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Intermediate Math Circles

Wednesday, February 15, 2017

Problem Set 2

1. Write down the adjacency matrix for each of the following graphs.

v1 v2 v3

v4

(a) (b)
v2v1

v3

v4
v6

v5

Solution: If A1 denotes the adjacency matrix of the graph in (a) and A2 denotes the adjacency
matrix of the graph in (b), then

A1 =


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 1

 and A2 =


0 2 0 0 0 0
2 0 1 1 0 0
0 1 1 0 1 0
0 1 0 2 1 1
0 0 1 1 0 0
0 0 0 1 0 0

 .

2. Draw a graph corresponding to each of the following adjacency matrices.

A1 =

0 1 1
1 1 2
1 2 0

 , A2 =


1 2 0 0 1
2 0 1 1 0
0 1 1 0 1
0 1 0 2 1
1 0 1 1 0


Solution: Your graphs may look very different from what is given below, and that’s okay. The

orientation of the graph is not important. What is important is that the number of
edges between each pair of vertices is correct. The graph on the left has adjacency
matrix A1 and the graph on the right has adjacency matrix A2.

v1

v2

v3 v1

v2

v3
v4

v5
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3. Explain how to decide whether or not a graph is simple by looking at its adjacency matrix
alone. Decide which of the following adjacency matrices corresponds to a simple graph
without drawing the graph.

A1 =

0 1 0
1 0 2
0 2 0

 , A2 =


0 0 1 1
0 0 1 1
1 1 1 0
1 1 0 0

 , A3 =


0 1 1 0 1
1 0 1 1 1
1 1 0 0 1
0 1 0 0 1
1 1 1 1 0


Solution: A graph G is simple if it has no loops and no multiple edges. How are these properties

reflected in the adjacency matrix A?

(i) A loop is an edge from a vertex to itself, and hence the number of loops on vertex
vi is the (i, i)-entry of A. Thus, vertex vi has a loop precisely when Ai,i 6= 0.

(ii) The number of edges between vertices vi and vj is the (i, j)-entry of A. This
means that vi and vj have multiple edges between them exactly when Ai,j ≥ 2.

Putting these conditions together, we conclude that G is simple if, and only if Ai,i = 0
for all i (that is, the entries of A on the diagonal from the top left corner to the bottom
right corner are all 0) and Ai,j ≤ 1 for all i and j.

With this in mind, let’s look at the matrices A1, A2, and A3 above.

• A1 does not correspond to a simple graph as (A1)2,3 = 2. There are two edges
between vertices v2 and v3.

• A2 does not correspond to a simple graph as (A1)3,3 = 1. There is a loop on
vertex v3.

• Every entry of A3 is no more than 1 and all entries on the diagonal (from top
left to bottom right) are 0. This means there are no loops or multiple edges and
hence the graph determined by A3 is simple.

4. (a) Let G be a graph with vertices v1, v2, . . . , vn and adjacency matrix A.

(i) Define B to be the n× n matrix whose (i, j)-entry is given by

Bi,j = Ai,1A1,j + Ai,2A2,j + · · ·+ Ai,nAn,j.

Show that Bi,j is the number of walks of length 2 from vi to vj.

Hint: Remember that Ai,k is the number of edges from vi to vk. With this in
mind, how can we interpret each product Ai,kAk,j?

Solution: As stated in the hint, Ai,k is the number of edges between vi and vk, and likewise
Ak,j is the number of edges between vk and vj. Thus, we can think of Ai,k as
the number of ways to move from vi to vk in one step, and Ak,j as the number
of ways to move from vk to vj in one step. Their product Ai,kAk,j is then the
number of ways to move from vi to vk in one step, and then move from vk to vj
in a second step. This is exactly the number of walks of length 2 from vi to vj
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that pass through vk.

From this we see that

Bi,j = Ai,1A1,j + Ai,2A2,j + · · ·+ Ai,nAn,j

is the sum of these products over all possible choices of k. That is, Bi,j counts
the number of ways to move from vi to vj in 2 steps with arbitrary intermediate
vertex. This is exactly the number of walks of length 2 from vi to vj.

(ii) With B as above, define C to be the n× n matrix whose (i, j)-entry is given by

Ci,j = Bi,1A1,j + Bi,2A2,j + · · ·+ Bi,nAn,j.

Show that Ci,j is the number of walks of length 3 from vi to vj.

Solution: The expression defining Ci,j looks suspiciously similar to that defining Bi,j. With this
in mind, we will try to argue as we did in part (i). Note that Bi,k is the number of
ways to get from vi to vk in two steps, while Ak,j is the number of ways to get from
vk to vj in 1 step. Thus, their product Bi,kAk,j is the number of ways to move in 2
steps from vi to vk and then in a third step from vk to vj.

Again we observe that

Ci,j = Bi,1A1,j + Bi,2A2,j + · · ·+ Bi,nAn,j

is the sum of such products over all possible choices of k, and hence it counts the
number of ways to move from vi to vj in 3 steps with arbitrary intermediate vertices.
This is exactly the number of walks of length 3 from vi to vj.

(b) A graph G and its corresponding adjacency matrix A are given below. Use the results
of part (a) to compute the number of walks of length 2 from v1 to v6.

v1

v2

v3

v4

v5

v6 A =


2 2 1 1 1 1
2 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 2
1 0 0 0 0 1
1 1 1 2 1 1



Solution: From part (i) of problem (a) we know that the number of paths of length 2 from
vertex v1 to vertex v6 is given by

B1,6 = A1,1A1,6 + A1,2A2,6 + A1,3A3,6 + A1,4A4,6 + A1,5A5,6 + A1,6A6,6.
3
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The entries A1,k are found in the first row of A, and the entries Ak,6 are found in
the sixth column of A. Using these values in the above expression expression, we
calculate

B1,6 = (2× 1) + (2× 1) + (1× 1) + (1× 2) + (1× 1) + (1× 1)

= 2 + 2 + 1 + 2 + 1 + 1

= 9.

Thus, there are 9 walks of length 2 from v1 to v6.

5. Let G be a graph. If G is not connected, show that there is some way to order the vertices
of G so that its adjacency matrix has the form

A =



A1,1 A1,2 · · · A1,m 0 0 · · · 0
A2,1 A2,2 · · · A2,m 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

Am,1 Am,2 · · · Am,m 0 0 · · · 0
0 0 · · · 0 Am+1,m+1 Am+1,m+2 · · · Am+1,n

0 0 · · · 0 Am+2,m+1 Am+2,m+2 · · · Am+2,n
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 An,m+1 An,m+2 · · · An,n


n×n

for some integer m with 1 ≤ m < n. Explain why this is never possible when G is con-
nected.

Solution: If G is not connected, then there are two vertices a and b in G that are not connected
by a path. Let a = v1, b = vn, and let v2, v3, . . . , vm be the vertices in G that are
connected to v1 by a path. Order the remaining vertices as vm+1, vm+2, . . . , vn−1 ar-
bitrarily.

We claim that under this ordering, the adjacency matrix A has the above form. To
show that this is the case, we need only show that the entries Ai,m+j are 0 when
i = 1, 2, . . . ,m and j = 1, 2, . . . , n−m (these are the entries in the upper right block
of the big matrix above). 1

Suppose that Ai,m+j is non-zero for some i and j. This means that there is an
edge between vi and vm+j. Since there is a path from v1 to vi and an edge from vi
to vm+j, we can add this edge to the path to obtain a new path from v1 to vm+j.
But, by construction, the vertices that can be connected to v1 by a path are exactly
v1, v2, . . . , vm. Since vm+j is not one of these vertices, we’ve reached a contradiction.
It must then be the case that Ai,m+j = 0 for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n−m.

1Why don’t we need to worry about the lower left block? Entries in this block correspond to edges from vm+j

to vi where i and j are as above. But of course, these are the same as edges between vi and vm+j (i.e., entries
in the upper right block). That said, if we can show the entries in the upper block are zero, so too must be the
entries in the lower one.
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Conversely, if G is connected then no ordering of the vertices will produce an adja-
cency matrix of this form. Indeed, a matrix of this form suggests that none of the
first m vertices in this ordering (call them v1, v2, . . . , vm) can be connected by an edge
to any of the remaining n−m vertices (say vm+1, vm+2, . . . , vn). This means that, in
particular, no path can be made between v1 and vn, thereby violating the assumption
of connectedness

6. For each sequence d below, use the Havel-Hakimi algorithm to draw a simple graph with
degree sequence d or show that such a graph does not exist.

(a) d = (3, 3, 3, 2, 1)

Solution: The sequences we obtain from the Havel-Hakimi algorithm are

(3, 3, 3, 2, 1)
reduce−−−→ (2, 2, 1, 1)

reduce−−−→ (1, 0, 1)
reorder−−−−→ (1, 1, 0)

reduce−−−→ (0, 0).

This shows that such a simple graph exists. To begin the backtracking process, start
with the null graph on 2 vertices.

Since the previous step was “reduce”, we add a vertex on the left, and connect it to
the next vertex on its right to get a simple graph with degree sequence (1, 1, 0). As
in the notes, new vertices will temporarily be coloured white.

The previous step was “reorder”, so instead of adding an edge we will rearrange the
graph to get a new graph with degree sequence (1, 0, 1).

The previous step was “reduce”, so a new vertex will be added on the left and edges
will connect it to the 2 vertices on its immediate right.

Finally, to obtain a simple graph with degree sequence (3, 3, 3, 2, 1) we perform the
action for a “reduce” step and add a vertex on the left. Connect this vertex to the 3
vertices on its immediate right.
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(b) d = (4, 4, 4, 2, 2)

Solution: The sequences we obtain from the Havel-Hakimi algorithm are

(4, 4, 4, 2, 2)
reduce−−−→ (3, 3, 1, 1)

reduce−−−→ (2, 0, 0)
reduce−−−→ (−1,−1).

Since the final sequence contains negative entries, the algorithm stops and we con-
clude that no such simple graph exists.

(c) d = (5, 4, 3, 2, 2, 2, 2, 2)

Solution: The sequences we obtain from the Havel-Hakimi algorithm are

(5, 4, 3, 2, 2, 2, 2, 2)
reduce−−−→ (3, 2, 1, 1, 1, 2, 2)

reorder−−−−→ (3, 2, 2, 2, 1, 1, 1)

reduce−−−→ (1, 1, 1, 1, 1, 1)
reduce−−−→ (0, 1, 1, 1, 1)

reorder−−−−→ (1, 1, 1, 1, 0)

reduce−−−→ (0, 1, 1, 0)
reorder−−−−→ (1, 1, 0, 0)

reduce−−−→ (0, 0, 0).

Below are the graphs for each step of the backtracking process.
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7. Explain why the backtracking process following the Havel-Hakimi algorithm always pro-
duces a simple graph.

Solution: We only execute the backtracking process when the Havel-Hakimi algorithm gives
us a positive answer. A positive answer occurs if and only if the input sequence is
reduced to a sequence with every entry equal to 0. Here is where the backtracking
process begins.

We start with the null graph on some number of vertices, which is clearly a simple
graph. The previous step must have been “reduce” and so a vertex is added on the
left and an edge is added to each vertex on its right until it has the correct degree.
Notice that we did not add any edges from the new vertex to itself (i.e., no loops) and
vertices on the right received at most one new edge from the new vertex. This shows
that there are no loops or multiple edges in the new graph, and hence it is simple.

In general, if we are are some stage of the backtracking process and currently have
a simple graph, then neither action we take (determined by whether the previous
step was “reduce” or “reorder”) will affect the simplicity of the graph. Indeed, if the
previous step was “reduce” and a new vertex was added, then the argument above
ensures that the resulting graph is simple. If instead the previous step was “reorder”,
then all that occurs is a shuffle of the vertices. Since no edges were changed, the
graph must still be simple.

This proves that at every stage of the backtracking process the graph in question is
simple. In particular, the final graph produced will be a simple graph.
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