Test	Statement	Notes	Examples
Geometric Series Test	If $a, r \in \mathbb{R}$ with $a \neq 0$ then the geometric series $\sum_{n=0}^{\infty} a r^{n}=\left\{\begin{array}{cl} \frac{a}{1-r} & \text { if }\|r\|<1 \\ \text { divergent } & \text { if }\|r\| \geq 1 \end{array}\right.$	- The $N^{t h}$ partial sum is given by $S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r}$	$\begin{aligned} & \sum_{n=0}^{\infty} \frac{(-3)^{n}}{4^{n}} \\ & \sum_{n=1}^{\infty} \frac{2^{2 n}}{5^{n+1}} \end{aligned}$
Divergence Test	If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ DNE, then $\sum_{n=1}^{\infty} a_{n}$ diverges.	- Often a good test to start with. - If $\lim _{n \rightarrow \infty} a_{n}=0$, no conclusions can be made. (e.g., $\sum \frac{1}{n}$ diverges and $\sum \frac{1}{n^{2}}$ converges.)	$\begin{aligned} & \sum_{n=1}^{\infty} \frac{n-1}{3 n-1} \\ & \sum_{n=1}^{\infty} \cos \left(\frac{1}{n}\right) \end{aligned}$
Integral Test	Suppose $f(x)$ is continuous, positive, and decreasing on $[1, \infty)$. (i) If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum_{n=1}^{\infty} f(n)$ converges. (ii) If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty} f(n)$ diverges.	- Useful when $\int_{1}^{\infty} f(x) d x$ is easy to calculate. - When convergent, we have the remainder estimate $\int_{N+1}^{\infty} f(x) d x \leq R_{N} \leq \int_{N}^{\infty} f(x) d x$ where $R_{N}=S-S_{N}$ and S is the sum of the series.	$\begin{gathered} \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}} \\ \sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}} \end{gathered}$
p-Series Test	The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges when $p>1$ and diverges when $p \leq 1$.	- Often used with comparison tests.	$\begin{gathered} \sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}} \\ \sum_{n=1}^{\infty} \frac{1}{n} \end{gathered}$
Comparison Test	Suppose that $0 \leq a_{n} \leq b_{n}$ for all n sufficiently large. (i) If $\sum b_{n}$ converges, then $\sum a_{n}$ converges. (ii) If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.	- No conclusions if $\sum b_{n}$ diverges or $\sum a_{n}$ converges.	$\begin{gathered} \sum_{n=1}^{\infty} \frac{n+2}{(n+1)^{3}} \\ \sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{n^{3}+n+3}} \end{gathered}$

Test	Statement	Notes	Examples
Limit Comparison Test	Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms, and let $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ (i) If L exists and $0<L<\infty$, then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge. (ii) If $L=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges. (iii) If $L=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.	- Usually works well with fractions involving polynomials, roots, or exponentials. - When applying this test to $\sum a_{n}$, we usually define b_{n} using only the most dominant parts of a_{n}.	$\begin{aligned} & \sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt[3]{5+n^{7}}} \\ & \sum_{n=1}^{\infty} \frac{2^{n}+3^{n}}{4^{n}+5^{n}} \end{aligned}$
Alternating Series Test	Consider the series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots$ where $b_{n}>0$ for all n. If (i) $\left\{b_{n}\right\}$ is a decreasing sequence, and (ii) $\lim _{n \rightarrow \infty} b_{n}=0$, then $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ converges.	- When convergent, we have the remainder estimate $\left\|S-S_{N}\right\| \leq b_{N+1}$ where S is the sum of the series.	$\begin{aligned} & \sum_{n=0}^{\infty}(-1)^{n} \frac{\sqrt{n}}{2 n+3} \\ & \sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{\pi}{n}\right) \\ & \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{n!}} \end{aligned}$
Ratio Test	Suppose that $L=\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|$ exists or is equal to ∞. (i) If $L<1$, then $\sum a_{n}$ converges absolutely. (ii) If $L>1$, then $\sum a_{n}$ diverges. (iii) If $L=1$, the test is inconclusive.	- Useful when the terms of the series involve factorials.	$\begin{gathered} \sum_{n=1}^{\infty} \frac{10^{n}}{n \cdot 4^{2 n+1}} \\ \sum_{n=1}^{\infty} \frac{(2 n)!}{n!2^{n}} \\ \sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)}{3^{n}} \end{gathered}$
Root Test	Suppose that $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}$ exists or is equal to ∞. (i) If $L<1$, then $\sum a_{n}$ converges absolutely. (ii) If $L>1$, then $\sum a_{n}$ diverges. (iii) If $L=1$, the test is inconclusive.	- Useful when terms of the series involve $n^{\text {th }}$ powers.	$\begin{gathered} \sum_{n=1}^{\infty}\left(\tan ^{-1} n\right)^{n} \\ \sum_{n=1}^{\infty} \frac{n^{n}}{n^{3} e^{n}} \\ \sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{2 n} \end{gathered}$

