roots of unity in C is a

cyclic group of order n and hence ~ Zn. • $3\mathbb{Z}$ is an infinite cyclic group, so $3\mathbb{Z}\cong\mathbb{Z}$. (in fact, $n\mathbb{Z} \cong \mathbb{Z}$ for all $n \in \mathbb{Z} \setminus \{0\}$.) Let us now investigate some of the properties of group isomorphisms. Proposition 7.1: Let G, H, K be groups. (i) If $G \cong H$ then $H \cong G$. [In fact, if $f: G \longrightarrow H$ is an isomorphism, then $Q^{-1}: H \longrightarrow G$ is also an isomorphism.] (ii) If $G \cong H$ and $H \cong K$, then $G \cong K$.

Proof (i) Let
$$Q: G \rightarrow H$$
 be an isomorphism.
As an exercise, prove that $Q^{-1}: H \rightarrow G$ is
bijective. To see that Q is a homomorphism, let
 $h_1, h_2 \in H$, and choose $g_1, g_2 \in G$ such that
 $Q(g_1) = h$, and $Q(g_2) = h_2$. Thus, $Q^{-1}(h_1) = g_1$.
Note that since $Q(g_1g_2) = Q(g_1)Q(g_2) = h_1h_2$,
we have $Q^{-1}(h_1h_2) = g_1g_2 = Q^{-1}(h_1)Q^{-1}(h_2)$.
 Q is a homomorphism (and hence an isomorphism)
(ii) Let $Q: G \rightarrow H$ and $Q: H \rightarrow K$ be
isomorphisms. Then $Q \circ Q: G \rightarrow K$ is
bijective (proven on AI) and a homomorphism.
Tudeed, for if $g_1, g_2 \in G$, then

$$(\mathcal{Y}, \mathcal{Y})(g, g_{z}) = \mathcal{Y}(\mathcal{Y}(g, g_{z}))$$
$$= \mathcal{Y}(\mathcal{Y}(g, \mathcal{Y}(g_{z})))$$
$$= \mathcal{Y}(\mathcal{Y}(g, \mathcal{Y})) \mathcal{Y}(\mathcal{Y}(g_{z}))$$
$$= (\mathcal{Y}, \mathcal{Y})(g, \mathcal{Y}(\mathcal{Y}, \mathcal{Y})(g_{z}))$$

Theorem 7.2 [Properties of Isomorphisms]
Let G, H be groups with identifies
$$e, e'$$
,
respectively, and $\Psi: G \rightarrow H$ a group isomorphism.
[Element Properties] Let $a, b \in G$.
1. $\Psi(e) = e'$
2. $\Psi(a^{-1}) = [\Psi(a)]^{-1}$
3. For all $n \in \mathbb{Z}$, $\Psi(a^{-1}) = [\Psi(a)]^{n}$.
4. a, b commute $(\Rightarrow) \Psi(a), \Psi(b)$ commute.

5.
$$|a| = |\Psi(a)|$$

Group Properties
6. G is Abelian \iff H is Abelian.
7. G is cyclic \iff H is cyclic.
8. If $K \leq G$, then $\Psi(K) \leq H$.
9. $\Psi(z(G)) = Z(H)$.
Proof:
1. $\Psi(e) = \Psi(ee) = \Psi(e) \Psi(e)$
 $\Rightarrow \Psi(e) = e'$ by cancellation.
2. $aa'' = e \Rightarrow \Psi(aa'') = \Psi(e) = e'$
 $\Rightarrow \Psi(a) \Psi(a'') = e'$
 $\Rightarrow \Psi(a) \Psi(a'') = e'$

3. If
$$n=0 \Rightarrow done by 1$$
.
If $n>0 \Rightarrow \varphi(a^{n}) = \varphi(a \cdot a \cdot \dots \cdot a)$
 $= \varphi(a)\varphi(a) \dots \cdot \varphi(a)$
 $= [\varphi(a)]^{n}$
If $n<0 \Rightarrow \varphi(a^{n}a^{-n}) = \varphi(e) = e^{i}$
 $\Rightarrow \varphi(a^{n})\varphi(a^{-n}) = e^{i}$
 $\Rightarrow \varphi(a^{n})[\varphi(a)]^{-n} = e^{i}$ (as $-n>0$)
 $\cdot [\varphi(a)]^{n} (= \varphi(a^{n}) = [\varphi(a)]^{n}$

4. If ab = ba then

 $\Psi(a)\Psi(b) = \Psi(ab) = \Psi(ba) = \Psi(b)\Psi(a)$

The reverse direction can be argued the

Same way using the isomorphism $q^{-1}: H \rightarrow G$.

$$\underbrace{E_{X}}_{(Z,+)} \not\neq (Q,+) \qquad (Z \ cyclic, Q \ not)$$

$$\underbrace{E_{X}}_{(Q,+)} \not\neq (Q^{*}, \cdot) \qquad (-1 \in Q^{*} \ has \ order \ 2,$$
but Q doesn't have any elements of order 2).

Homomorphisms

An isomorphism
$$\varphi: G \longrightarrow H$$
 preserves the
group structure of G exactly. On the
other hand, homomorphisms preserve some
of the group structure, but perhaps
not all of it.

$$\underline{E\times 1}$$
; Consider the map $(: \mathbb{Z} \longrightarrow \mathbb{Z}z)$
 $h \longmapsto n \mod 2$.

This
$$\mathcal{Q}$$
 is a homomorphism:
 $\mathcal{Q}(m+n) = (m+n) \mod Z$
 $= (m \mod Z) + (n \mod Z)$
 $= \mathcal{Q}(m) + \mathcal{Q}(h)$

But
$$\varphi$$
 is not an isomorphism, as it
is not injective $(\varphi(0) = \varphi(z) = 0)$

Under this homomorphism, all even integers are collapsed to O, while all odd integers are collapsed to I. Essentially, 9 forgets everything about Z

$$\frac{Definition}{\text{Definition}} : \text{If } \mathcal{Q}: G \longrightarrow H \text{ is a group}$$
homomorphism, we define the Kernel of \mathcal{Q}
to be the set
$$Ker(\mathcal{Q}) = \{a \in G \mid \mathcal{Q}(a) = e\}.$$

In
$$Ex1$$
, $Ker \varphi = \{n \in \mathbb{Z} : n \mod \mathbb{Z} = 0\}$
= $2\mathbb{Z}$

Definition: If
$$\Psi: G \longrightarrow H$$
 is a group
homomorphism, we define the image of
 Ψ to be the set

$$im(\varphi) = \varphi(G) = \{\varphi(a) : a \in G\}$$
.

In
$$E_{XI}$$
, $im(q) = \{q(n) : n \in \mathbb{Z}\}\$
= $\{n \mod Z : n \in \mathbb{Z}\}\$ = \mathbb{Z}_{2} .

$$\underbrace{E \times 2}: \quad \text{If } \mathcal{Q}: G \longrightarrow H \quad \text{is a group}$$

isomorphism, then \mathcal{Q} is a homomorphism

with
$$\operatorname{Ker}(\varphi) = \{e\}$$
 and $\operatorname{im}(\varphi) = H$.
 $\underline{Ex 3}$: If $\varphi: G \longrightarrow H$ is given by
 $\varphi(\alpha) = e$ for all $\alpha \in G$, then φ is a
homomorphism with $\operatorname{Ker}(\varphi) = G$, $\operatorname{im}(\varphi) = \{e\}$.
We call φ the trivial homomorphism.
 $\underline{Ex 4}$ The absolute value function
 $|\cdot|: \mathbb{R}^{*} \longrightarrow \mathbb{R}^{*}$ is a homomorphism
 $\alpha \leq |ab| = |\alpha| |b|$. The kernel is $\{\pm 1\}$
and the image is $\mathbb{R}_{\geq 0}$.
 $\underline{Ex 5}: \quad \operatorname{Sgn}: S_{n} \longrightarrow \mathbb{Z}_{e}$ given by

$$sgn(\sigma) = \begin{cases} 0 & \text{if } \sigma \text{ even} \\ 1 & \text{if } \sigma \text{ odd} \end{cases}$$

is a group homomorphism:
$$Sgn(\sigma \tau) = \begin{cases} 0 & \text{if } \sigma \tau \text{ even} \\ 1 & \text{if } \sigma \tau \text{ odd} \end{cases}$$
$$= \begin{cases} 0 & \text{if } sgn(\sigma) = sgn(\tau) = 0 & \text{or} \\ sgn(\sigma) = sgn(\tau) = 1 & \text{if} \\ 1 & \text{if } sgn(\sigma) = 0 & sgn(\tau) = 1 & \text{or} \\ sgn(\tau) = 0 & sgn(\sigma) = 1 & \text{or} \\ sgn(\tau) = 0 & sgn(\sigma) = 1 & \text{or} \end{cases}$$
$$= sgn(\sigma) + sgn(\tau).$$
We have $ker(\ell) = An$, $im(\ell) = \mathbb{Z}_2$.

Ex 6: Vector spaces V and W are groups
under addition, and a homomorphism
$$\Psi: V \longrightarrow W$$
 must satisfy

$$\begin{aligned} & \varphi(v+v') = \varphi(v) + \varphi(v') \quad \forall v, v' \in V. \\ & \text{Thus, linear maps from V to W are} \\ & \text{homomorphisms. They are isomorphisms} \\ & \text{precisely when the corresponding matrix is} \\ & \text{precisely when the corresponding matrix is} \\ & \text{non-singular.} \end{aligned}$$

$$\begin{aligned} & E_{X,Z}: \text{ The map } \varphi: R \longrightarrow R \pmod{4} \end{aligned}$$

given by
$$\Psi(x) = x^2$$
 is NOT a homomorphism
as $\Psi(x+y) = (x+y)^2 \pm x^2 + y^2 = \Psi(x) + \Psi(y)$.

Theorem 7.3 [Properties of Homomorphisms]
Let G and H be groups,
$$a, b \in G$$
,
and $Q: G \longrightarrow H$ a homomorphism.

1.
$$P(e) = e$$

2. $P(a^{n}) = [P(a)]^{n}$ for all $n \in \mathbb{Z}$
(In particular, $P(a^{-1}) = [P(a)]^{-1}$)
3. If $|a| < \infty$ then $|P(a)|$ divides $|a|$.
4. Ker $P \triangleq G$
5. $P(a) = P(b) \Leftrightarrow$ a Ker $P = b \ker P$.
6. P is injective \Leftrightarrow Ker $P = \{e\}$.
7. im $P \leq H$
8. P is surjective \Leftrightarrow im $(P) = H$.
Proof: The arguments for 1 and 2.
are the same as in Theorem 7.2.

3. If
$$|a| = n < \infty$$
, then
 $[\varphi(a)]^n = \varphi(a^n) = \varphi(e) = e$
so $|\varphi(a)|$ divides $n = |a|$.
4. Exercise
5. Note that
 $\varphi(a) = \varphi(b) \iff \varphi(a)^{-1}\varphi(b) = e$
 $\iff \varphi(a^{-1}b) = e$
 $\iff a^{-1}b \in \ker \varphi$
 $\iff a \ker \varphi = b \ker \varphi$.
6. Follows immediately from 7.
7. Exercise.
8. Obvious.

Just like in the case of isomorphisms,
understanding the properties of homomorphisms
helps us to determine what homomorphisms can
exist between groups G and H.
Ex: How many homomorphisms are there from
Zs to ZG?
Note that since Zs is cyclic, any
homomorphism
$$P: \mathbb{Z}_{s} \rightarrow \mathbb{Z}_{6}$$
 will be
completely determined by $P(1):$
Given $K \in \mathbb{Z}_{s}$, $P(K) = P(1) + P(1) + \dots + P(1)$
K times

 $= K \Psi(I)$

What do we know about
$$\mathcal{P}(1)$$
? Well,
its order must divide $|1| = 8$ by
property 3. Also, $\mathcal{P}(1) \in \mathbb{Z}_6$, so by
Lagrange, $|\mathcal{P}(1)|$ divides $|\mathbb{Z}_6| = 6$.
 $\therefore |\mathcal{P}(1)|$ divides $gcd(8, 6) = 2$
 $\Rightarrow |\mathcal{P}(1)| = 1$ or 2.

If
$$|\mathcal{Y}(1)| = 1$$
, then $\mathcal{Y}(1) = 0$ and
hence \mathcal{Y} is the trivial homomorphism.

If $|\Psi(1)| = 2$, then $\Psi(1) = 3$ and hence $\Psi(k) = 3k \mod 6$ for $k \in \mathbb{Z}$.

These conditions on
$$\mathcal{Q}: \mathbb{Z}_8 \to \mathbb{Z}_6$$
 are
necessary, but are they sufficient? In
particular, is $\mathcal{Q}(K) = 3K \mod 6$ really
a homomorphism?

Clearly
$$Q(k+m) = 3(k+m) \mod 6$$

= $(3k \mod 6) + (3m \mod 6)$
= $Q(k) + Q(m)$,

but is this function even well-defined?
If
$$K=m \mod 8$$
, then $8 \mid k-m$ so
 $K=m+8t$ for some $t \in \mathbb{Z}$. Thus,
 $Q(K) = Q(m+8t)$
 $= 3(m+8t) \mod 6$

=
$$3m + 24t \mod 6$$

= $3m \mod 6$ = $\mathcal{Q}(m)$. Yes!

Something like
$$\Psi: \mathbb{Z}_8 \to \mathbb{Z}_6$$
 given by
 $\Psi(k) = \mathbb{Z}_k \mod 6$, however, is not:
e.g. $1 = 9 \mod 8$, but
 $\Psi(1) = 2 \mod 6$
 $\Psi(9) = 18 = 0 \mod 6$
Jifferent:

This begs the question:
What are the homomorphisms
$$P: \mathbb{Z}_n \longrightarrow \mathbb{Z}_m$$
?

1. All homomorphisms
$$\mathcal{P}: \mathbb{Z}_n \longrightarrow \mathbb{Z}_m$$
 must
be of the form $\mathcal{P}(\mathbf{x}) = \mathbf{a}\mathbf{x}$ where
 $\mathbf{a} = \mathcal{Q}(\mathbf{1}).$

2. Every such
$$\varphi$$
 satisfies the homomorphism
property: $\varphi(x+y) = \varphi(x) + \varphi(y)$.

3. Which of these
$$P'_{s}$$
 are well-defined?
Necessary: $0 = P(0) = P(n) = an$, so
 $an = 0 \mod m$.

Exercise: Prove that this condition is
sufficient. That is,
$$\varphi: \mathbb{Z}_n \longrightarrow \mathbb{Z}_m$$
 is
given by $\varphi(x) = ax$ is well-defined if

and only if
$$AN = O \mod M$$
.
Remark: If $Q:G \longrightarrow H$ is a group
homomorphism, then $\ker Q \triangleq G$ (Theorem 7.3).
If turns out that every normal subgroup
arises in this way!
Theorem 7.4: Let G be a group and $N \triangleq G$.
Then there is a group H and homomorphism
 $Q:G \longrightarrow H$ such that $N = \ker Q$.
Proof: Define $H = G/N$ and $Q:G \longrightarrow G/N$ by
 $Q(a) = aN$. Then Q is a homomorphism and
 $\ker Q = N$.

isomorphism?

To make
$$\varphi$$
 surjective, let's replace H with
im(φ) (i.e., remove the extra parts of H.)

The resulting map is an isomorphism from
$$G/Ker \varphi$$
 to $im(\varphi)!$

Theorem 7.5 (First Isomorphism Theorem):
If
$$\Psi: G \to H$$
 is a group homomorphism,
then $G/\ker \Psi \cong im(\Psi)$.

Proof: Define
$$\forall : G/\ker \varphi \longrightarrow \operatorname{im}(\varphi)$$
 by
 $\forall (a \cdot \ker \varphi) = \varphi(a).$

Claim: Y is an isomorphism.

Note that

$$\psi(a\cdot ker\varphi) = \psi(b\cdot ker\varphi) \iff \psi(a) = \psi(b)$$

$$\implies a ker\varphi = b ker\varphi$$

Thus,
$$\underline{Y}$$
 is well-defined and injective.
We have that $\operatorname{im}(Y) = \{Y(a \cdot \ker \varphi) : a \in G\}$
 $= \{Y(a) : a \in G\} = \operatorname{im}(\varphi)$

so
$$\frac{\gamma}{(a \cdot ker \varphi)(b \cdot ker \varphi)} = \frac{\gamma(ab \cdot ker \varphi)}{\varphi((a \cdot ker \varphi)(b \cdot ker \varphi))} = \frac{\gamma(ab)}{\varphi(ab)}$$

=
$$\Psi(a) \Psi(b)$$

= $\Psi(a \cdot ker \Psi) \cdot \Psi(b \cdot ker \Psi)$

Thus,
$$\Psi$$
 is a homomorphism. We conclude that
 Ψ is an isomorphism, so $G/\text{Kec} \Psi \cong im(\Psi)$

Ex1: The absolute value function
$$|\cdot|: \mathbb{R}^* \to \mathbb{R}^*$$

is a homomorphism with Kernel $\{\pm 1\}$ and
image $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$. By the First
Isomorphism Theorem, $\mathbb{R}^*/\{\pm 1\} \cong \mathbb{R}_{>0}$.

$$\underbrace{E_{X 2}}_{Sgn}: S_n \longrightarrow \mathbb{Z}_2$$

$$\xrightarrow{\sigma} \longrightarrow \begin{array}{c} 0 & \text{if } \sigma & \text{odd} \end{array}$$

$$\begin{array}{c} 1 & \text{if } \sigma & \text{odd} \end{array}$$

is a homomorphism with Ker(sgn) = Anand $im(sgn) = \mathbb{Z}_2$. By the First

Isomorphism Theorem,
$$S_n/A_n \cong \mathbb{Z}_2$$
.

Corollary 7.6: Let G be a finite group,
and suppose that
$$Q: G \longrightarrow H$$
 is a group
homomorphism. Then $|G| = |\ker Q| \cdot |\operatorname{im} Q|$.

Proof: By the First Isomorphism Theorem,

$$G/ker\varphi \cong im \varphi$$
. Thus,
 $|im \varphi| = |G/ker \varphi| = |G|/|ker \varphi|$

- Ex: By Example 1 above, $|S_n| = |A_n| \cdot |Z_2|$. This means that $n! = |A_n| \cdot 2$, and hence we get a new proof that $|A_n| = \frac{n!}{2}$.
- 2. Correspondence Theorem Let G be a group and NAG. Here we investigate the connection between the Subgroups of G/N and the subgroups of G. First note that if H=G and N=H, then N ≤ H (verify). Thus, H/N ≤ G/N. Indeed, • $eN \in H/N$, so $H/N \neq \emptyset$ • If h, N, h= N & H/N, then

$$h_1 N \cdot h_2 N = (h_1 h_2) N \in H/N.$$

• If
$$h N \in H/N$$
, then
 $(h N)^{-1} = h^{-1}N \in H/N$.
 $\widetilde{\epsilon_H}$

Thus,
$$H/N \leq G/N$$
 by the subgroup test.

So, if
$$H \leq G$$
, then we get a subgroup
 H/N of G/N for free. But in fact,
every subgroup of G/N arises in this way:

If
$$K \leq G/N$$
, then $K = H/N$ for
some $H \leq G$ with $N \leq H$.

Theorem 7.7 (Correspondence Theorem)
Let G be a group and
$$N \leq G$$
. Then
 $\{K \leq G/N\} = \{H/N : H \leq G \text{ and } N \leq H\}.$
Moreover, $H/N \leq H'/N \Leftrightarrow H \leq H'$.
Ex: The subgroups of S_n/An are given by
 H/An where $H \leq Sn$ and $An \leq H$. The
only such H are $H = An$ or $H = Sn$ (for if
 $An \leq H$, then $|H| > \frac{n!}{2}$, and hence $|H| = n!$
as $|H|$ divides $|Sn|$.)

Thus, the subgroups of
$$S_n/A_n$$
 are
 $A_n/A_n = \{A_n\}$ (trivial) and S_n/A_n (whole group)

This makes sense, as
$$Sn/An \cong \mathbb{Z}_2$$

and the only subgroups of \mathbb{Z}_2 are
 $\{0\}$ and $\{0,1\} = \mathbb{Z}_2$.
When coupled with the First Isomorphism
theorem, the correspondence theorem says
the following:
If $9:G \longrightarrow H$ is a group
homomorphism, then $G/\ker 9 \cong im(9)$,
and hence the subgroups of $im(9)$
are in bijection with the subgroups of
G containing $\ker 9$.

§ 7.3 - Automorphisms
An isomorphism
$$\mathcal{Q}: \mathcal{G} \longrightarrow \mathcal{G}$$
 is called an
automorphism of \mathcal{G} . The set of all automorphisms
of \mathcal{G} is denoted by $\underline{Aut}(\mathcal{G})$.
Ex1: The identity automorphism id: $\mathcal{G} \longrightarrow \mathcal{G}$ is
given by $\mathcal{Q}(a) = a$ for all $a \in \mathcal{G}$.
Ex2: Consider the map $\mathcal{Q}: \mathcal{C} \longrightarrow \mathcal{C}$ given by
 $\mathcal{Q}(z) = \overline{z}$ (i.e., $\mathcal{Q}(a+ib) = \overline{a+ib} = a-ib$).

Then $\Psi \in Aut(\mathbb{C})$.

Ex3: Let G be a group and fix some a.e. Consider $\varphi_a: G \longrightarrow G$ given by $\varphi_a(b) = aba^{-1}$.

$$4a$$
 is called an inner automorphism of G, and
the set of all inner automorphisms is denoted
by $Inn(G)$.

Remark:
$$Inn(G) = \{id\} \iff G is Abelian$$

To see that
$$\mathcal{Q}_{a}$$
 is an automorphism, note that
 $\mathcal{Q}_{a}(bc) = a(bc)a^{-1} = ab(a^{-1}a)ca^{-1}$
 $= (aba^{-1})(aca^{-1}) = \mathcal{Q}_{a}(b)\mathcal{Q}_{a}(c),$

and a is bijective as it is left - multiplication by a and pight - multiplication by a^{-1}

For a concrete example,
$$fix S \in GL_n(\mathbb{R})$$
 and
consider $\mathcal{Y}_s : GL_n(\mathbb{R}) \longrightarrow GL_n(\mathbb{R})$. Then

$$\mathcal{G}_{s}(A) = SAS^{-1}\left(\underline{similarity}, i.e. change of basis!\right)$$
Remark: As the above example suggests, an
automorphism of G should be viewed as a way
to view G from a different perspective.

Theorem 7.8 Let G be a group. Then
Aut(G) is a group under function composition
and $Inn(G) \triangleleft Aut(G)$.

Proof: As an exercise, prove that $Aut(G)$ is

a group with identity
$$id: G \longrightarrow G$$
.

Note that $id = \varphi_e \in Inn(G)$, so $Inn(G) \neq \emptyset$.

If
$$\Psi_{a}$$
, $\Psi_{b} \in Inn(G)$, then for all $x \in G$,
 $\Psi_{a}\Psi_{b}(x) = \Psi_{a}(b \times b^{-1}) = a(b \times b^{-1})a^{-1} = \Psi_{ab}(x)$
so $\Psi_{a}\Psi_{b} = \Psi_{ab} \in Inn(G)$. Finally, one can check
that $\Psi_{a}^{-1} = \Psi_{a^{-1}} \in Inn(G)$, so $Inn(G) \neq Aat(G)$
by the subgroup test.
To see that $Inn(G) \neq Aat(G)$, let $\Psi_{a} \in Inn(G)$
and $\Psi \in Aat(G)$. For $x \in G$, we have
 $(\Psi \circ \Psi_{a} \circ \Psi^{-1})(x) = \Psi(\Psi_{a}(\Psi^{-1}(x)))$
 $= \Psi(a \Psi^{-1}(x) a^{-1})$
 $= \Psi(a) \times \Psi(a)^{-1} = \Psi_{\mu(a)}(x)$.
Thus, $\Psi \circ \Psi^{-1} = \Psi_{\mu(a)} \in Inn(G)$, so
 $\Psi = Inn(G) \Psi^{-1} = Inn(G)$ for all Ψ . By the

Normal subgroup test,
$$Inn(G) \leq Aut(G)$$
.
Let's see if we can compute $Aut(G)$ for a
familiar family of groups: $\mathbb{Z}n$
 E_{X} : What is $Aut(\mathbb{Z}_{6})$?
Note that if $\mathcal{P} \in Aut(\mathbb{Z}_{6})$, then
 $|\mathcal{P}(1)| = |I| = 6$, so $\mathcal{P}(1) = 1$ or 5.
Since $\mathcal{P}(K) = \mathcal{P}(1+1+\cdots+1)$
 $K \text{ times}$
 $= \mathcal{P}(1) + \mathcal{P}(1) + \cdots + \mathcal{P}(1) = K \mathcal{P}(1)$

it follows that for all $K \in \mathbb{Z}_{G}$, $\frac{\varphi(\kappa) = \kappa \mod G}{\log G} = \frac{\varphi(\kappa) = 5\kappa \mod G}{\log G}$ Both of these homomorphisms are welldefined, as $6 \cdot 1 = 0 \mod 6$ and $6 \cdot 5 = 0 \mod 6$.

Consequently,
$$Aut(\mathbb{Z}_G) = \begin{cases} K \mapsto K \mod G \\ K \mapsto 5K \mod G \end{cases}$$

Observe that the automorphisms of
$$\mathbb{Z}_{6}$$

correspond to the elements $1, 5 \in \mathbb{Z}_{6}$.
(i.e., the elements of \mathbb{Z}_{6}^{*}). This
correspondence occurs for other n as well.
Theorem 7.9: For any integer $n \ge 2$,
Aut $(\mathbb{Z}_{n}) \cong \mathbb{Z}_{n}^{*}$.

Proof: Define
$$\Psi: \operatorname{Aut}(\mathbb{Z}_n) \longrightarrow \mathbb{Z}_n^*$$

by $\Psi(\Psi) = \Psi(1)$. Note that since
 $|\Psi(1)| = |1| = n$ for any $\Psi \in \operatorname{Aut}(\mathbb{Z}_n)$,
it follows that $\Psi(1)$ is a generator for
 \mathbb{Z}_n and hence $\Psi(1) \in \mathbb{Z}_n^*$. Thus, the
codomain of Ψ is correct.

We will show that 4 is an isomorphism.
First, note that for
$$\varphi_1$$
, $\varphi_2 \in Aut(\mathbb{Z}n)$,
 $\Psi(\varphi_1\varphi_2) = (\varphi,\varphi_2)(1)$
 $= \varphi_1(\varphi_2(1))$
 $= \varphi_1(1+1+\cdots+1)$
 $= \varphi_2(1)$ times

$$= \underbrace{\varphi_{1}(1) + \varphi_{1}(1) + \cdots + \varphi_{n}(1)}{\varphi_{2}(1) \text{ times}}$$

$$= \varphi_{1}(1) \varphi_{2}(1) = \underbrace{\varphi(\varphi_{1})}{\varphi(\varphi_{2})}.$$
Consequently, Ψ is a homomorphism.
To see that Ψ is injective, suppose that
 $\Psi(\varphi_{1}) = \Psi(\varphi_{2}), \text{ so } \varphi_{n}(1) = \varphi_{2}(1).$
Then for any $K \in \mathbb{Z}_{h},$
 $\varphi_{n}(K) = K \varphi_{n}(1) = K \varphi_{2}(1) = \varphi_{2}(K)$
and hence $\varphi_{n} = \varphi_{2}.$ Thus, Ψ is injective.
To see that Ψ is surjective, fix as \mathbb{Z}_{h}^{*}
and define $\varphi: \mathbb{Z}_{h} \longrightarrow \mathbb{Z}_{h}$ by

$$\Psi(K) = \alpha K \mod n$$
. We leave it as an
exercise to verify that Ψ is a well-
defined automorphism of $\mathbb{Z}n$ and $\Psi(\Psi) = \alpha$.
Consequently, Ψ is surjective.
 $\therefore \Psi$ is an isomorphism, so $\operatorname{Aut}(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$.