$\oint 3.2$ - Volumes by Disks / Washers

Integrals don't just tell us about areas, we can also use them for calculating volumes of $3 D$ Solids!

The solids well consider in MATH 138 are called Solids of revolution, and are obtained by revolving a 2D region about an axis:

There are two ways to find the volume of such a solid.

1. The Disk / Washer Method

Start by slicing the solid into thin disks.

Each disk has width Δx. If $A(x)$ denotes the area of the disk at each point x, then the volume of a typical disk is $A(x) \Delta x$. Adding these volumes:

$$
\text { Volume of the Solid }=\int_{a}^{b} A(x) d x
$$

Ex: Consider the region between the x-axis and $y=\frac{x}{2}$ from $x=0$ to $x=3$. Find the volume of the solid obtained by rotating this region about the x-axis.

Solution: Start with a sketch showing the region and
a typical disk. The area of a disk is

$$
A(x)=\pi \cdot \text { radius }^{2}=\pi \cdot\left(\frac{x}{2}\right)^{2}
$$

hence

$$
\begin{aligned}
\text { Volume }=\int_{0}^{3} A(x) d x & =\int_{0}^{3} \pi\left(\frac{x}{2}\right)^{2} d x \\
& =\frac{\pi}{4} \int_{0}^{3} x^{2} d x \\
& =\frac{\pi}{4}\left[\frac{x^{3}}{3}\right]_{0}^{3}=\frac{9 \pi}{4}
\end{aligned}
$$

Example [Gabriel's Horn]:

Let R denote the region between $y=\frac{1}{x}$ and the x-axis for $x \in[1, \infty)$. Find the volume of the solid obtained by rotating R about the x-axis. This solid is known as Gabriel's Horn.

$$
\begin{aligned}
& \text { (} A(x)=\pi(\text { radius })^{2}=\frac{\pi}{x^{2}} \\
& \begin{aligned}
\text { Volume }=\int_{1}^{\infty} A(x) d x & =\int_{1}^{\infty} \frac{\pi}{x^{2}} d x \\
& =\lim _{t \rightarrow \infty}\left[\frac{-\pi}{x^{2}}\right]_{1}^{t} \\
& =\lim _{t \rightarrow \infty}\left[-\frac{\pi}{t^{2}}+\frac{\pi}{1^{2}}\right]=\pi
\end{aligned}
\end{aligned}
$$

Note: The (lengthwise) cross -sectional area of the horn is

$$
2 \int_{1}^{\infty} \frac{1}{x} d x=\infty \quad \text { (divergent). }
$$

surprising that the horn encloses a finite volume!]

Ex: Find the volume of a sphere of radius r.

Solution: A sphere can be obtained by rotating the
 top half of the circle $x^{2}+y^{2}=r^{2}$ about the x-axis!

$$
\begin{aligned}
\text { Volume } & =\int_{-r}^{r} A(x) d x \\
& =\int_{-r}^{r} \pi \cdot \text { radius }^{2} d x \\
& =\int_{-r}^{r} \pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x \\
& =\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x \\
& =\left[\pi r^{2} x-\frac{\pi x^{3}}{3}\right]_{-r}^{r} \\
& =\left(\pi r^{3}-\frac{\pi r^{3}}{3}\right)-\left(-\pi r^{3}+\frac{\pi r^{3}}{3}\right)=\frac{4 \pi r^{3}}{3}
\end{aligned}
$$

Ex: Set up the integral that gives the volume of the solid obtained by rotating each region about the given axis.
(a) Region: bounded between $y=x^{2}$ and $y=\sqrt{x}$

Axis: $\quad x$-axis.

Solution: Start with a sketch!

This time our cross-section
init a disk... it's a washer!

In this case,

$$
\text { Area }=A(x)=\pi \cdot(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}
$$

Outer radius $=\sqrt{x}$

Inner radius $=x^{2}$

Bounds: $0 \leq x \leq 1$

$$
\begin{aligned}
\therefore \text { Volume }=\int_{0}^{1} A(x) d x & =\int_{0}^{1}\left[\pi\left(r_{\text {out }}\right)^{2}-\pi\left(r_{\text {in }}\right)^{2}\right] d x \\
& =\int_{0}^{1}\left[\pi(\sqrt{x})^{2}-\pi\left(x^{2}\right)^{2}\right] d x
\end{aligned}
$$

(b) Region: bounded between $y=2 x$ and $y=\frac{x^{2}}{2}$

Axis: x-axis.

Solution: Sketch!

Outer radius : $2 x$

Inner radius: $\frac{x^{2}}{2}$

Bounds?

$$
\begin{aligned}
\frac{x^{2}}{2}=2 x \Rightarrow x^{2}=4 x & \Rightarrow x(x-4)=0 \Rightarrow x=0 \text { or } x=4 . \\
\therefore \text { Volume }=\int_{0}^{4} A(x) d x & =\int_{0}^{4}\left[\pi\left(r_{\text {out }}\right)^{2}-\pi\left(r_{\text {in }}\right)^{2}\right] d x \\
& =\int_{0}^{4}\left[\pi(2 x)^{2}-\pi\left(\frac{x^{2}}{2}\right)^{2}\right] d x
\end{aligned}
$$

(c) Region: bounded between $y=2 x$ and $y=\frac{x^{2}}{2}$

Axis: $y=-1$

Solution:

Outer radius $=1+2 x$
Inner radius $=1+\frac{x^{2}}{2}$

Bounds: $0 \leq x \leq 4$
(same as before)

$$
\therefore \text { Volume }=\int_{0}^{4} A(x) d x=\int_{0}^{4}\left[\pi(1+2 x)^{2}-\pi\left(1+\frac{x^{2}}{2}\right)^{2}\right] d x
$$

(d) Region: bounded between $y=2 x$ and $y=\frac{x^{2}}{2}$

Axis: $y=9$
Solution:

Outer radius: $9-\frac{x^{2}}{2}$
Inner radius: $9-2 x$

Bounds: $0 \leq x \leq 4$.

$$
\therefore \text { Volume }=\int_{0}^{4} A(x) d x=\int_{0}^{4}\left[\pi\left(9-\frac{x^{2}}{2}\right)^{2}-\pi(9-2 x)^{2}\right] d x
$$

(e) Region: bounded between $y=2 x$ and $y=\frac{x^{2}}{2}$

Axis: y-axis

Solution: We have a washer at each $y \in[0,8]$, so well be integrating with respect to y.

$$
\therefore \text { Volume }=\int_{0}^{8} A(y) d y=\int_{0}^{8}\left[\pi(\sqrt{2 y})^{2}-\pi\left(\frac{y}{2}\right)^{2}\right] d y
$$

Summary for disks / washers

Revolving around horizontal axis? Use functions of x.

Revolving around vertical axis? Use functions of $\frac{y}{v}$.

