$\xi 8$ - Group Actions
§8.1 - Definitions \& Examples

Up to now our study of groups has largely been about understanding the groups themselves
(egg. How many elements of G have order K ? What are the subgroups of G?

What are the quotients of G ?
Is G cyclic? Abelian? etc.
Now we will turn our attention to studying how a group G can describe the symmetries of other sets X. Essentially, we will see how a group can permute the elements of X.

Of course, we don't want G to permute the elements of X arbitrarily, we somehow want the structure of G reflected in this permutation.

For instance, how would you like the identity $e \in G$ to permute the elements of X? If our definition is at all reasonable, it should leave everything unchanged.

It would also be reasonable to expect that for $g_{1}, g_{2} \in G$ permuting X by the
product $g_{1} g_{2}$ should be the same as permuting by g_{2} and then by g_{1} (here we read right-to-left like functions.)

Definition Let G be a group and X be a set. An action of G on X is a map - $G \times X \longrightarrow X$ with the following properties:
(1) $e \cdot x=x$ for all $x \in X$.
(2) $g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} g_{2}\right) \cdot x$ for all $g_{1}, g_{2} \in G$ and all $x \in X$.

We write $G \cap X$ to indicate that G is acting on X.

Ex 1. The group $G=S_{n}$ acts on the set $X=\{1,2,3, \ldots, n\}$ in the natural way:

For $\sigma \in S_{n}$ and $i \in X, \quad \sigma \cdot i=\sigma(i)$.

Well verify that this is an action by checking properties (1) \& (2):
(1) $e \cdot i=e(i)=i$ for all $i \in X$.
(2) Given $\sigma, \tau \in S_{n}$ and $i \in X$.

$$
\begin{aligned}
\sigma \cdot(\tau \cdot i) & =\sigma \cdot(\tau(i)) \\
& =\sigma(\tau(i)) \\
& =(\sigma \cdot \tau)(i)=(\sigma \cdot \tau) \cdot i
\end{aligned}
$$

Ex 2: The group $G=G L_{n}(\mathbb{R})$ acts on the
set $X=\mathbb{R}^{n}$ by matrix -vector multiplication:
For $A \in G L_{n}$ and $x \in \mathbb{R}^{n}, A \cdot x=A x$

We have that
(1) $I \cdot x=I x=x$, for all $x \in X$
(2) Given $A, B \in G \operatorname{Ln}_{n}$ and $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
A \cdot(B \cdot x) & =A \cdot\left(B_{x}\right) \\
& =(A B) x=(A B) \cdot x
\end{aligned}
$$

Ex 3: The group $G=D_{4}$ acts on the
set $X=\{1,2,3,4\}$, which we can think of as the set of vertices of a square

Here we have that

so $V \cdot 2=1$.

We could also think of X as the set of edges of the square

In this case,

So $V \cdot 2=4$ and $V \cdot 1=1$.

Ex 4: A group G acts on itself by left multiplication Given $a, b \in G, a \cdot b=a b$

As an exercise, prove that this is an action.

Ex 5: A group G acts on itself by conjugation. Given $a, b \in G, \quad a \cdot b=a b a^{-1}$ To see that this is an action, note that
(1) $e \cdot a=e a e^{-1}=a$ for all $a \in G$
(2)

$$
\begin{aligned}
a \cdot(b \cdot g) & =a \cdot\left(b g b^{-1}\right) \\
& =a\left(b g b^{-1}\right) a^{-1} \\
& =(a b) g(a b)^{-1}=(a b) \cdot g .
\end{aligned}
$$

Thus, this is indeed an action.

It will sometimes be helpful to view an action $G \curvearrowright x$ in a different way.

Suppose that G is a group acting on a set X. For $g \in G$ fixed, consider the map

$$
\begin{aligned}
\psi_{g}: X & \longrightarrow X \\
x & \longmapsto g \cdot x
\end{aligned}
$$

We can show that ψ_{g} is a bijection on
X. Indeed, given $x \in X$ we have that

$$
\psi_{g}\left(g^{-1} \cdot x\right)=g \cdot\left(g^{-1} \cdot x\right)
$$

$$
\begin{aligned}
& =\left(g g^{-1}\right) \cdot x \\
& =e \cdot x=x
\end{aligned}
$$

so ψ_{g} is surjective. To see that ψ_{g} is injective, let $x, y \in X$. Then

$$
\begin{aligned}
\psi_{g}(x)=\psi_{g}(y) & \Rightarrow g \cdot x=g \cdot y \\
& \Rightarrow g^{-1} \cdot(g \cdot x)=g^{-1} \cdot(g \cdot y) \\
& \Rightarrow\left(g^{-1} g\right) \cdot x=\left(g^{-1} g\right) \cdot y \\
& \Rightarrow e \cdot x=e \cdot y \\
& \Rightarrow x=y .
\end{aligned}
$$

Thus, ψ_{g} is injective, so ψ_{g} is bijective. Consequently, ψg belongs to
the set

$$
S_{X}=\left\{f: X \rightarrow X \left\lvert\, \begin{array}{l|l}
& \text { is bijective }\}
\end{array}\right.\right.
$$

Exercise: For any set X, the set
S_{x} as defined above is a group under composition. Moreover, if $|X|=n<\infty$, then

$$
S_{x} \cong S_{n}
$$

With this in mind, consider once again the action of G on X. Define

$$
\begin{aligned}
\Phi: G & \longmapsto S_{x} \\
g & \longmapsto \psi_{g}
\end{aligned}
$$

This Φ is a map between groups. In fact, it is a group homomorphism.

Indeed, let $g_{1}, g_{2} \in G$. We claim that

$$
\Phi\left(g_{1} g_{2}\right)=\Phi\left(g_{1}\right) \cdot \Phi\left(g_{2}\right)
$$

That is, we claim that

$$
\psi_{g_{1} g_{2}}=\psi_{g_{1}} \circ \psi_{g_{2}}
$$

But of course, for $x \in X$,

$$
\begin{aligned}
\psi_{g_{1} g_{2}}(x) & =\left(g_{1} g_{2}\right) \cdot x \\
& =g_{1} \cdot\left(g_{2} \cdot x\right) \\
& =g_{1} \cdot \psi_{g_{2}}(x) \\
& =\psi_{g_{1}}\left(\psi_{g_{2}}(x)\right)=\left(\psi_{g_{1}} \cdot \psi_{g_{2}}\right)(x)
\end{aligned}
$$

Thus, we have $\psi_{g_{1} g_{2}}=\psi_{g_{1}} \circ \psi_{g_{2}}$, so $\Phi_{g_{1} g_{2}}=\Phi_{g_{1}} \circ \Phi_{g_{2}}$. That is, $\Phi_{\text {is }}$ a homomorphism.

Moral: Every action $G \curvearrowright X$ gives rise to a homomorphism

$$
\begin{aligned}
\Phi: G & \longrightarrow S_{x} \\
g & \longmapsto \psi_{g} \\
\text { where } \psi_{g}: X & \longrightarrow X \\
x & \longmapsto g \cdot x
\end{aligned}
$$

Knowing this fact is enough to prove one of the coolest results in the course:

Theorem 8.1 [Cayley's Theorem]
Every group G is isomorphic to a group of permutations. In particular if $|G|=n<\infty$ then G is isomorphic to a subgroup of S_{n}.

Proof: Let G act on itself by left multiplication and consider the homomorphism $\Phi: G \longrightarrow S_{G}$ described above. Let By the First Isomorphism Theorem,

$$
G / \operatorname{Ker} \Phi \cong \operatorname{im} \Phi \leqslant S_{G}
$$

What is $\operatorname{Ker\Phi ?~If~geKer\Phi ,~then~}$ $\Phi_{g}=\psi_{g}$ is the identity of S_{G}. Thus,
for all $a \in G, \quad a=\psi_{g}(a)=g \cdot a=g a$
By cancellation, $g=e$, so Ger $\Phi=\{e\}$.
$\therefore G$ is isomorphic to a subgroup of S_{G}
$\$ 8.2$ Orbits \& Stabilizers

Given a group action $G \curvearrowright X$ and an element $x \in G$, there are a few natural questions one can ask
(i) Where in X can x be sent?
(ii) Which elements of G fix x ?

Thus, we make the following definitions

Definition: Let $G \curvearrowright X$ be a group action. Given $x \in X$, define
(i) the orbit of x to be the set

$$
O_{x}=\{g \cdot x \mid g \in G\}
$$

(ii) the stabilizer of x to be the set $\operatorname{Stab}_{x}=\{g \in G \mid g \cdot x=x\}$.

Note that the orbit O_{x} is a subset of X while the stabilizer Stabs is a subset of G. In fact:

Proposition 8.2: If $G \curvearrowright X$ is an action, then for any $x \in X, \quad$ Stab $x \leqslant G$

Proof Exercise.

Is O_{x} a subgroup of X ? No!
In general, X is not even a group.

Ex: The group $G=\left\{e^{i \theta}: \theta \in \mathbb{R}\right\} \leq \mathbb{C}^{*}$ acts on the set $X=\mathbb{C}$ by multiplication:

For $z \in \mathbb{C}, e^{i \theta} \cdot z=e^{i \theta} z$. The orbit of $z \in \mathbb{C}$ is

$$
\begin{aligned}
O_{z} & =\left\{e^{i \theta} z: \theta \in \mathbb{R}\right\} \\
& =\{w \in \mathbb{C}| | w|=|z|\} .
\end{aligned}
$$

Note that Stab $=\left\{e^{i \theta:} e^{i \theta} \cdot 0=0\right\}=G$
and for $z \neq 0, \operatorname{Stab}_{z}=\left\{e^{i \theta}: e^{i \theta} z=z\right\}=\{1\}$.

Ex: Consider the usual action of S_{n}
on $X=\{1,2, \ldots, n\}: \quad \sigma \cdot i=\sigma(i)$

Given any ie X, we can send i to any $j \in X$ using $\sigma=(i j)$. Thus, $\underline{O_{i}}=X$.

By definition, $\quad \operatorname{Stab}_{i}=\left\{\sigma \in S_{n} \mid \sigma(i)=i\right\}$

$$
\cong S_{n-1}
$$

Note that $\left|O_{i}\right|=n, \quad\left|S_{a} b_{i}\right|=(n-1)!$

Ex: Let G be the group of all
rotations of the cube

We will consider the action
 of G on the cube's vertices, edges, and faces.
(1) $X=\{$ vertices of the cube $\}$

Given vertex $V \in X$, we can move V to any other vertex using a rotation.

$$
\therefore\left|O_{v}\right|=8
$$

The only rotations that leave V unchanged are e and the rotations about the line through V and its opposite vertex

$$
\therefore \mid \text { Stabs } \mid=3
$$

(2) $X=\{$ edges of the cube $\}$

Given edge $E \in X$, we can move E to any other edge using a rotation.

$$
\therefore\left|O_{E}\right|=12
$$

The only rotations that leave E unchanged are e and the rotation about the line through E and its opposite edge

$$
\therefore \mid \text { Stab }_{E} \mid=2
$$

(3) $X=\{$ faces of the cube $\}$

Given face $F \in X$, we can move to any other face using a rotation.

$$
\therefore\left|O_{F}\right|=6
$$

The only rotations that leave F unchanged are e and the rotations about the line through F and its opposite face

$$
\therefore \mid \text { Stab }_{F} \mid=4
$$

Notice that in all cases $\left|S_{t a b_{x}}\right|\left|O_{x}\right|=24$.
It turns out that this value represents the order of the group G, and in fact, this occurs for every action $G \curvearrowright X$.

Theorem 8.3 [Orbit-Stabilizer]: Let $G \curvearrowright X$ be
a group action. For every $x \in X$,

$$
\left|G: S+a b_{x}\right|=\left|O_{x}\right|
$$

In particular, if $|G|<\infty$, then

$$
|G|=\left|S_{\operatorname{Stab}}^{x}\right|\left|O_{x}\right|
$$

Proof: Define $\varphi: G /$ Stab $_{x} \longrightarrow O_{x}$ by $\varphi\left(g \cdot S t a b_{x}\right)=g \cdot x$. We claim that φ
is bijective, hence $\left|G / S+a b_{x}\right|=\left|O_{x}\right|$.

First, we have that for all $g_{1}, g_{2} \in G$,

$$
\begin{aligned}
g_{1} \text { Stab }=g_{2} \text { Stab } & \Leftrightarrow g_{2}^{-1} g_{1} \in S t a b_{x} \\
& \Leftrightarrow\left(g_{2}^{-1} g_{1}\right) \cdot x=x \\
& \Leftrightarrow g_{1} \cdot x=g_{2} \cdot x \\
& \Leftrightarrow \varphi\left(g_{1}\right)=\varphi\left(g_{2}\right) .
\end{aligned}
$$

Thus, φ is well-defined $\&$ injective.
Moreover, given $y \in O_{x}$ we can write $y=g \cdot x$ for some $g \in G$. Then $\varphi\left(g S_{\operatorname{Stab}}\right)=g \cdot x=y$, so φ is surjective.
$\therefore \varphi$ is bijective, as claimed.

The final claim for finite groups follows from Lagrange's Theorem

The Orbit-Stabilizer Theorem can reveal lots about a group action $G \cap X$, or about the group G itself.

Ex: What are the possible group actions of $G=\mathbb{Z}_{5}$ on $\quad X=\{1,2,3\}$?

Well... given any $x \in X$, we have that

$$
\left|\mathbb{Z}_{5}\right|=\left|\operatorname{Stab}_{x}\right|\left|O_{x}\right| \text {, so } 5=\left|\operatorname{Stab}_{x}\right|\left|O_{x}\right| \text {. }
$$

Hence $\left|O_{x}\right|=1$ or 5. But since $\left|O_{x}\right| \leq 3$,
it must be that $\left|O_{x}\right|=1$ for all x. That is, $g \cdot x=x$ for all $g \in \mathbb{Z}_{5}$ and all $x \in X$.
\therefore The only action is the trivial action.

Ex: How many rotational symmetries does a soccer ball have?

Let G be the group of all such symmetries, and let G act on the set X of all black pentagonal faces of the soccer ball.

Fix any face $F \in X$. This face can be rotated to any other such face, so $\left|O_{F}\right|=12$. Moreover, the only rotations that leave F unchanged are the 5 rotations about the axis through F :

Consequently, $|s t a b|=5$. By the orbit-
Stabilizer Theorem, $|G|=\left|\operatorname{Stab},\left|\left|O_{F}\right|\right.\right.$

$$
\begin{aligned}
& =5.12 \\
& =60 .
\end{aligned}
$$

Further Applications - Burnside's Lemma

We will now see how group actions can be used to solve some neat counting problems!

Ex 1: How many different ways can we make a 2×2 chess board using black and white squares?

Here are some examples

± 1

$\# 2$

$\# 3$

$\# 4$ \# 5

Hold on, some of these boards are really the same For instance, \#2 can be rotated to \#3. So, we
should consider two boards to be the same if one can be rotated into the other. That is, our problem may be restated as follows:

If G is the group of rotations of a square and X is the set of all $2^{4}=16$ 2×2 chess boards, how many orbits does the action $G \curvearrowright \times$ have?

Burnside's Lemma gives us a way to count these orbits efficiently. First, well need the following proposition.

Proposition 8.4: Let $G \curvearrowright X$ be a group
action. The orbits of the action partition
X. That is
(a) $X=\bigcup_{x \in X} O_{x}$
(b) if $x, y \in X$, then $O_{x}=O_{y}$ or $O_{x} \cap O_{y}=\varnothing$.

Proof: Assignment 5.

Lemma 8.5 [Burnside]: Let G be a finite group acting on a finite set X. If N is the number of orbits, then

$$
N=\frac{1}{|G|} \sum_{g \in G}\left|F_{i x}(g)\right|
$$

where for $g \in G, \quad F_{i x}(g)=\{x \in X \mid g \cdot x=x\}$

Proof: Let n be the number of pairs $(g, x) \in G \times X$ such that $g \cdot x=x$. First note that for a fixed $g \in G$, the number of such pairs (g, x) is $\left|F_{i x}(g)\right|$, so

$$
n=\sum_{g \in G_{7}}\left|F_{i} x(g)\right|
$$

Also note that for fixed $x \in X$, the number of such pairs (g, x) is \mid stab \mid, so

$$
n=\sum_{x \in X}\left|s+a b_{x}\right|=\sum_{x \in X} \frac{|G|}{\left|O_{x}\right|}=|G| \sum_{x \in X} \frac{1}{\left|O_{x}\right|}
$$

But for any $y \in O_{x}$ we have $O_{y}=O_{x}$, so

$$
\sum_{y \in O_{x}} \frac{1}{\left|O_{y}\right|}=\frac{\frac{1}{\left|O_{x}\right|}+\frac{1}{\left|O_{x}\right|}+\cdots+\frac{1}{\left|O_{x}\right|}}{\left|O_{x}\right| \text { times }}=1
$$

So $\sum_{x \in X} \frac{1}{\left|O_{x}\right|}=N$ (number of orbits)
We conclude that $\sum_{g \in G}\left|F_{i x}(g)\right|=n=|G| \cdot N$
so $N=\frac{1}{|G|} \sum_{g \in G}\left|F_{i x}(g)\right|$, as claimed.

We can now attempt to solve our chess board problem. We wish to determine the number of orbits of all boards under the group G of rotations of a square. By Burnside, we must find $\left|F_{i x}(g)\right|$ for all rotations $g \in G$. Note that

$$
G=\left\{e, R_{90}, R_{180}, R_{270}\right\} .
$$

g	e	R_{90}	R_{180}	R_{270}
$\left\|F_{\text {ix }}(g)\right\|$	2^{4}	2	2^{2}	2

Thus, the number of distinct boards (orbits) is $\quad N=\frac{1}{|G|} \sum_{g \in G}\left|F_{i x}(g)\right|$

$$
=\frac{1}{4}(16+2+4+2)=6
$$

Ex: How many 6-bead necklaces can be made using 3 black beads and 3 white beads?

Solution: We can choose the location of the 3 black beads in $\binom{6}{3}=20$ ways, and the remaining beads must be white.

So let X be the set of these 20 possible necklaces, and let $G=D_{6}$ be the symmetry group of a hexagon. We consider 2 necklaces in X to be the same if they belong to the same orbit under the action $G \curvearrowright X$.

What are the symmetries in G ?

Rotations:
$e, R, R^{2}, R^{3}, R^{4}, R^{5}$

Flips:

$$
F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}
$$

We now compute $\left|F_{i x}(g)\right|$ for each $g \in G$.

g	e	R	R^{2}	R^{3}	R^{4}	R^{5}	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}
$F_{\text {ix }}(g)$	20	0	2	0	2	0	0	0	0	2^{2}	2^{2}	2^{2}

By Burnside's Lemma, the number of orbits (i.e., the number of necklaces) is

$$
\begin{aligned}
\frac{1}{|G|} \sum_{g \in G}\left|F_{i x}(g)\right| & =\frac{1}{12}\left(20+2+2+2^{2}+2^{2}+2^{2}\right) \\
& =\frac{1}{12}(36)=3
\end{aligned}
$$

They are

Ex: How many ways can one label the sides of a 6-sided die using the each of the numbers 1-6 exactly once?

Solution: There are 6! ways to put the numbers on, but some of the dice may be the same after rotation

Let X be the set of all $6!=720$ possible dice and let G be the group of rotations of the cube. We consider two dice to be the same if they are in the same orbit of the action $G \curvearrowright X$.

Note that the only group element that fixes every face of the cube is e. Since all faces are marked differently, we have that $\left|F_{i x}(g)\right|=0 \quad \forall g \neq e$ and $\left|F_{i x}(e)\right|=|X|=720$.

By Burnside's Lemma, the number of orbits (i.e, the number of dice) is

$$
\frac{1}{|G|} \sum_{g \in G}\left|F_{i x}(g)\right|=\frac{1}{24}(720)=30
$$

Ex: How many ways can one paint the edges of a tetrahedron red, blue, or green?

Solution: There are 3^{6} different ways to paint the edges, but some of these colourings may be the same after rotation.

Let G be the group of all rotational symmetries of the tetrahedron and X be the set of all 3^{6} possible colourings.

Since we must compute \mid Fix $(g) \mid$ for each $g \in G$ we should first try to understand what the rotations in G look like.

Note that G acts on the faces of the tetrahedron. For a fixed
 face F there are 3 rotations that fix F, so $\left|S t a b_{F}\right|=3$. We can send F to any other fave, so $\left|O_{F}\right|=4$. By Orbit-Stabilizer, $|G|=3 \cdot 4=12$. The 12 possible rotations are as follows: 1 identity $e,\left|F_{i x}(e)\right|=3^{6}$

8 rotations τ about vertex and opposite face.

3 rotations σ about opposite edges.

We have

So $N=\frac{1}{12}\left(1 \cdot 3^{6}+8 \cdot 3^{2}+3 \cdot 3^{4}\right)=87$

The Class Equation
Let G be a finite group and let G act on itself by conjugation: $a \cdot b=a b a^{-1}$

Let $O_{g}, O_{g 2}, \ldots, O_{g r}$ denote the disjoint orbits of the action that are not contained in $Z(G)$. Using Proposition 8.4, one can prove that

$$
|G|=|Z(G)|+\sum_{i=1}^{r} \mid G: \text { stab }_{g_{i}} \mid
$$

where Stabgia $=\left\{a \in G: a g_{i} a^{-1}=g_{i}\right\}$

$$
\begin{aligned}
& =\left\{a \in G: \quad a g_{i}=g_{i} a\right\} \\
& \left.=C\left(g_{i}\right) \quad \text { (Centralizer of } g_{i}\right)
\end{aligned}
$$

The equation

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left|G: C\left(g_{i}\right)\right|
$$

is called the class equation, and it has
many remarkable consequences:

Corollary 8.6 Let p be a prime.
(1) If G is a group of order p^{k} for some $K \geqslant 1$, then $Z(G) \neq\{e\}$.
(2) If G is a group of order p^{2}, then G is Abelian.

The details are left to the assignment.

Here is another amazing application.
Theorem 8.7 [Cauchy's Theorem]

If G is a finite group and p is a prime that divides $|G|$, then G contains
an element of order p.

Proof: By induction, assume that the result holds for groups of order $<|G|$.

Case I: $p||Z(G)|$
By Cauchy's theorem in the Abelian case, $Z(G)$, and hence G, has an element of order p.

Case II: $p \nmid|Z(G)|$

Let G act on itself by conjugation, and
let $\mathrm{Og}_{1}, \mathrm{Og}_{2}, \ldots, \mathrm{Ogr}_{r}$ be the distinct orbits not contained in $Z(G)$. By the

Class equation,

$$
|Z(G)|=|G|-\sum_{i=1}^{r}\left|G: C\left(g_{i}\right)\right|,
$$

and since pf $|Z(G)|$, there must be an integer K such that $p \nmid G: C\left(g_{k}\right) \mid$.

Since p divides $|G|$ yet p does not divide $\left|G: C\left(g_{k}\right)\right|=\frac{|G|}{\left|C\left(g_{k}\right)\right|}$, it must be that p divides $\left|C\left(g_{k}\right)\right|$. Note that $C\left(g_{k}\right)$ is a group and $C\left(g_{k}\right) \neq G \quad$ (otherwise

$$
a g_{k}=g_{k} a \quad \forall a \in G \text {, so } g_{k} \in Z(G)
$$

contradiction). By induction, $C\left(g_{k}\right)$ and hence G, contains an element of order p.

