

Intermediate Math Circles Wednesday, February 8, 2017 Problem Set 1

(a) Draw a graph whose vertices and edges are given by

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$e_1 = \{v_1, v_2\}$$

$$e_2 = \{v_1, v_3\}$$

$$e_3 = \{v_2, v_3\}$$

$$e_4 = \{v_2, v_2\}$$

$$e_5 = \{v_3, v_4\}$$

$$e_6 = \{v_5, v_6\}$$

- (b) Draw a simple graph G with 4 vertices and 6 edges. Find a way to draw this graph so that no two edges cross.
- (c) Draw a simple, connected graph with 6 vertices and 7 edges such that the removal of one of the edges disconnects the graph.
- 2. In the following graph G, find an example of a path of length 4, and an example of a walk of length 3 that is not a path. List the degree for each vertex in G. Is G connected?

- **3.** Determine the number of edges in each of the following graphs:
 - (a) N_n
 - (b) C_n with $n \geq 3$
 - (c) W_n with $n \geq 4$
 - (d) S_n
 - (e) K_n
 - (f) $K_{m,n}$ with $m, n \geq 1$
 - (g) A k-regular graph on n vertices.

- **4.** For each graph N_n , C_n , W_n , and S_n , determine the values of n for which the graph is bipartite.
- **5.** Given a positive integer k, explain how one would construct a 3-regular graph on 2kvertices. Draw such a graph when k = 4.
- **6.** Why must every graph have an even number of vertices of odd degree?
- 7. Construct a simple graph on $n \geq 2$ vertices such that no two vertices have the same degree or argue that such a graph cannot exist. What if the graph is not simple?
- 8. Let G be a simple graph on $n \geq 2$ vertices. Suppose that for every pair of distinct vertices u, v in G, we have

$$\deg(u) + \deg(v) \ge n - 1.$$

Show that G must be connected.