Integrals don't just tell us about areas, we can also use them for calculating volumes of 3D Solids! The Solids we'll consider in MATH 138 are called <u>solids of revolution</u>, and are obtained by revolving a 2D region about an axis:

a solid.

Start by slicing the solid into thin disks.

Each disk has width Δx . If A(x) denotes the area of the disk at each point X, then the volume of a typical disk is $A(x)\Delta x$. Adding these volumes:

Volume of the Solid =
$$\int_{a}^{b} A(x) dx$$

<u>Ex</u>: Consider the region between the x-axis and $y = \frac{x}{2}$ from x=0 to x=3. Find the volume of the solid obtained by rotating this region about the x-axis. <u>Solution</u>: Start with a sketch showing the region and

Volume =
$$\int_{0}^{3} A(x) dx = \int_{0}^{3} \pi \left(\frac{x}{2}\right)^{2} dx$$

= $\frac{\pi}{4} \int_{0}^{3} \chi^{2} dx$
= $\frac{\pi}{4} \left(\frac{\chi^{3}}{3}\right)^{3} = \frac{9\pi}{4}$

Example [Gabriel's Horn]:

Let R denote the region between $y = \frac{1}{x}$ and the x-axis for $x \in [1, \infty)$. Find the volume of the solid obtained by rotating R about the X-axis. This solid is Known as <u>Gabriel's Horn</u>.

[Note: The (lengthwise) cross-sectional area of the horn is

<u>Ex:</u> Set up the integral that gives the volume of the solid obtained by rotating each region about the given axis.

(a) Region: bounded between
$$y = x^2$$
 and $y = \sqrt{x}$
Axis: x-axis.

Solution: Start with a sketch!

This time our cross - section isn't a disk... it's a washer!

In this case,

Area =
$$A(x) = \pi \cdot (outer radius)^2 - \pi (inner radius)^2$$

Outer radius = $\sqrt{\times}$

<u>Bounds:</u> $0 \le X \le 1$

$$\therefore \text{ Volume } = \int_{0}^{1} A(x) \, dx = \int_{0}^{1} \left[\pi \left(\tau_{out} \right)^{2} - \pi \left(r_{in} \right)^{2} \right] dx$$
$$= \int_{0}^{1} \left[\pi \left(\sqrt{x} \right)^{2} - \pi \left(x^{2} \right)^{2} \right] dx$$

(b) <u>Region</u>: bounded between y = 2x and $y = \frac{x^2}{2}$ <u>Axis</u>: x-axis.

$$\frac{Bounds?}{\frac{x^{2}}{a}} = \partial x \implies x^{2} = 4x \implies x(x-4) = 0 \implies x=0 \text{ or } x=4.$$

$$\therefore \text{ Volume} = \int_{0}^{4} A(x) dx = \int_{0}^{4} \left[\pi(r_{out})^{2} - \pi(r_{in})^{2}\right] dx$$

$$= \int_{0}^{4} \left[\pi(2x)^{2} - \pi(\frac{x^{2}}{2})^{2}\right] dx$$
(c) Region: bounded between $y = 2x$ and $y = \frac{x^{2}}{2}$

$$\frac{A \times is}{y} = -1$$

Solution: $y = \frac{x^2}{2}$ y = 2x x = 4-1

Outer radius = 1 + 2xInner radius = $1 + \frac{x^2}{2}$

$$\therefore \text{ Volume } = \int_{0}^{4} A(x) dx = \int_{0}^{4} \left[\pi \left(1 + 2x \right)^{2} - \pi \left(1 + \frac{x^{2}}{2} \right)^{2} \right] dx$$

(d) Region: bounded between
$$y = 2x$$
 and $y = \frac{x^2}{2}$
Axis: $y = 9$
Solution:
Outer radius: $9 - \frac{x^2}{2}$
Inner radius: $9 - 2x$
Bounds: $0 \le x \le 4$.
 \therefore Volume = $\int_{0}^{4} A(x) dx = \int_{0}^{4} \left[\pi \left(9 - \frac{x^2}{2} \right)^2 - \pi \left(9 - 2x \right)^2 \right] dx$

(e) <u>Region</u>: bounded between y=2x and $y=\frac{x^2}{2}$

<u>Axis:</u> y-axis

<u>Solution</u>: We have a washer at each ye[0,8], so we'll be integrating with respect to y.

Summary for disks/Washers		
Revolving	around	horizontal axis? Use functions of <u>X.</u>
Revolving	around	vertical axis? Use functions of y.