§6.7,6.8 - Taylor and Maclaurin Series
Previously we learned a variety of tricks for manipulating the power series representation for a function $f$ (up to now, either $\frac{1}{1-x}$ or $e^{x}$ ) to obtain a power series representation for a related function.

In this section, well learn more about which functions actually have representations as power series and, if such a representation does exist, Well determine a formula for its coefficients!

Suppose that $f$ has a power series representation, centred at $x=a$, say

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots
$$

for all $x$ with $|x-a|<R, R>0$ Radius of convergence!

Note that at $x=a$ :

$$
f(a)=a_{0}+0+0+\cdots \Rightarrow a_{0}=f(a)
$$

Differentiating $f$ and its power series, we have

$$
f^{\prime}(x)=a_{1}+2 a_{2}(x-a)+3 a_{3}(x-a)^{2}+\cdots
$$

and so at $X=a$ :

$$
f^{\prime}(a)=a_{1}+0+0+\cdots \Rightarrow a_{1}=f^{\prime}(a)
$$

Differentiating again, we have

$$
f^{\prime \prime}(x)=a_{2}+3 \cdot 2 \cdot(x-a)+4 \cdot 3 \cdot(x-a)^{2}+\cdots
$$

and hence at $x=a$ :

$$
f^{\prime \prime}(a)=2 a_{2}+0+0+\cdots \Rightarrow a_{2}=\frac{f^{\prime \prime}(a)}{2}
$$

If we were to repeat this, we would find that

$$
a_{3}=\frac{f^{\prime \prime \prime}(a)}{3!}
$$

In general, we obtain

$$
a_{n}=\frac{f^{(n)}(a)}{n!} \text { for all } n \text {. }
$$

We have just proven the following theorem!

Theorem: If $f$ has a power series representation centred at $a$, say $f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ for $|x-a|<R$ where $R>0$, then $a_{n}=\frac{f^{(n)}(a)}{n!}$.

That is,

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Definition: The series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ is called the
Taylor series for $f$ centred at $x=a$. In the special case that $a=0$, we call $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ the Maclaurin series for $f$.

Remark: This theorem tells us that the coefficients in a power series representation for $f$ aren't random they encode information about the derivatives of $f$ !

Ex: What is the Taylor series for $f(x)=e^{-x^{2}}$ centred at $x=0$ (i.e., the Maclaurin series for $f$ )?

Solution: Rather than directly calculating $f^{(n)}(0)$, let's Use manipulations!

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \Rightarrow e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}
$$

By the previous theorem, this power series representation is the Maclaurin series for $f$ !

Follow up: What is $f^{(20)}(0)$ for $f(x)=e^{-x^{2}}$ ?

Solution: In the Maclaurin series, the coefficient of
$x^{20}$ is $\frac{f^{(20)}(0)}{20!}$. We showed that the Maclaurin
series for $f(x)=e^{-x^{2}}$ is $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!}$, and we see that $X^{20}$ is obtained when $2 n=20$ or $n=10$. Hence, setting $n=10$, the coefficient of $x^{20}$ is

$$
\begin{aligned}
\frac{(-1)^{10}}{10!}=\frac{1}{10!} & \Rightarrow \frac{1}{10!}=\frac{f^{(20)}(0)}{20!} \\
& \Rightarrow f^{(20)}(0)=\frac{20!}{10!}
\end{aligned}
$$

Remark: The previous theorem assumes that $f$ can be represented as a power series, but is this always
possible? No! Here's an example!

Ex: Consider the function

$$
f(x)= \begin{cases}1 / e & \text { if } x<-1 \\ e^{x} & \text { if }-1 \leq x \leq 1 \\ e & \text { if } x>1\end{cases}
$$



If this function did have a power series representation
at 0 , it would have to be its Maclaurin series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

But near $x=0$, we have $f^{(n)}(x)=e^{x}$ for all $n$, hence the Maclaurin series for $f$ is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} & =\sum_{n=0}^{\infty} \frac{e^{0}}{n!} x^{n} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x} \text { for all } x .
\end{aligned}
$$

So, even though the Maclaurin series for $f$ converges for all $x \in(-\infty, \infty)$, it only represents $f$ for $x \in[-1,1]$.

This begs the question:

Which functions are equal to their Taylor series for all $x$ in the interval of convergence?

Since the partial sums of the Taylor series
$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ are exactly the Taylor polynomials $T_{n, a}(x)$, we are really asking:

For which functions $f$ is it true that

$$
f(x)=\lim _{n \rightarrow \infty} T_{n, a}(x) ?
$$

Since $f(x)=T_{n, a}(x)+R_{n, a}(x)$, we are really asking:

For which functions $f$ is it true that

$$
\lim _{n \rightarrow \infty} R_{n, a}(x)=0 ?
$$

The following theorem provides the answer!
Theorem [Convergence of Taylor Series]:
Suppose $f$ has derivatives of all orders on an interval I containing $x=a$. If there exists a constant $M \in \mathbb{R}$ with
$\left|f^{(n)}(x)\right| \leq M$ for all $n \in \mathbb{N}$ and all $x \in I$, then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \quad \text { for all } x \in I .
$$

Proof: Let $x \in I$. Since $\left|f^{(n)}(x)\right| \leq M$ for all $n$, by Taylor's Inequality,

$$
0 \leq\left|R_{n, a}(x)\right| \leq \frac{M|x-a|^{n+1}}{(n+1)!}
$$

As $n \rightarrow \infty$, we have $\lim _{n \rightarrow \infty} \frac{M|x-a|^{n+1}}{(n+1)!}=0$.
[Why? Well... we have seen that $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all $x$, hence $\sum_{n=0}^{\infty} \frac{(x-a)^{n}}{n!}$ converges for all $x$. Thus, by the Divergence Test, $\lim _{n \rightarrow \infty} \frac{(x-a)^{n}}{n!}=0$. ] By the squeeze theorem, $\lim _{n \rightarrow \infty} R_{n, a}(x)=0$, hence $f(x)$ is equal to its Taylor series on I, as desired.

Corollary: $\sin x$ and $\cos x$ are equal to their Taylor series for all $x \in(-\infty, \infty)$.

Proof: $\sin x$ and $\cos x$ are infinitely differentiable on $(-\infty, \infty)$ with all derivatives $( \pm \sin x$ and $\pm \cos x)$ always bounded by $M=1$.

Ex: Find the Taylor series for $f(x)=\cos x$ centred at $x=0$ (i.e., the Maclaurin series!)

Solution: Let's compute some derivatives!

$$
\begin{array}{rl}
f(x)=\cos x & f(0)=1 \\
f^{\prime}(x)=-\sin x & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=-\cos x \quad \Rightarrow & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x)=\sin x & f^{\prime \prime \prime}(0)=0 \\
f^{(4)}(x)=\cos x & f^{(4)}(0)=1 \\
\vdots & \vdots
\end{array} \quad \text { (now it repeats!) }
$$

So the Maclaurin series is

$$
\cos x=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

or, in sigma form:

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

Ex: Find the Maclaurin series for $f(x)=\sin x$.

Solution: We could compute $f^{(n)}(0)$ as we did with $\cos x$, but alternatively, we can integrate cos x and its

Maclaurin series:

$$
\begin{aligned}
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
\Rightarrow \int \cos x d x & =\int\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\right) d x \\
\Rightarrow \sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+C
\end{aligned}
$$

When $x=0$, we get $\sin (0)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \sigma^{2 n+1}}{(2 n+1)!}+C$, hence $C=\sin 0=0$. Thus,

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$



The Taylor polynomials for $\sin x$ are becoming better and better approximations to $\sin x$, even far from $x=0$ ! With infinitely many terms, $\sin x$ is equal to its Taylor Series everywhere!

Takeaway: The following functions are equal to their Maclaurin series on the given interval:

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \quad x \in(-1,1) \\
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad x \in(-\infty, \infty) \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \quad x \in(-\infty, \infty) \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \quad x \in(-\infty, \infty)
\end{aligned}
$$

We can manipulate these series to obtain Taylor
Maclaurin series for a variety of other functions.

Ex: Find the Taylor series for $f(x)=e^{x}$ centred at $x=3$.

Solution: Two options.
(1) Use the definition of the Taylor series.

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{\infty}\left[\frac{f^{(n)}(3)}{n!}(x-3)^{n}=\sum_{n=0}^{\infty} \frac{e^{3}}{n!}(x-3)^{n}\right. \\
f^{(n)}(x)=e^{x} \text { for all } n, \\
\text { so } f^{(n)}(3)=e^{3} \text { for all } n .
\end{gathered}
$$

(2) Use manipulations of known series.

$$
\begin{aligned}
e^{x}=e^{(x-3)+3} & =e^{3} e^{x-3} \quad \text { Replace } x \text { with } x-3 \\
& =e^{3} \sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!} \text { in the Maclaurin } \quad \text { Series for } e^{x} . \\
& =\sum_{n=0}^{\infty} \frac{e^{3}}{n!}(x-3)^{n}
\end{aligned}
$$

Ex: Find the Taylor series for $\sin x$ centred at $x=\frac{\pi}{2}$.
Solution: We have

$$
\begin{aligned}
\sin x & =\sin \left(\left(x-\frac{\pi}{2}\right)+\frac{\pi}{2}\right) \\
& =\sin \left(x-\frac{\pi}{2}\right) \underbrace{\cos \frac{\pi}{2}}_{=0}+\cos \left(x-\frac{\pi}{2}\right) \underbrace{\sin \frac{\pi}{2}}_{=1}
\end{aligned}
$$

$$
\begin{aligned}
& =\cos \left(x-\frac{\pi}{2}\right) \quad \begin{array}{l}
\text { Replace } x \text { with } x-\frac{\pi}{2} \text { in the } \\
\text { Maclaurin series for cos } x
\end{array} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x-\frac{\pi}{2}\right)^{2 n}}{(2 n)!}
\end{aligned}
$$

Ex: Find the Maclaurin series for $g(x)=x^{7} \cos \left(x^{3}\right)$.
Solution: Calculating derivatives of $g(x)$ would be awful, so we will not use the definition of the

Maclaurin series. Instead,

$$
\begin{gathered}
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
\Rightarrow \cos \left(x^{3}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{3}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!} \\
\Rightarrow x^{7} \cos \left(x^{3}\right)=x^{7} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+7}}{(2 n)!}
\end{gathered}
$$

Ex: What is the value of

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\cdots ?
$$

Solution:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right|_{x=-1}=\left.e^{x}\right|_{x=-1}=e^{-1}
$$

Ex: What is the value of $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{9^{n}(2 n)!}$ ?

Solution:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{9^{n}(2 n)!} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(\pi / 3)^{2 n}}{(2 n)!} \\
& =\left.\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}\right|_{x=\frac{\pi}{3}} \\
& =\cos (\pi / 3) \\
& =1 / 2
\end{aligned}
$$

