











































































































8 Group Actions

8 L Definitions 8 Examples

Up to how our study of groups has largely

been about understanding the groups themselves

eg How many elements of G have order K

What are the subgroups of G

What are the quotients of G

Is G cyclic Abelian etc

Now we will turn our attention to studying how

a group G can describe the symmetries of

other sets X Essentially we will see how

a group can permute the elements of X














































































































Of course we don't want G to

permute the elements of X arbitrarily
we somehow want the structure of G

reflected in this permutation

For instance how would you like the

identity ee G to permute the elements of

X If our definition is at all

reasonable it should leave everything

unchanged

It would also be reasonable to expect

that for g gz EG permuting X by the














































































































product g.ge should be the same as

permuting by gz and then by g here

we read right to left like functions

Definition Let G be a group and X be

a set An action of G on X is a map

Gx X s X wi h the following properties

L e x u for all XEX

2 g gz x gigs X for all g g c G

and all see X

We write GTX to indicate that G

is acting on X














































































































Ex 1 The group G Sn acts on the set

X 142,3 n'T in the natural way

For TE Sm and ie X a i Oci

We'll verify that this is an action by
checking properties L f z

L e i e i i for all ie X V

2 Given a te Sn and EE X

P T.i 8 Tci

r Tci

rot i roc E V

Ex2 The group G Gln R acts on the

I














































































































set X R by matrix vector multiplication

For A cGlen and XER A x Ax

We have that

1 I x Ix for all ne X V

2 Given A Be Glen and KEIR

A B x A Bx

CAB x AB x V

Ex3 The group G D acts on the

set 4 11,2 3,4 which we can think of

as the set of vertices of a square
1 2

4 3














































































































Here we have that
1 Z

v
z 1

4 3 3 4

So V 2 1

We could also think of X as the set of

edges of the square
1

4

23
In this case

I 1
V

4 2 7 2

43 3

So V 2 4 and I L














































































































Ex 4 A group G acts on itself by left

multiplication Given a be G a b ab

As an exercise prove that this is an

action

Ex 5 A group G acts on itself by

conjugation Given a be G a b aba t

To see that this is an action note that

1 e a eae a for all AEG

2 a b g a Cbgb

a Cbgb
1 a t

ab g ab ab g














































































































Thus this is indeed an action

It will sometimes be helpful to view an

action GTX in a different way

Suppose that G is a group acting on

a set X For ge G fixed consider

the map

4g X X

x I g se

We can show that Hg is a bijection on

X Indeed given see X we have that

4g g t.se g g a














































































































gg x

e ze R

so 4g is surjective To see that 4g
is injective let u ye X Then

Igcse Ugly g a g y

g
i

g a g g y

g g a g g y
e se e Y
se
y

Thus is injective so 4g is

bijective Consequently 4g belongs to














































































































the set

S f X X f is bijective

Exercise For any set X the set

Sx as defined above is a group under

composition Moreover if X n Lcs the

Sx E Sn

with this in mind consider once again
the action of G on X Define

E G Six

g l 4g














































































































This OI is a map between groups In

fact it is a group homomorphism

Indeed let g g c G We claim that

Ecg ga Ecg o Ilga

That is we claim that

Ygga Vg Uga

But of course for a EX

Ygg a gigs x

g gz x

g Ygate

4g 4g as g 04g
se














































































































Thus we have 4gg Yg Vge so

01gg Eg Iga That is I is

a homomorphism

Moral Every action GTX gives

rise to a homomorphism

G Sx

g i s 4g
where 4g X X

se I goose

knowing this fact is enough to prove one

of the coolest results in the course














































































































Theorem 8 I Cayley's Theorem

Every group G is isomorphic to a group of

permutations In particular if G he

then G is isomorphic to a subgroup of Sh

Proof Let G act on itself by left

multiplication and consider the homomorphism

Of G Sq described above Let

By the First Isomorphism Theorem

G Koot I im E E Sq

What is turd If geker I then

01g 4g is the identity of Sg Thus














































































































for all AEG a 4g a g a ga

By cancellation g e so Ker Ie
o G is isomorphic to a subgroup of Sq

Krag

8.2 Orbits 8 Stabilizers

Given a group action GAX and

an element see G there are a few

natural questions one can ask

E Where in X can u be sent

ii which elements of G fine u

Thus we make the following definitions














































































































Definition Let Gnu X be a group

action Given see X define

i the orbit of se to be the set

On lg.se gee

ii the stabilizer of n to be the set

stab Ige G g a se

Note that the orbit On is a subset of

X while the stabilizer Staba is a

subset of G In fact

Proposition 8.2 If GTX is an action

then for any see X Stab E G














































































































Proof Exercise

Is On a subgroup of X No

In general X is not even a group

Ex The group G feio Oer e C't

acts on the set X c by multiplication

For 2 e k e O Z e'Oz The orbit

of ZEC is

Oz
Oz e Oz OER

Z

WE E w Z

Note that stab eio eio 0 0 G

and for 2 to Stabz e
0 ei0z z 42














































































































Ex Consider the usual action of Sin

on X 11,2 in on I Nci

Given any ie X we can send in to any

g
c X using

r ij Thus Oi X

By definition Stab lot Sn Oci i

I Sn t

Note that Oi n Stabi n t

Ex Let G be the group of all

rotations of the cube

We will consider the action

of G on the cube's vertices edges and faces














































































































g

L X vertices of the cube

Given vertex VE X we can move V

to any other vertex using a rotation

Or 8

The only rotations that leave V unchanged

are e and the rotations about the line

through V and its opposite vertex

i Stab 3














































































































z X edges of the cube

Given edge E E X we can move E

to any other edge using a rotation

i OE 12

The only rotations that leave E unchanged

are e and the rotation about the line

through E and its opposite edge

E

or

a Stabe 2














































































































3 X faces of the cube

Given face Fe X we can move

to any other face using a rotation

i Of 6

The only rotations that leave F unchanged

are e and the rotations about the line

through F and its opposite face

F

u
i Stab 4


















Notice that in all cases Staba On 24

It turns out that this value represents

the order of the group G and in fact

this occurs for every action GAX

Theorem 8.3 Orbit Stabilizer Let GAX be

a group action For every see X

G Stab On

In particular if G then

G Stab On

Proof Define 4 G stab On by

41g Staba g se We claim that 4



is bijective hence G Staba On

First we have that for all g gre G

g Stabs ga Staba gig C Stabs

gig se se

g se gz K

41g Uga

Thus 4 is well defined 8 injective

Moreover given ye On we can write

y g x for some gear Then

4 gstaba g x y so 9 is surjective

i 4 is bijective as claimed



The final claim for finite groups follows

from Lagrange's Theorem agama

The Orbit Stabilizer Theorem can reveal lots

about a group action GAX or about the

group G itself

Ex What are the possible group actions of

G 25 on X 142,33

Well given any a X we have that

25 Staba On so 5 Staba On

Hence On L or 5 But since On E3



it must be that On L for all n That is

g a r for all GE 25 and all see X

The only action is the trivial action

Ex How many rotational symmetries does

a soccer ball have

Let G be the group of all such symmetries

and let G act on the set X of all

black pentagonal faces of the soccer ball



Fix any face FEX This face can be

rotated to any other such face so

OF 12 Moreover the only rotations

that leave F unchanged are the 5

rotations about the axis through F

2

Consequently Stab 5 By the Orbit

Stabilizer Theorem G Stab OF

5 12

GO



Further Applications Burnside's Lemma

We will now see how group actions can be

used to solve some neat counting problems

Ex 1 How
many different ways can we make

a 2 2 chess board using black and white

squares

Here are some examples

wi

etc

em

I 2 3 4 5

Hold on some of these boards are really the same

For instance 2 can be rotated to 3 So We



should consider two boards to be the same if

one can be rotated into the other That is

our problem may be restated as follows

If G is the group of rotations of a

square and X is the set of all 24 16

2 2 chess boards how
many orbits

does

the action GAX have

Burnside's Lemma gives us a
way

to count

these orbits efficiently First We'll need

the following proposition

Proposition 8.4 Let GAX be a group



action The orbits of the action partition

X That is

a X On

b if x yell then Ose Oy or Oan Oy 0

Proof Assignment 5

Lemma 8.5 Burnside Let G be a finite

group acting on a finite set X If N

is the number of orbits then

N
g g

Fixlg

where for geG Fix g IneX goose se



Proof Let n be the number of pairs

g a c Gx X such that g se se First

note that for a fixed geG the number

of such pairs gin is Fix g so

n I Fix g
gEG

Also note that for fixed a X the number

of such pairs g n is staba so

n stab f Go G I l
k sec On

But for any ryeOr we have Oy On so

I t t t 1
yeon Oy On On On

On times



So I N number of orbits
reX On

We conclude that I Fixg n G N
gea

So N
g g a

Fix g as claimed
gaza

We can now attempt to solve our chess

board problem We wish to determine the

number of orbits of all boards under the

group G of rotations of a square By

Burnside we must find FixLg for all

rotations gear Note that

G e Rao Riso 12270



g e Rao Riso 12220

Fix g 24 2 22 2

Thus the number of distinct boards orbits

is N Ig Egfr Fix g

L 16 2 4 2 6
4

Boat atheroma

Ex How many 6 bead necklaces can be

made using 3 black beads and 3 white

beads



Solution We can choose the location of

the 3 black beads in Es 20 ways

and the
remaining

beads must be white

So let X be the set of these 20

possible necklaces and let G D6 be

the symmetry group of a hexagon We

consider 2 necklaces in X to be the

same if they belong to the same orbit

under the action Gnr X



What are the symmetries in G

Rotations
V

C R R2 Rs R Rs

F Fy
Fr

Flips

Fsf Fl Fz Fz Fy E5 Foo

F6

We now compute Fix g for each gEG

g e R R R R Rs F Fa F F Fo Foo

Fix g 20 O 2 O 2 O O O O I 22 22



By Burnside's Lemma the number of

orbits i.e the number of necklaces is

1g
g

Fix g plz Zoot 2 2 22 2722

L 36 3

12

They are

1

Ex How many ways can one label the

sides of a G sided die using the

each of the numbers 1 G exactly once



Solution There are 6 ways to put

the numbers on but some of the dice

may
be the same after rotation

Let X be the set of all 6 720

possible dice and let G be the group

of rotations of the cube We consider

two dice to be the same if they
are in the same orbit of the action

GAX



Note that the only group element that

fixes every face of the cube is e

Since all faces are marked differently

we have that Fix g o Vgte and

Fix e X 720

By Burnside's Lemma the number of orbits

i.e the number of dice is

1g Egg
Fix g 214 720 30

Ex How many ways can one paint the

edges of a tetrahedron red blue or green



6Solution There are 3 different ways

to paint the edges but some of these

colorings may be the same after rotation

Let G be the group of all rotational

symmetries of the tetrahedron and X be

6the set of all 3 possible colourings

Since we must compute Fix g for each geG
we should first try to understand what the

rotations in G look like



Note that G acts on

g
the faces of the

tetrahedron For a fixed

face F there are 3 rotations that fix
F so Stab 3 We can send F to any

other face so OF 4 By Orbit Stabilizer

G 3 4 12 The 12 possible rotations are

as follows 1 identity e Fixle 3

8 rotations T about vertex and opposite face

J y
Fix IT 3



3 rotations 6 about opposite edges

Fix lov 3

We have
1 8 3

V r V
g e T d

Fix g 36 32 34

So N I 1.36 8.32 3.34 87
12

The Class Equation

Let G be a finite group and let G act

on itself by conjugation a b aba



Let Og Og Og denote the disjoint

orbits of the action that are not

contained in 2 G Using Proposition 8.4

one can prove that

G 2 G t G stabg
F 1

where Stabg at G agia g

Iaea agi gia
Cgi centralizer of gi

The equation

G 2Ca t Z G Clg
F 1

is called the class equation and it has



many remarkable consequences

corollary 8.6 Let p be a prime

1 If G is a group of order p for

some K 1 then 2 G t let

2 If G is a group of order p2 then

G is Abelian

The details are left to the assignment

Here is another amazing application

Theorem 8.7 Cauchy's Theorem

If G is a finite group and p is a

prime that divides G then G contains



an element of order p

Proof By induction assume that the

result holds for groups of order C G

Case I i p 2CG

By Cauchy's theorem in the Abelian case

2 G and hence G has an element of

order p

Case I pl 2 G

Let G act on itself by conjugation and

let Og Og Ogr be the distinct

orbits not contained in 2 G By the



Class equation
2Ca G I G Ccgi

and since p 2CG there must be an

integer k such that pl G Ugk

Since p divides G yet p does not

divide G Ugk G it must be
Ugk

that p divides Ign Note that Ugh is

a group and Ugn FG otherwise

agk gka Fae G so get 2 G

contradiction By induction CCgu and

hence G contains an element of order p
Bombard


