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Last week we began a discussion on sequences, which are ordered lists of objects. The
objects in the list are called the terms of the sequence. The notation an is often used to
refer to the nth term of a sequence.

Example.

(a) 1, 3, 5, 7, 9, . . . Here, a3 = .

(b) 2, 6, 18, 54, 162, . . . Here, a4 = .

(c)
· · · Here, a6 = .

The objects in a sequence can be anything, but we will be interested in sequences of numbers.
Specifically, we will be interested in sequences of numbers that exhibit certain nice patterns.

Last time we focused on arithmetic sequences, where a sequence is called arithmetic
if the difference between consecutive terms is constant. That is, each term is obtained by
adding a fixed constant d to the previous term. This d is called the common difference.

Example.

(a) The sequence 1, 3, 5, 7, 9, . . . is arithmetic with d = .

(b) The sequence 44, 32, 20, 8,−4, . . . is arithmetic with d = .
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The simple rule that defines an arithmetic sequences makes such sequences easy to work
with. In fact, we made the following neat observations in Lesson 1:

Arithmetic Sequences

Consider an arithmetic sequence a1, a2, a3, . . . with common difference d.

(a) For any positive integer n, the nth term in the sequence is an = a1 + (n− 1)d.

(b) The sum of the first n terms in the sequence is

a1 + a2 + · · ·+ an = na1 + d

(
n(n− 1)

2

)
.

Here is one example from last time:

(I) The number of hedgehogs on Becky’s farm each day can be modelled by the sequence

8, 11, 14, 17, 20, 23, . . .

This sequence is arithmetic with a1 = 8 and common difference d = 3.

On day 365, Becky has

a365 = a1 + (365− 1)d = 8 + 364 · 3 = 1100 hedgehogs!

If she feeds each hedgehog a pancake every day, the number of pancakes needed for
the first 31 days is

a1 + a2 + · · ·+ a31 = 31 · a1 + d

(
31(31− 1)

2

)

= 31 · 8 + 3

(
31 · 30

2

)
= 1643.
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1 Geometric Sequences

A sequence of numbers {an}∞n=1 is called geometric if

.

Example. The sequence 2, 6, 18, 54, . . . is geometric. The common ratio is r = .

The nth Term of Geometric Sequence

If a1 is the first term of a geometric sequence and r is the common ratio, then

a2 = , a3 = , a4 = , etc.

In general, its nth term is an = .

Recall the following example from Lesson 1:

Example. Each week your grandma doubles the num-
ber of raisins in her cookies. In the first week, she puts
in just 1 raisin.

How many raisins are used in week 20?

Let’s see if we can obtain an answer to this question!

Write down the sequence for the number of raisins grandma uses each week.
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This is a geometric sequence. The common ratio is r = .

Use the formula for an to determine the number of raisins used on day 20.

2 Geometric Series

Recall the following example from Lesson 1:

Example. You and a friend share a square
pizza. Your share of the pizza is given by the
purple squares in the diagram. Each square’s
side length is half that of the next largest
square.

How much pizza do you get if an infinite num-
ber of squares are cut out?

The areas of the purple squares can be described by the sequence(
1

2

)2

,

(
1

4

)2

,

(
1

8

)2

,

(
1

16

)2

, . . .

or
1

4
,

1

16
,

1

64
,

1

256
, . . ..

This is a geometric sequence with common ratio r = .

Hmm... it looks like we will need to know the sum of the terms in a geometric sequence in
order to answer this question!

Suppose first that we wish to add only finitely many terms a1, ra1, r
2a1, . . . , r

n−1a1. Let’s
call the sum Sn:
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Sn = a1 + ra1 + r2a1 + · · ·+ rn−1a1 .

Here’s a neat trick! Multiply the whole sum by r:

Sn = a1 + ra1 + r2a1 + · · ·+ rn−1a1 .

rSn = ra1 + r2a1 + · · ·+ rn−1a1 + rna1.

Now subtract!
Sn − rSn = a1 − rna1

⇒ (1− r)Sn = a1(1− rn)

⇒ Sn =
a1(1− rn)

1− r

Aha! This gives us an expression for the sum of the first n terms in a geometric sequence!
Such a sum is called a (finite) geometric series.

Finite Geometric Series

If a1 is the first term of a geometric sequence and r is the common ratio, then the sum
of the first n terms is

a1 + ra1 + r2a1 + · · ·+ rn−1a1 =
a1(1− rn)

1− r
.

Example. Consider the geometric sequence {an}∞n=0 given by an = 3 · 2n. Find the sum of
the first 12 terms of this sequence.

Solution. Explicitly, this sequence is given by

3 , 3 · 2 , 3 · 22 , 3 · 23 , . . .

Thus, the first term is a1 = 3 and the common ratio is r = 2. The sum of the first n = 12
terms is therefore

3 + 3 · 2 + 3 · 22 + · · ·+ 3 · 211 =
a1(1− r12)

1− r
=

3(1− 212)

1− 2
= 12 285.
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We sometimes write sums like this in a more compact way:

m∑
n=1

an = a1 + a2 + · · ·+ am

where to stop

where to start

what to add

So in the above example, we could have written

12∑
n=1

3 · 2n−1 = 3 + 3 · 2 + 3 · 22 + · · ·+ 3 · 211 = 12 285

Example. In the pizza example, what is the total area of

(a) the first 3 squares?

(b) the first 10 squares?

Solution.

(a) The first term is a1 = 1/4, and the common ratio is r = 1/4. Thus, we are looking for

3∑
n=1

a1r
n−1 =

3∑
n=1

1

4
·
(

1

4

)n−1

=

1
4

(
1−

(
1
4

)3)
1− 1

4

=

1
4

(
1−

(
1
4

)3)
3
4

≈ 0.3281
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(b)

Is it possible to add up infinitely many squares? With a little experimentation, we can see
what the answer ought to be:

n 1 2 3 4 5 6 7

a1 + ra1 + r2a1 + · · ·+ rn−1a1 0.25 0.3125 0.3281 0.332 0.333 0.3332 0.3333

Hmm... it looks like it’s approaching 1/3. Is the sum of all the squares equal to 1/3? Let’s
see what our formula says!

The sum of the first n terms is

a1 + ra1 + r2a1 + · · ·+ rn−1a1 =
a1 (1− rn)

1− r

Since r = 1/4, the rn term in the numerator becomes very small for large values of n. When
n is huuuuuge, this term is effectively 0. Thus,

a1 + ra1 + r2a1 + · · · =
a1 (1− 0)

1− r
=

a1
1− r

!
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This formula actually applies to any geometric sequence with −1 < r < 1.

Infinite Geometric Series

Suppose that a1 is the first term of a geometric sequence and r is its common ratio.
If −1 < r < 1, then

∞∑
n=1

a1r
n−1 = a1 + ra1 + r2a1 + · · · = a1

1− r
.

Example. Find the sum of the geometric series

1 +
1

5
+

1

25
+

1

125
+ · · ·

Solution. The first term is a1 = 1 and the ratio is r = 1/5. Since −1 < r < 1, we can use
the formula above:

1 +
1

5
+

1

25
+

1

125
+ · · · =

a1
1− r

=
1

1− 1
5

=
5

4
.

Example. Show that the infinite sum from the pizza example is equal to 1/3.

Remark. There are many different types of series that one can encounter in the wild, though
few behave as nicely as the arithmetic and geometric series discussed here. For example it
took over 80 years for mathematicians to show that

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+ · · ·

is equal to π2/6.

There are several techniques for dealing with more complicated series, though many of these
methods are beyond the scope of our discussion. Most first-year university calculus courses
include a thorough treatment of this theory.
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