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(I) Mario has forgotten how to run, and instead can only
jump forward or backward. He can make long jumps 8
metres in length, or short jumps 3 metres in length. A
goomba (who has also forgotten how to run) stands 10
metres away.

Is there a sequence of jumps that will allow Mario to
land on the goomba?

(II) Squidward operates a shoe store in Bikini Bottom. He
can buy shoes from his supplier in bundles of 14 or 35,
and can sell them in the same quantities.

Is there a way to buy and sell bundles so that exactly
4 shoes remain at the end of the day?

(III) Becky needs $2.15 to buy an extra large coffee. She only
has quarters and dimes, and the cashier insists that she pay
with exact change.

Is there a combination of quarters and dimes that will total
$2.15?

1



1 Diophantine Equations

A Diophantine equation, named after Diophantus of
Alexandria (right), is a polynomial equation with integer
coefficients that is intended to be solved with integer solu-
tions. You may have never heard of Diophantine equations,
but I bet you’ve seen some examples.

The equation
x2 + y2 = z2

reminds us of the .
Positive integer solutions to this equation (e.g. x = 3,
y = 4, z = 5) correspond to right triangles with integer
side lengths. These solutions are called Pythagorean triples.
Can you think of any more?

Diophantus of Alexandria
3rd Centrury A.D.

The equations
xn + yn = zn (n ≥ 3)

are famous as well. In 1994, Andrew Wiles showed that these equations have no non-trivial
integer solutions! This provided an answer to a question dating back to 1637, which we know
today as .

2 Linear Diophantine Equations

As you can see, Diophantine equations can be pretty complicated! The equations we’ll be
studying are much simpler. A (two-variable) linear Diophantine equation (LDE) has
the form

ax + by = c

for some integers a, b, and c.

The three word problems we started with can be expressed as LDEs:

(I) Let x be the number of long jumps Mario makes.

Let y be the number of short jumps Mario makes.
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We are looking for a solution to the LDE 8x + 3y = 10 .

(II) Let x be the number of 14-shoe bundles exchanged.

Let y be the number of 35-shoe bundles exhanged.

We are looking for a solution to the LDE .

(III) Let x be .

Let y be .

We are looking for a solution the LDE .

As we saw above, some LDEs have solutions, and others do not. For example, can we tell if
the equation

3x + 6y = 2

has a solution? Notice that the numbers on the left side are divisible by 3. If we divide both
sides by 3, the equation becomes

x + 2y =
2

3
.

Uh oh... do you see a problem?

This LDE does not have a solution because

What went wrong here? The problem is that there’s an integer (in this case 3) that divides
both coefficients in our LDE, but does not divide the number of the right-hand side. In
general, we have the following result:
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Proposition (Necessary Condition for Solutions). If d is a number that divides both
a and b, but d does not divide c, then the LDE

ax + by = c

has no solutions.

Example. Let’s go back to problem (II). Does the LDE

14x + 35y = 4

have a solution? No: divides 14 and 35, but does not divide 4. Sorry Squidward!

If we’re going to discuss whether or not we can solve LDEs, it looks like we’ll need to talk
about common divisors.

3 GCDs and the Euclidean Algorithm

Definition. Suppose that a and b are integers.

(i) If c is an integer that divides both a and b, we call c a common divisor of a and b.

(ii) The biggest integer dividing both a and b is called the greatest common divisor of
a and b, denoted gcd(a, b).

Example. What is gcd(48, 32)? Let’s list the divisors:

Divisors of 48:

Divisors of 32:

The biggest one they have in common is , so gcd(48, 32) = .

Writing out all the divisors wasn’t too bad in this example, but what if I asked you to cal-
culate gcd(1 053, 993)? What about gcd(7 404, 7 032)? Our goal for this section is to find a
better way to calculate gcd(a, b). The first step is the division algorithm.
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The Division Algorithm. Let a and b be integers with b > 0. There are unique
integers q (the quotient) and r (the remainder) such that

a = bq + r and 0 ≤ r < b.

Furthermore, gcd(a, b) = gcd(b, r).

Example. Let’s try a few examples using the division algorithm.

(i) If a = 8 and b = 3, then 8 = 3( 2 ) + 2 .

(ii) If a = 46 and b = 10, then 46 = 10( ) + .

(iii) If a = 384 and b = 171, then 384 = 171( ) + .

The last line in the statement of the division algorithm says that gcd(a, b) = gcd(b, r). How
can this help us calculate gcd(a, b)?

Effectively, this allows us to replace a with r, and calculate gcd(b, r) instead. This is easier
to compute because the numbers are smaller.

Example. From previous question, we see that

(i) gcd(8, 3) = gcd( 3 , 2 ).

(ii) gcd(46, 10) = gcd( , ).

(iii) gcd(384, 171) = gcd( , ).

But why stop here? We can repeat the division algorithm on the pair (b, r) and get an even
easier gcd to calculate. This process is known as the Euclidean algorithm.
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The Euclidean Algorithm.

Step 1: Arrange a and b so that a ≥ b.

Step 2: Write a = bq + r where 0 ≤ r < b.

Step 3: If r = 0, then stop! We get gcd(a, b) = gcd(b, 0) = b.

Step 4: Replace (a, b) with (b, r) and return to Step 1.

Example. Let’s use the Euclidean algorithm to find the following GCDs.

(i) gcd(8, 3)

8 = 3(2) + 2 ⇒ gcd(8, 3) = gcd(3, 2) (1)

3 = 2(1) + 1 ⇒ gcd(3, 2) = gcd(2, 1) (2)

2 = 1(2) + 0 ⇒ gcd(2, 1) = gcd(1, 0) (3)

Here we can stop. Since the remainder in line (3) is 0, the Euclidean algorithm tells
us that gcd(8, 3) = gcd(1, 0) = 1.

(ii) gcd(46, 10)

46 = 10(4) + 6 ⇒ gcd(46, 10) = gcd(10, 6) (1)

⇒ (2)

⇒ (3)

⇒ (4)

Here we can stop. Since the remainder in line (4) is 0, the Euclidean algorithm tells
us that gcd(46, 10) = .
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(iii) gcd(384, 171)

One thing you may have noticed is that the GCD is the last non-zero remainder seen in
the Euclidean algorithm.

4 Solving LDEs with the Euclidean Algorithm

Notice that we didn’t have to keep track of our steps in the above examples, though it turns
out that this careful bookkeeping is a good idea.

Why? It’s because the Euclidean algorithm not only finds gcd(a, b), but by working back-
wards we can actually use it to solve LDEs!

Example. Find a solution for each of the following LDEs:

(i) 8x + 3y = 10

Solution. Recall the following steps from the Euclidean algorithm in the last example:

8 = 3(2) + 2 (1)

3 = 2(1) + 1. (2)

We found that gcd(8, 3) = 1. From (2), we get

1 = 3− 2 (1)
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Using (1), we can replace the underlined number with 8− 3(2):

1 = 3− [8− 3(2)](1)

= 3− [8− 3(2)]

= 8(−1) + 3(3).

Neat! The Euclidean algorithm gave us the equation

8(−1) + 3(3) = 1.

Now how can we get a solution to our LDE? Multiply by 10! A solution is

8(−10) + 3(30) = 10.

(ii) 46x + 10y = 2

Solution. Recall the following steps from the Euclidean algorithm in the last example:

46 = (1)

= (2)

= . (3)

We found that gcd(46, 10) = . From (3), we get

= .

Using (2), we can replace the underlined number with :

Using (1), we can replace the underlined number with :

We arrive at the solution 46( ) + 10( ) = 2.
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(iii) 384x + 171y = 24

Solution.

The following theorem summarizes what we have observed on solutions to LDEs:

Theorem. The LDE
ax + by = c

has a solution if and only if gcd(a, b) divides c.

Using the Euclidean algorithm and working backwards, we get an equation of
the form

ax0 + by0 = gcd(a, b).

The solution to the LDE can then be obtained by multiplying both sides of this

equation by
c

gcd(a, b)
. So we have ax + by = c where

x = x0 ·
c

gcd(a, b)
and y = y0 ·

c

gcd(a, b)
.
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