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1. Use the Euclidean algorithm to compute the following GCDs:

(a) gcd(204, 99)

Solution. The Euclidean algorithm proceeds as follows:

204 = 99(2) + 6 ⇒ gcd(204, 99) = gcd(99, 6) (1)

99 = 6(16) + 3 ⇒ gcd(99, 6) = gcd(6, 3) (2)

6 = 3(2) + 0 ⇒ gcd(6, 3) = gcd(3, 0) = 3.

The process ends and we conclude that gcd(204, 99) = 3.

(b) gcd(1 053, 993)

Solution. The Euclidean algorithm proceeds as follows:

1 053 = 993(1) + 60 ⇒ gcd(1 053, 993) = gcd(993, 60) (1)

993 = 60(16) + 33 ⇒ gcd(993, 60) = gcd(60, 33) (2)

60 = 33(1) + 27 ⇒ gcd(60, 33) = gcd(33, 27) (3)

33 = 27(1) + 6 ⇒ gcd(33, 27) = gcd(27, 6) (4)

27 = 6(4) + 3 ⇒ gcd(27, 6) = gcd(6, 3) (5)

6 = 3(2) + 0 ⇒ gcd(6, 3) = gcd(3, 0) = 3.

The process ends and we conclude that gcd(1 053, 993) = 3.
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(c) gcd(7 404, 7 032)

Solution. The Euclidean algorithm proceeds as follows:

7 404 = 7 032(1) + 372 ⇒ gcd(7 404, 7 032) = gcd(7 032, 372) (1)

7 032 = 372(18) + 336 ⇒ gcd(7 032, 372) = gcd(372, 336) (2)

372 = 336(1) + 36 ⇒ gcd(372, 336) = gcd(336, 36) (3)

336 = 36(9) + 12 ⇒ gcd(336, 36) = gcd(36, 12) (4)

36 = 12(3) + 0 ⇒ gcd(36, 12) = gcd(12, 0) = 12.

The process ends and we conclude that gcd(7 404, 7 032) = 12.

2. Find a solution for each of the following LDEs, or explain why one does not exist.

(a) 204x + 99y = 3

Solution. Since gcd(204, 99) = 3 divides 3, a solution exists. To find it, we work
backwards through the Euclidean algorithm:

3 = 99− 6(16) by (2)

= 99− [204− 99(2)](16) by (1)
= 99(33) + 204(−16).

A solution to our LDE is 204(−16) + 99(33) = 3.

(b) 1 053x + 993y = 7

Solution. Since gcd(1 053, 993) = 3 does not divide 7, this LDE has no solution.

(c) 7 404x + 7 032y = 36

Solution. Since gcd(7 404, 7 032) = 12 divides 36, a solution exists. To find it,
we work backwards through the Euclidean algorithm:
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12 = 336− 36(9) by (4)

= 336− [372− 336(1)](9) by (3)
= 336(10)− 372(9)

= [7 032− 372(18)](10)− 372(9) by (2)
= 7 032(10)− 372(−189)

= 7 032(10)− [7 404− 7 032(1)](−189) by (1)
= 7 032(199) + 7 404(−189)

We arrive at the equation

7 404(−189) + 7 032(199) = 12.

To finish, we multiply both sides of this equation by 36/12 = 3 and obtain the
following solution to our LDE:

7 404(−567) + 7 032(597) = 36.

3. Can 10 000 be expressed as a sum of two integers, one of which is divisible by 126 and
the other divisible by 81? If so, find examples of such integers. If not, explain why.

Solution. We would like to know if there are integers x0 and y0 so that x0 is divisible
by 126, y0 is divisible by 81, and x0 + y0 = 10 000. Since x0 is divisible by 126, we can
write

x0 = 126x

for some integer x. Likewise, we can write

y0 = 81y

for some integer y. Replacing x0 and y0 in the equation x0 + y0 = 10 000, we have

126x + 81y = 10 000.

So, we are really looking for a solution to the above linear diophantine equation.

To see if a solution exists, we will see if gcd(126, 81) divides 10 000. To find this GCD,
we use the Euclidean algorithm:

126 = 81(1) + 45 ⇒ gcd(126, 81) = gcd(81, 45)

81 = 45(1) + 36 ⇒ gcd(81, 45) = gcd(45, 36)

45 = 36(1) + 9 ⇒ gcd(45, 36) = gcd(36, 9)

36 = 9(4) + 0 ⇒ gcd(36, 9) = gcd(9, 0) = 9.
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We end the Euclidean algorithm to find that gcd(126, 81) = 9.

Does 9 divide 10 000? No. Thus, there is no solution to the above LDE, and we con-
clude that no such integers x0 and y0 exist.

4. Can 10 000 be expressed as a sum of two integers, one of which is divisible by 614 and
the other divisible by 72? If so, find examples of such integers. If not, explain why.

Solution. We would like to know if there are integers x0 and y0 so that x0 is divisible
by 614, y0 is divisible by 72, and x0 + y0 = 10 000. Since x0 is divisible by 614, we can
write

x0 = 614x

for some integer x. Likewise, we can write

y0 = 72y

for some integer y. Replacing x0 and y0 in the equation x0 + y0 = 10 000, we have

614x + 72y = 10 000.

So, we are really looking for a solution to the above linear diophantine equation.

To see if a solution exists, we will see if gcd(614, 72) divides 10 000. To find this GCD,
we use the Euclidean algorithm:

614 = 72(8) + 38 ⇒ gcd(614, 72) = gcd(72, 38) (1)

72 = 38(1) + 34 ⇒ gcd(72, 38) = gcd(38, 34) (2)

38 = 34(1) + 4 ⇒ gcd(38, 34) = gcd(34, 4) (3)

34 = 4(8) + 2 ⇒ gcd(34, 4) = gcd(4, 2) (4)

4 = 2(2) + 0 ⇒ gcd(4, 2) = gcd(2, 0) = 2.

We end the Euclidean algorithm to find that gcd(614, 72) = 2.

Does 2 divide 10 000? Yes! Such numbers x0 and y0 do exist. To find them, we have
to work backwards through the Euclidean algorithm:
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2 = 34− 4(8) by (4)

= 34− [38− 34(1)](8) by (3)
= 34(9)− 38(8)

= [72− 38(1)](9)− 38(8) by (2)
= 72(9)− 38(17)

= 72(9)− [614− 72(8)](17) by (1)
= 614(−17) + 72(145)

This means that 614(−17)+72(145) = 2. To get 10 000 on the right-hand side, multiply
both sides of this equation by 10 000/2 = 5 000. We get

614(−85 000) + 72(725 000) = 10 000.

Note that 614(−85 000) is divisible by 614, and 72(725 000) is divisible by 72.

5. Find an integer n, which, when divided by 78 leaves a remainder of 37; and when
divided by 29 leaves a remainder of 17.

Solution. If n has a remainder of 37 when divided by 78, then by the division algorithm
we can write

n = 78x + 37 (1)

for some integer x. Likewise, the same n may be written as

n = 29y + 17 (2)

for some integer y. Since n is the same in both equations, it must be the case that
78x + 37 = 29y + 17. By rearranging the terms, we arrive at the LDE

78x + 29(−y) = −20.

If we can find a solution to this LDE, we can use equation (1) or (2) to obtain n. Our
first step is to find gcd(78, 29):

78 = 29(2) + 20 ⇒ gcd(78, 29) = gcd(29, 20) (3)

29 = 20(1) + 9 ⇒ gcd(29, 20) = gcd(20, 9) (4)

20 = 9(2) + 2 ⇒ gcd(20, 9) = gcd(9, 2) (5)

9 = 2(4) + 1 ⇒ gcd(9, 2) = gcd(2, 1) (6)

2 = 1(2) + 0 ⇒ gcd(2, 1) = gcd(1, 0) = 1.
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We end the Euclidean algorithm to find that gcd(78, 29) = 1. Since 1 divides −20,
a solution to this LDE exists. To find it, we have to work backwards through the
Euclidean algorithm:

1 = 9− 2(4) by (6)

= 9− [20− 9(2)](4) by (5)
= 9(9)− 20(4)

= [29− 20(1)](9)− 20(4) by (4)
= 29(9)− 20(13)

= 29(9)− [78− 29(2)](13) by (3)
= 78(−13) + 29(35).

This means that 78(−13) + 29(35) = 1. We get a solution to our LDE by multiplying
both sides of this equation by −20. The equation becomes

78(260) + 29(−700) = −20,

and hence our solution is (x,−y) = (260,−700) (i.e., x = 260, y = 700).

We may now use either equation (1) or equation (2) to get n. By plugging x = 260
into equation (1), we get n = 20 317.

6. (a) Use the Euclidean algorithm to find a solution to 25x+ 10y = 215, the LDE from
example (III).

Solution. When solving an LDE, our first step is always to find the GCD of the
coefficients using the Euclidean algorithm:

25 = 10(2) + 5 ⇒ gcd(25, 10) = gcd(10, 5)

10 = 5(2) + 0 ⇒ gcd(10, 5) = gcd(5, 0) = 5

We end the Euclidean algorithm to find that gcd(25, 10) = 5.

Does 5 divide 215? Yes! This means that a solution to our LDE exists. To find
it, we have to work backwards through the Euclidean algorithm.
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Since our algorithm ended so quickly, it is easy to see that 5 = 25 − 10(2). By
multiplying both sides of this equation by 215/5 = 43, we get

25(43) + 10(−86) = 215.

(b) Does your answer in part (a) make sense in the context of the problem? If not,
how can we find a solution that does make sense?

Solution. The answer does not make sense in the context of the problem. The
solution we obtained in (a) suggests that we should use 43 quarters and −86 dimes
to total $2.15. What we are really looking for is a solution to the LDE

25x + 10y = 215

where both x and y are non-negative integers.

One way to rectify this problem is the following: for every 5 dimes we are told to
subtract, we just add 2 fewer quarters (since 5 dimes and 2 quarters both total
50 cents). So by taking away 36 = 2(18) quarters, we can add 90 = 5(18) dimes.
This means that x = 43 − 36 = 7 and y = −86 + 90 = 4 is another solution to
the LDE

25x + 10y = 215.

That is, Becky can buy the coffee with 7 quarters and 4 dimes. We’ll talk more
about constraints like this in the second lesson.

Challenge Problems

7. (a) Use the division algorithm to show that gcd(k + 1, k) = 1 for any integer k.

Solution. Recall from the division algorithm that if a = bq + r, then gcd(a, b) =
gcd(b, r). How can we use this to solve our problem?

Well, we can write
(k + 1) = k(1) + 1.

Here k + 1 is playing the role of a, k is playing the role of b, and 1 is playing the
roles of q and r. Thus,

gcd(k + 1, k) = gcd(k, 1) = 1.

(b) Use part (a) and two application of the division algorithm (i.e., the Euclidean
algorithm) to show that

gcd(7k + 6, 6k + 1) = 1

for any integer k ≥ 1.
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Solution. We’re going to try an approach similar to that in part (a). First, let’s
use the division algorithm once to write

(7k + 6) = (6k + 5)(1) + (k + 1).

Here, 7k + 6 is playing the role of a, 6k + 5 is playing the role of b, 1 is playing
the role of q, and k is playing the role of r. We deduce from the statement of the
division algorithm that

gcd(7k + 6, 6k + 5) = gcd(6k + 5, k + 1).

Again, we’ll apply the division algorithm to our new pair to get

(6k + 5) = (k + 1)(5) + k.

Now the roles of a, b, q and r are played by 6k + 5, k + 1, 5, and k, respectively.
The statement of the division algorithm tells us that

gcd(6k + 5, k + 1) = gcd(k + 1, k),

which we know to be 1 from part (a).

Putting it all together, we get

gcd(7k + 6, 6k + 5) = gcd(6k + 5, k + 1) = gcd(k + 1, k) = 1.

8. (a) Let a and b be integers. For which integers c does ax + by = c have a solution?

Solution. Our theorem tells us that ax + by = c has a solution if and only if
gcd(a, b) divides c. Thus, c can be any multiple of gcd(a, b).

(b) Let a, b, and c be integers. For which integers d does ax + by + cz = d have a
solution?

Solution. This one may look daunting at first, but it’s really nothing new.

Let’s first consider at all possible integer combinations of the first two terms.
Which numbers can be written as ax + by for some integers x and y? These are
precisely the combinations from part (a)! Thus, the numbers that we can write
as ax + by are exactly the multiply of gcd(a, b).

This means that I can replace the term ax+by in my 3-variable LDE with multiples
of gcd(a, b). The equation now looks like

ax + by + cz = d −→ gcd(a, b)w + cz = d
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where w is a new variable replacing x and y.

For what values of d does the new equation gcd(a, b)w + cz = d have a solution?
Since this is now a 2-variable LDE, we can use part (a). Neat!

The LDE has a solution whenever d is a multiple of gcd(gcd(a, b), c).

(c) Find a solution to the 3-variable LDE 18x + 14y + 63z = 5.

Solution. How would one go about solving an LDE with 3-variables? As we saw
in part (b), the equation can be rewritten as

gcd(18, 14)w + 63z = 5.

This gives us a plan of attack: we’ll first solve this 2-variable LDE for w and z.
To get a solution for our original equation, we should then find x and y so that
18x+14y = gcd(18, 14)w. Thus, we have to solve 2 LDEs, each with 2 unknowns.

First, we must find gcd(18, 14) in order to rewrite our equation.

18 = 14(1) + 4 ⇒ gcd(18, 14) = gcd(14, 4)

14 = 4(3) + 2 ⇒ gcd(14, 4) = gcd(4, 2)

4 = 2(2) + 0 ⇒ gcd(4, 2) = gcd(2, 0) = 2

The Euclidean algorithm ends with gcd(18, 14) = 2.

Thus, we may rewrite the equation as

2x + 63z = 5.

To solve this equation, we again use the Euclidean algorithm to find gcd(63, 2):

63 = 2(31) + 1 ⇒ gcd(63, 2) = gcd(2, 1)

2 = 1(2) + 0 ⇒ gcd(2, 1) = gcd(1, 0) = 1.

Therefore gcd(63, 2) = 1, and by working backwards we have 2(−31) + 63(1) = 1.
Multiplying by 5, we obtain a solution to our transformed LDE:

2(−155) + 63(5) = 5.

Now we must express 2(−155) as 18x+14y for some integers x and y. We carried
out the Euclidean algorithm for this pair and found that gcd(18, 14) = 2. Working
backwards, we have

2 = 14− 4(3) = 14− [18− 14(1)](3) = 18(−3) + 14(4)
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Multiply both sides of this equation by −155 to get

18(465) + 14(−620) = 2(−155).

Whew! Putting this back into the equation 2(−155)+63(5) = 5, we find a solution
to our original LDE:

18(465) + 14(−620) + 63(5) = 5.
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