§6.2 - Representing Functions as Power Series

<u>Recall</u>: A power series is a function whose domain is its interval of convergence. Sometimes we can recognize it as a more familiar function!

EX: From geometric series, we know that

 $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = |+x+x^2+\dots \text{ for } |x| \le 1 \quad (i.e., I=(-1,1), R=1)$

Theorem (Abel): If
$$f(x) = \sum_{n=0}^{\infty} C_n (x-a)^n$$
 with interval of convergence I, then f is continuous on I.

If we know a power series representation for a function, we have some tricks for obtaining power series representations for related functions. Indeed, suppose $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$ and $g(x) = \sum_{n=0}^{\infty} b_n(x-a)^n$ with radii of convergence R_f and R_g and intervals of convergence If and Ig, respectively.

1. Addition / Subtraction

$$f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n) (x-a)^n.$$

If $R_{f} * R_{g}$, then the new series has radius of convergence $R = \min\{R_{f}, R_{g}\}$ and interval of convergence $I = I_{f} \cap I_{g}$. If $R_{s} = R_{g}$, then $R \ge R_{f}$. $(e.g., f(x) = g(x) = \sum_{n=0}^{\infty} x^{n}$ have radii $R_{f} = R_{g} = 1$, but $f(x) - g(x) = \sum_{n=0}^{\infty} 0 \cdot x^{n} = 0$ has radius $R = \infty$.)

2. Multiplication

For K=1,2,3,...,

$$(x-a)^{\kappa}f(x) = \sum_{n=0}^{\infty} C_n (x-a)^{n+\kappa}$$

and the new series has the same radius of convergence, R_f and interval of convergence T_f

3. Composition

If
$$a=0$$
 (so $f(x) = \sum_{n=0}^{\infty} a_n X^n$), then for CER and $K=1,2,3,...$

$$f(cX^{\kappa}) = \sum_{n=0}^{\infty} a_n C^{\kappa} X^{n\kappa}$$

We can also replace X with X-b to change to obtain

a power series for f(x-b) centred at x=b:

$$f(x-b) = \sum_{n=0}^{\infty} a_n (x-b)^n$$

Compositions can change the radius and interval of

convergence, as we will see in our examples.

Ex: Find a power series representation centred
at x = 0 for
$$f(x) = \frac{1}{3-x}$$

Solution: We know that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for $|x| < 1$,
 $\Rightarrow \frac{1}{3-x} = \frac{1}{3} \left(\frac{1}{1-\frac{x}{3}} \right) = \frac{1}{3} \sum_{\substack{n=0 \ x \neq x = 0}}^{\infty} \left(\frac{x}{3} \right)^n = \sum_{\substack{n=0 \ x \neq x \neq x = 0}}^{\infty} \frac{x^n}{3^{n+1}}$
Replace x with $\frac{x}{3}$
in $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$

For convergence, we need $\left|\frac{x}{3}\right| < 1 \implies |x| < 3$

... Radius of convergence is
$$R = 3$$
.
Interval of convergence is $I = (-3, 3)$.

<u>Ex</u>: Find a power series representation centred at X=0 for $f(x) = \frac{x^2}{x+7}$.

Solution: Again,
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} X^n$$
 for $|x| < 1$, so

$$\frac{X^2}{X+7} = \frac{X^2}{7} \left(\frac{1}{1+\frac{x}{7}}\right) = \frac{X^2}{7} \left(\frac{1}{1-\left(-\frac{x}{7}\right)}\right)$$
Converges when

$$= \frac{X^2}{7} \sum_{n=0}^{\infty} \left(-\frac{x}{7}\right)^n \xrightarrow{7} |\frac{-x}{7}| < 1$$
, hence

$$|x| < 7.$$

$$= \frac{X^2}{7} \sum_{n=0}^{\infty} \frac{(-1)^n X^n}{7^n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n X^{n+2}}{7^{n+1}}$$

and this series has radius of convergence R = 7 and interval of convergence I = (-7, 7).

 E_{X} : Find a power series representation centred at X = a

$$f_{or}$$
 $f(x) = \frac{1}{x}$.

<u>Solution</u>: We're looking for a power series of the form $\frac{1}{x} = \sum_{n=0}^{\infty} C_n (x-2)^n$

To introduce powers of X-2, the trick is to add and subract 2.

$$\frac{1}{x} = \frac{1}{(x-2)+a} = \frac{1}{2} \left[\frac{1}{1+\frac{x-2}{2}} \right]$$
$$= \frac{1}{2} \left[\frac{1}{1-\left(\frac{-(x-2)}{2}\right)} \right]$$
$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{-(x-2)}{2}\right)^{n}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{2^{n+1}}$$
This converges when $\left| \frac{-(x-2)}{2} \right| < 1$, hence $|x-2| < 2$.
Thus, $-2 < x-2 < 2$, or equivalently, $0 < x < 4$.

Radius of convergence: R = 2Interval of convergence: I = (0,4)