§1.2 - The Definite Integral

 $\frac{Goal}{Calculate} \text{ the area}$ under the graph of y = f(x)and above the x-axis from x = a to x = b.

<u>Idea:</u> Divide the region into rectangles and add their areas to approximate A.

Definition: A partition P for the interval
$$[a, b]$$
 is a
finite sequence of increasing numbers of the form
 $a = t_0 < t_1 < t_2 < \dots < t_{n-1} < t_n = b$
The partition divides $[a, b]$ into n subintervals

$$[t_0,t_1]$$
, $[t_0,t_1]$, ..., $[t_{n-2}, t_{n-1}]$, $[t_{n-1},t_n]$,
which may not all have the same length.

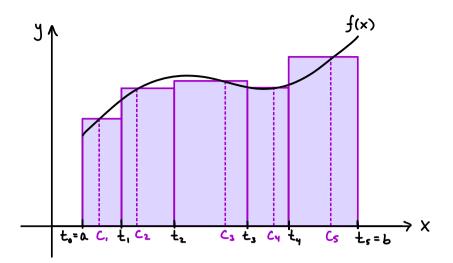
We define

$$\Delta t_i = \text{length of } [t_{i-1}, t_i] = t_i - t_{i-1}$$

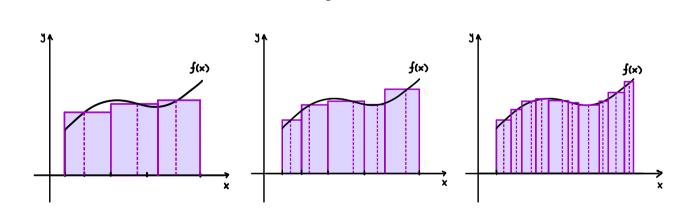
and refer to the length of the widest subinterval as the <u>norm</u> of the partition:

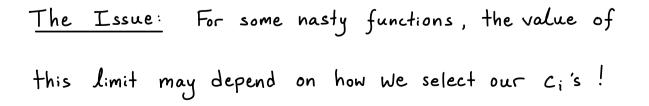
$$\|P\| = \max \{ \Delta t_1, \Delta t_2, \dots, \Delta t_n \}$$

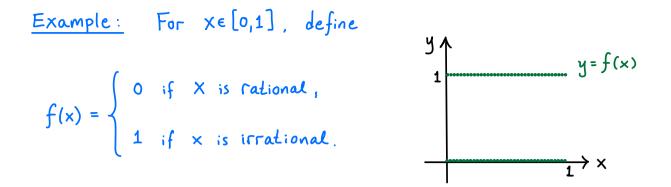
Definition: Given a bounded function
$$f$$
 on $[a,b]$, a
partition P of $[a,b]$, and a set of points $\{C_1, C_2, ..., C_n\}$
with $C_i \in [t_{i-1}, t_i]$, then a Riemann sum for f with
respect to P is
 $S = f(c_i) \triangle t_i + f(c_2) \triangle t_2 + \dots + f(c_n) \triangle t_n = \sum_{i=1}^n f(c_i) \triangle t_i$
Rectangle areas



<u>Idea:</u> To make the approximation exact, consider a sequence of partitions $\{P_n\}$ with $\|P_n\| \longrightarrow 0$ and Compute $\lim_{n \to \infty} S_n$, where $\{S_n\}$ is a sequence of Riemann sums corresponding to the P_n 's







If we consider a sequence of Riemann sums where all Ci are rational, then $\sum_{i=1}^{n} f(c_i) \Delta t_i = 0$, hence $\lim_{n \to \infty} S_n = 0$.

But if instead all ci's were irrational we would have

$$\sum_{i=1}^{r} f(c_i) \Delta t_i = \sum_{i=1}^{r} \Delta t_i = 1 \quad (\text{the length of } [0,1])$$

hence $\lim_{n \to \infty} S_n = 1$ (different!).

Such functions don't have a well-defined area.

Let's instead focus on the nicer functions that do!

<u>Definition</u>: We say that f is <u>integrable</u> if there exists a unique number IER such that, if whenever $\{P_n\}$

is a sequence of partitions with
$$\lim_{n \to \infty} ||P_n|| = 0$$
 and
 $\{S_n\}$ is any sequence of Riemann sums associated to
the P_n 's, we have
 $\lim_{n \to \infty} S_n = I$.
In this case we call I the definite integral of f over
 $[a, b]$ and denote it
Bounds of $\int_{a}^{b} f(t) dt$
integration $\int_{a}^{b} f(t) dt$
Integrand

value of the integral:
$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f(x) dx = \int_{a}^{b} f(z) dz$$

So ... what types of functions are integrable?

Theorem (Integrability of Continuous Functions): If
$$f$$
 is continuous on $[a,b]$, then f is integrable on $[a,b]$.

Note: The theorem also holds for functions with only finitely many discontinuities.

Thus, to compute $\int_{a}^{b} f(t)dt$ when f is continuous, we can use any sequence of partitions with $||P_{n}|| \rightarrow 0$ and any associated sequence of Riemann sums (since all will produce the same result). Let's pick some simple ones!

The regular n partition of
$$[a,b]$$
:
All subintervals have equal width $\Delta t = \frac{b-a}{n}$.
In this case, $t_i = a + i \Delta t$

The right endpoint Riemann sum:

$$S_{n} = \sum_{i=1}^{n} f(t_{i}) \Delta t = \sum_{i=1}^{n} f(a_{i} \Delta t) \Delta t$$

$$C_{i} = t_{i}, \text{ the right}$$
endpoint of $[t_{i-1}, t_{i}]$

$$y \uparrow$$

$$f(a_{i} \Delta t) \Delta t$$

Thus, if f is continuous and we use the regular n

partitions and right endpoint Riemann sums, we get

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} \sum_{i=1}^{n} f(a+i\Delta t) \Delta t, \quad \Delta t = \frac{b-a}{n}$$

Ex: Calculate
$$\int_{0}^{2} (4x^{3}-x) dx$$
. Note that $\sum_{i=1}^{n} i = \frac{n(n+i)}{2}$

and
$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
.

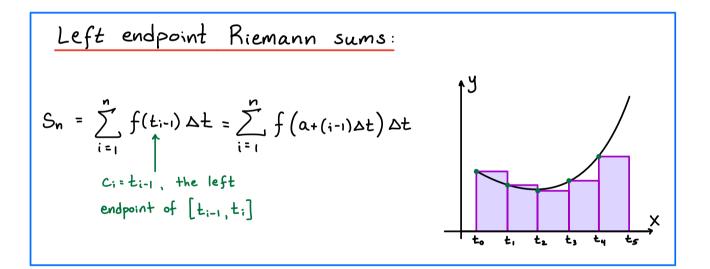
Solution: With $f(x) = 4x^3 - x$, we have $\int_{0}^{2} (4x^{3} - x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(0 + i \Delta x) \Delta x$ $= \lim_{n \to \infty} \sum_{i=1}^{n} f(\frac{2i}{n}) \cdot \frac{2}{n}$ $= \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \left[4\left(\frac{2i}{n}\right)^{3} - \left(\frac{2i}{n}\right)\right]$ $= \lim_{n \to \infty} \frac{2}{n} \sum_{i=1}^{n} \left[\frac{32i^{3}}{n^{3}} - \frac{2i}{n}\right]$

$$= \lim_{n \to \infty} \left[\frac{64}{n^4} \sum_{i=1}^{n} i^3 - \frac{4}{n^2} \sum_{i=1}^{n} i \right]$$

$$= \lim_{n \to \infty} \left[\frac{64}{n^4} \cdot \frac{n^2(n+1)^2}{4} - \frac{4}{n^2} \cdot \frac{n'(n+1)}{2} \right]$$

$$= \lim_{n \to \infty} \left[\frac{16(n^2 + 2n + 1)}{n^2} - \frac{2(n+1)}{n} \right] = 14$$

Alternatively, we could have used...



in which case we could compute the integral as

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} \sum_{i=1}^{n} f(a + (i-1)\Delta t) \Delta t, \quad \Delta t = \frac{b-a}{n}$$

Exercise: Estimate $\int_{0}^{1} X^{2} dx$ with n=3 left endpoint rectangles from a regular partition of [0,1]. Solution: $\Delta x = \frac{b-a}{n} = \frac{1-0}{3} = \frac{1}{3}$, hence the Riemann sum is $\sum_{i=1}^{3} f(0+(i-1)\Delta x)\Delta x = \sum_{i=1}^{3} (\frac{i-1}{3})^{2} \cdot \frac{1}{3}$ $= 0^{2} \cdot \frac{1}{3} + (\frac{1}{3})^{2} \cdot \frac{1}{3} + (\frac{2}{3})^{2} \cdot \frac{1}{3}$ $= \frac{5}{27}$

Exercise: Calculate
$$\int_{0}^{1} x^{2} dx$$
 exactly, given that

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+i)(2n+i)}{6}$$

Solution: We have
$$\Delta X = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$$
. Using

right endpoint Riemann sums, we have

$$\int_{0}^{1} x^{2} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(0 + i \Delta x) \Delta x$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(\frac{i}{n}) \cdot \frac{1}{n}$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{2}$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2}$$

$$= \lim_{n \to \infty} \frac{1}{n^{3}} \cdot \frac{p'(n+1)(2n+1)}{6}$$

$$= \lim_{n \to \infty} \frac{2n^{2} + 3n + 1}{6n^{2}} = \frac{2}{6} = \frac{1}{3}$$

The result will be the same if we use left endpoints

$$\int_{0}^{1} \chi^{2} d\chi = \lim_{n \to \infty} \sum_{i=1}^{n} f(0+(i-i)\Delta \chi) \Delta \chi$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} (\frac{i-i}{n})^{2} \cdot \frac{1}{n} \quad (\text{try if } !)$$

but using right endpoints is often a bit simpler.