
WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

Intermediate Math Circles

Wednesday, February 15, 2017

Graph Theory II

1 Adjacency Matrices

Up to now we have explored two different ways to present a graph:

(i) in terms of vertex and edge sets, and

(ii) pictorially.

Explicitly writing down every vertex and edge of a graph is a bit exhausting, and so option (ii)
has almost always been preferable. Unfortunately, computers process graphs more easily when
they are presented in the form of option (i). Today we will discuss a third option that is easy
for computers to handle, yet presents far more compactly than the data in (i). This approach
makes use of a mathematical object known as a matrix.

1.1 What is a Matrix?

A matrix A is a rectangular grid of numbers or symbols. It is said to be of size m × n (read
“m by n”) when it consists of m rows and n columns, where m and n are positive integers. For
example, we would say that the matrix

A =

[
4 0 −1
2 π 6

]
is of size 2 × 3. The entry in row i and column j of the matrix is often referred to as the
(i, j)-entry and is denoted Ai,j. In the above example, the (1, 1)-entry is 4, the (1, 3)-entry is
−1, and the (2, 1)-entry is 2. What is the (2, 3)-entry?

1.2 Representing Graphs by Matrices

Let’s think about what information was required to describe a graph. We needed to know the
number of vertices, but the labels assigned to the vertices were arbitrary. Similarly, we needed
to know the number of edges between any two vertices, but the names of those edges were
unimportant. As far as we’re concerned, the graphs in Figure 1 below are the same.

v1 v4

v2

v3

cat dog

pig

horse

e1

e2

e3
e5 e6

e4

A

B

C
E

D

F

Figure 1: Different labels on the same graph.
1



WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

What we’re saying is the following:

To define a graph, we need only specify the number of vertices
and the number of edges between any two vertices.

This information can be stored in a matrix!
Let’s suppose we have a graph G with vertices v1, v2, . . . , vn. In order to represent G by a matrix,
we create a row and a column for each vertex. Thus, a graph with n vertices will be represented
by an n×n matrix. What will the entries of this matrix be? In row i and column j, we record the
number of edges between vertex vi and vertex vj. This matrix is called the adjacency matrix
for the graph G.

1.2.1 From Graph to Matrix

Let’s construct the adjacency matrix A for the graph G in Figure 1. We will stick to the names
given to the graph on the left.
The size of the matrix is determined by the number of vertices; since G has 4 vertices, A will be
a 4× 4 matrix. Now for the entries.

- The (1, 1)-entry A1,1 is the number of edges from v1 to itself, and hence A1,1 = 0.

- The (1, 2)-entry A1,2 is the number of edges from v1 to v2, and hence A1,2 = 1.

- The (1, 3)-entry A1,3 is the number of edges from v1 to v3, and hence A1,3 = 0.

- The (1, 4)-entry A1,4 is the number of edges from v1 to v4, and hence A1,4 = 2.

This tells us that the entries in the first row of A are 0, 1, 0, 2. We can repeat this same process
to obtain the entries of rows 2, 3 and 4. For instance, the first entry A2,1 of row 2 is 1 since there
is exactly one edge from v2 to v1. The resulting matrix is

A =


0 1 0 2
1 0 1 0
0 1 0 1
2 0 1 1

 .
1.2.2 From Matrix to Graph

Executing the above process in reverse allows us to construct a graph from a given adjacency
matrix. Consider the matrix

A =

2 1 0
1 0 2
0 2 1

 .
If this is the adjacency matrix of a graph G, what does G look like? Well, we know G has
3 vertices since A is a 3 × 3 matrix. Let’s call the vertices v1, v2, and v3. According to the
(1, 1)-entry of A, vertex v1 has 2 loops, and the (1, 2)-entry indicates an edge between v1 and
v2. Since the (1, 3)-entry is 0, it must be that no edges connect v1 and v3.
What about v2? The (2, 1)-entry tells us that one edge connects v1 to v2, though this was already
accounted for. We also know that v2 has no loops as the (2, 2)-entry is 0, and there are two

2



WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

edges from v2 to v3. We can carry out this analysis on v3 to find that the only new edge is a
single loop. The graph is drawn below.

v1 v2 v3

1.3 Summary

• A matrix A is a rectangular grid of numbers. It is size m× n when there are m rows and
n columns. Then entry in row i and column j is denoted Ai,j and is called the (i, j)-entry
of A.

• To every graph G we can associate a matrix A, called the adjacency matrix for G. This
matrix contains information that allows us to recover the graph.

• If G is a graph with vertices v1, v2, . . . , vn, it’s adjacency matrix A is of size n × n. The
(i, j)-entry of A is the number of edges between vi and vj.

3



WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

2 The Havel-Hakimi Algorithm

Let’s start with a new definition. If G is a graph with vertices v1, v2, . . . , vn, we define the
degree sequence of G to be the list deg(v1), deg(v2), . . . , deg(vn). This list is usually ordered
from largest to smallest.
For example, the graph

has degree sequence (4, 2, 2, 1, 1, 0) when ordered from largest to smallest. This graph is simple
(no loops or multiple edges) and so this example shows that there exists a simple graph with
degree sequence (4, 2, 2, 1, 1, 0).
Switching gears, we will attempt answer the following question: If d = (d1, d2, . . . , dn) is a
sequence of non-negative integers ordered from largest to smallest, does there exist a simple
graph G with degree sequence d? It’s not too hard to see that the answer can sometimes be
“no”. For example, there is no simple graph with degree sequence (10, 10, 10) since any vertex
in G can have degree at most 2. To see a slightly less obvious example, note that there is no
simple graph with degree sequence (2, 2, 1) (why?).
It turns out that there is an easy test we can apply to answer the question posed above. An algo-
rithm by Havel and Hakimi from 1955 does exactly this: given d = (d1, d2, . . . , dn) the algorithm
either produces a simple graph with degree sequence d, or tells us that such a graph does not exist.

The Havel-Hakimi Algorithm.

Input: A sequence of integers d = (d1, d2, . . . , dn) ordered from largest to smallest.

Output: A simple graph G with degree sequence d, or a proof that such a graph does not
exist.

(1) If di ≥ n or di < 0 for some i, then stop. No such graph exists.

(2) If di = 0 for all i, then stop. The graph exists.

(3) If we don’t stop at step (1) or step (2), replace d by a new degree sequence by

(i) removing the first element d1,

(ii) subtracting 1 from each of the next d1 elements, and

(iii) reordering from largest to smallest.

(4) Run the algorithm again on the new sequence.

4



WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

2.1 Examples and the Backtracking Process

Let’s test our algorithm with the sequence d = (3, 3, 2, 2, 1, 1).

• In the first iteration we remove the first “3” and decrease each of the next 3 terms by 1.
The new sequence is (2, 1, 1, 1, 1).

• In the second iteration we remove the first “2” and decrease each of the next 2 terms by
1. The new sequence is (0, 0, 1, 1). We reorder from largest to smallest and continue with
the sequence (1, 1, 0, 0)

• In the third iteration we remove the first “1” and decrease the next 1 term by 1. The new
sequence is (0, 0, 0).

• In the fourth iteration we are stopped at step (2). Since all entries of our sequence is 0,
such a simple graph exists!

Now that we know the graph exists, how to we obtain it? Let’s look at the steps we took along
the way:

(3, 3, 2, 2, 1, 1)
reduce−−−→ (2, 1, 1, 1, 1)

reduce−−−→ (0, 0, 1, 1)
reorder−−−−→ (1, 1, 0, 0)

reduce−−−→ (0, 0, 0).

The idea is to move in reverse: find a graph with degree sequence (0, 0, 0), then backtrack to find
a graph with degree sequence (1, 1, 0, 0), then backtrack to find a graph with degree sequence
(0, 0, 1, 1), etc. Eventually we arrive at a graph with degree sequence (3, 3, 2, 2, 1, 1). How does
the backtracking work?

• If the previous step was “reduce”: add a new vertex on the left and connect it to
each vertex on its right until its degree is correct.

• If the previous step was “reorder”: reorder your current graph to match the new
sequence.

Let’s try this procedure on our example. Start with a graph that has degree sequence (0, 0, 0):

We would now like a graph with degree sequence (1, 1, 0, 0). Since the previous step was “reduce”,
add a vertex on the left and connect it to the first vertex on its right. To see the difference, the
new vertex has been temporarily coloured white.

Now to obtain a graph with degree sequence (0, 0, 1, 1). The previous step was “reorder”, so
instead of adding a vertex we will simply reorder our current graph.

5



WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

To obtain a graph with degree sequence (2, 1, 1, 1, 1), we note that the previous step was “reduce”
and so we add a vertex on the left (the white one) and connect it to the two vertices on its
immediate right.

On to the final step! We want a simple graph with degree sequence (3, 3, 2, 2, 1, 1). Since the
previous step was “reduce”, let’s add a vertex on the left and connect it to the next 3 vertices
on its right. This concludes the first example.

For a second exmaple, let’s try the algorithm on the sequence (4, 4, 3, 1, 1, 1, 0). After 1 iteration
we arrive at the sequence (3, 2, 0, 0, 1, 0) and reorder to get (3, 2, 1, 0, 0, 0). Repeat the algorithm
to obtain sequence (1, 0,−1, 0, 0). We reorder the sequence as (1, 0, 0, 0,−1) and run the algo-
rithm a final time. Since there is a negative entry, we stop at step (1) and conclude that no such
graph exists.

As an exercise, try running the algorithm on the sequence (4, 3, 3, 3, 1). You should conclude
that there is a simple graph with this degree sequence. By running the algorithm in reverse, see
if you can construct a graph that looks something like this:

6


