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Intermediate Math Circles

Wednesday, February 8, 2017

Problem Set 1

1. (a) Draw a graph whose vertices and edges are given by

V = {v1, v2, v3, v4, v5, v6}

E = {e1, e2, e3, e4, e5, e6}

e1 = {v1, v2}
e2 = {v1, v3}
e3 = {v2, v3}
e4 = {v2, v2}
e5 = {v3, v4}
e6 = {v5, v6}

(b) Draw a simple graph G with 4 vertices and 6 edges. Find a way to draw this graph
so that no two edges cross.

(c) Draw a simple connected graph with 6 vertices and 7 edges such that the removal of
one of the edges disconnects the graph.

Solution: (a) Place vertices v1, v2, . . . , v6 in any orientation and then connect edges according to
the list above. Your graph may look something like this:

v1
v2

v3
v4

v5 v6

e1

e2 e3

e4

e5

e6

(b) Here are two possible examples. There are probably many more interesting ways
these can be drawn. The example on the right has the nice feature that all edges are
straight lines.

1



WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING

(c) The bow tie and fish are two possible examples. Notice that the removal of the edge
e in either graph will lead to a disconnection.

e
e

2. In the following graph G, find an example of a path of length 4, and an example of a walk
of length 3 that is not a path. List the degree for each vertex in G. Is G connected?

v1

v2

v3 v4

v5

v6
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e7

e4

Solution: An example of a path in G of length 4 is

(v5, e7, v6, e5, v4, e4, v3, e3, v2),

and an example of a walk of length 3 that is not a path is

(v2, e2, v3, e3, v2, e6, v4).

The degree sequence for G is

deg(v5) = 1, deg(v1) = deg(v6) = 2, deg(v2) = deg(v3) = deg(v4) = 3.

It is easy to see that G is not connected, as there is no path from v1 to v2 (or from v1 to
any of the other vertices of G, for that matter).

3. Determine the number of edges in each of the following graphs:

(a) Nn

(b) Cn with n ≥ 3

(c) Wn with n ≥ 4

(d) Sn

(e) Kn

(f) Km,n with m,n ≥ 1

(g) A k-regular graph on n vertices.
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Solution: (a) The null graph Nn has no edges at all!

(b) In the cycle graph Cn, every vertex is connected to the one immediately before it
and immediately after it, so deg(vi) = 2 for each i = 1, 2, . . . , n. By the handshaking
theorem, we have that

2m = deg(v1) + deg(v2) + · · ·+ deg(vn) = 2 + 2 + · · ·+ 2︸ ︷︷ ︸
n times

= 2n

where m is the number of edges in Cn. Dividing by 2, we see that m = n, so Cn has
n edges.

(c) The wheel graph Wn looks a lot like the cycle graph, but with every vertex connected
to one additional vertex in the middle. That said, Wn has n − 1 edges (by applying
part (b) to the n − 1 outer vertices) plus an additional edge for each outer vertex.
This means Wn has

(n− 1) + (n− 1) = 2n− 2

edges.

(d) One could use the handshaking theorem to argue as in part (b). Alternatively, we
mentioned in the notes that the star graph Sn looks like the wheel graph Wn with
the outer edges removed. Thus, there are n − 1 edges to be removed, as they form
the cycle graph Cn−1 on the outer n− 1 vertices. Since Wn has 2n− 2 edges (by (c)),
it must be the case that Sn has

(2n− 2)− (n− 1) = n− 1

edges.

(e) Every vertex in Kn is connected to every other vertex. This means that each of the
n vertices has n− 1 edges. By the handshaking theorem,

2m = deg(v1) + deg(v2) + · · ·+ deg(vn)

= (n− 1) + (n− 1) + · · ·+ (n− 1)︸ ︷︷ ︸
n times

= n(n− 1)

where m is the number of edges in Kn. Hence, m = n(n−1)
2

edges.

(f) In Kn,m, each of the n vertices in the first vertex set is connected to every vertex in
the second vertex set, so each has degree m. Likewise, each of the m vertices in the
second set has degree n. We again use the handshaking theorem to see that

2p = (sum of degrees in first vertex set) + (sum of degrees in second vertex set)

= nm + mn

= 2mn

where p is the number of edges in Kn,m. Thus, Kn,m has p = mn edges.
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(g) If G is k-regular, then by definition deg(v) = k for all vertices v. Thus, the sum of the
degrees of all n vertices in G is nk. The handshaking theorem tells us this is exactly
twice the number of edges, and hence the number of edges in G is nk/2.

Remark. An efficient approach to the above problem would be to start with parts (f) and
(g). Once these are solved, we can tackle (a),(b),(d), and (e) by noting that

• Nn is a 0-regular graph,

• Cn is a 2-regular graph,

• Sn = K1,n is a complete bipartite graph, and

• Kn is an (n− 1)-regular graph.

4. For each graph Nn, Cn, Wn, and Sn, determine the values of n for which the graph is
bipartite.

Solution: The null graph Nn is bipartite for any n. If there are no edges, we can divide the vertices
into two groups in any way we wish. Note that one or both of these groups will be empty
if n ≤ 1.

The cycle graph is bipartite precisely when n is even. To see this, label the vertices
v1, v2, . . . , vn so that vj is connected to vj+1 for all j, and vn connects back to v1. If n is
even, we may place the vertices with even index into the first group, and place the vertices
with odd index into the second group to arrive at a bipartition. This method won’t be so
fruitful when n is odd. Draw a few examples to see why.

The wheel graph Wn will never be bipartite. Indeed, if it were, then we could find a
bipartition and we may assume that the central vertex belongs to the first group. Since
it connects to every other vertex, each of the other vertices has to belong to the second
group. Uh oh... some of the non-central vertices are joined to each other. This will ruin
our shot at a bipartite graph.

Finally, we examine the star graph Sn. This graph is always bipartite. To see this, simply
let the centre vertex be in a group by itself, and let all other vertices make up the second
group. Since the only edges of Sn are from the centre vertices to the non-centre ones, we
have made a valid bipartition.

5. Given a positive integer k, explain how one would construct a 3-regular graph on 2k
vertices. Draw such a graph when k = 4.

Solution: Label the vertices v1, v2, . . . , v2k. Start by considering the cycle graph C2k on these vertices.
Here every vertex has degree 2. To bump each degree up to three, simply match each vertex
to the one opposite it. That is, insert edges between v1 and vk+1, v2 and vk+2, v3 and vk+3,
etc. Finish by inserting an edge between vk and v2k to arrive at a 3-regular graph. Below
is an example when k = 4 :
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6. Why must every graph have an even number of vertices of odd degree?

Solution: Suppose that the number of vertices of odd degree is itself odd. If these vertices are labelled
v1, v2, . . . , vk, and the remaining (even degree) vertices are labelled vk+1, vk+2, . . . , vn, then
the handshaking theorem tells us that

2m = (deg(v1) + deg(v2) + · · ·+ deg(vk)) + (deg(vk+1) + deg(vk+2) + · · ·+ deg(vn))

This means that

deg(v1) + deg(v2) + · · ·+ deg(vk) = 2m− (deg(vk+1) + deg(vk+2) + · · ·+ deg(vn)).

Do you see the problem? The sum on the left is odd, because it is a sum of an odd number
of odd integers. However, the sum on the right is even, as it is a sum/difference of even
numbers. But the left and right sides must be equal, so this is a contradiction. It must
therefore be the case that the number of vertices of odd degree is even.

7. Construct a simple graph on n ≥ 2 vertices such that no two vertices have the same degree
or argue that such a graph cannot exist. What if the graph is not simple?

Solution: Such a graph does not exists. To see this, let G be a simple graph on n vertices where
n ≥ 2. To reach a contradiction, suppose that no two vertices have the same degree. What
are the possible degrees for the vertices of G? Since the graph is simple, any given vertex
must have one of the following degrees: 0, 1, 2, . . . , n− 1.

Notice that since there are n possibilities listed above and G has n vertices, the only way
for every vertex to have distinct degree is if there is exactly one vertex for each of the
above choices. That is, one vertex of G must have degree 0, one must have degree 1, one
must have degree 2, etc. In particular, there is a vertex of G with degree n− 1, and hence
this vertex must be connected to every other vertex. But we said that some vertex of G
has degree 0, meaning it is connected to no vertices at all! This is a contradiction and
therefore there must be at least two vertices of the same degree.

8. Let G be a simple graph on n ≥ 2 vertices. Suppose that for every pair of distinct vertices
u, v in G, we have

deg(u) + deg(v) ≥ n− 1.

Show that G must be connected.
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Solution: If n = 2 then G is simply two vertices connected by an edge, which is obviously a connected
graph. On this note we may assume that n ≥ 3 and let u and v be two distinct vertices in G.
If they are connected to each other, that’s great! Otherwise, the fact that deg(u)+deg(v) =
n− 1 means that there are n− 1 vertices that are connected to u or to v, and hence one of
the remaining n− 2 vertices of G, say w, must be connected to both u and v. This proves
that there is a path from u to w and from w to v, and therefore u and v are connected by
a path. Since these vertices were arbitrary, any two vertices of G are connected by a path
and we deduce that G is connected.
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