§6.2 -Representing Functions as Power Series
Recall: A power series is a function whose domain is its interval of convergence. Sometimes we can recognize it as a more familiar function!

Ex: From geometric series, we know that

$$
\left.\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots \quad \text { for } \quad|x|<1 \quad \text { (i.e., } I=(-1,1), R=1\right)
$$

According to the following theorem, power series always turn out to be continuous, hence $\sum_{n=0}^{\infty} X^{n}$ Can't possibly represent $\frac{1}{1-x}$ across its vertical asymptote at $x=1$.

Theorem (Abel): If $f(x)=\sum_{n=0}^{\infty} C_{n}(x-a)^{n}$ with interval of convergence I, then f is continuous on I.

If we know a power series representation for a function, we have some tricks for obtaining power series representations for related functions.

Indeed, suppose $f(x)=\sum_{n=0}^{\infty} a_{n}(x-a)^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n}(x-a)^{n}$ with radii of convergence R_{f} and R_{g} and intervals of convergence I_{f} and I_{g}, respectively.

1. Addition / Subtraction

$$
f(x) \pm g(x)=\sum_{n=0}^{\infty}\left(a_{n} \pm b_{n}\right)(x-a)^{n} .
$$

If $R_{f} \neq R_{g}$, then the new series has radius of convergence $R=\min \left\{R_{f}, R_{g}\right\}$ and interval of convergence $I=I_{f} \cap I_{g}$. If $R_{f}=R_{g}$, then $R \geqslant R_{f}$.
(e.g., $f(x)=g(x)=\sum_{n=0}^{\infty} x^{n}$ have radii $R_{f}=R_{g}=1$, but $f(x)-g(x)=\sum_{n=0}^{\infty} 0 \cdot x^{n}=0$ has radius $R=\infty$. .)
2. Multiplication

For $k=1,2,3, \ldots$,

$$
(x-a)^{k} f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n+k}
$$

and the new series has the same radius of convergence, R_{f} and interval of convergence I_{f}
3. Composition

If $a=0 \quad\left(\right.$ so $\left.f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}\right)$, then for $c \in \mathbb{R}$ and $K=1,2,3, \ldots$

$$
f\left(c x^{k}\right)=\sum_{n=0}^{\infty} a_{n} c^{k} x^{n k}
$$

We can also replace x with $x-b$ to change to obtain a power series for $f(x-b)$ centred at $x=b$:

$$
f(x-b)=\sum_{n=0}^{\infty} a_{n}(x-b)^{n}
$$

Compositions can change the radius and interval of

Convergence, as we will see in our examples.

Ex: Find a power series representation centred at $x=0$ for $f(x)=\frac{1}{3-x}$

Solution: We know that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$,

$$
\begin{gathered}
\Rightarrow \frac{1}{3-x}=\frac{1}{3}\left(\frac{1}{1-\frac{x}{3}}\right)=\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n+1}} \\
\text { Replace } \times \text { with } \frac{x}{3} \\
\text { in } \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
\end{gathered}
$$

For convergence, we need $\left|\frac{x}{3}\right|<1 \Rightarrow|x|<3$
\therefore Radius of convergence is $R=3$.
Interval of convergence is $I=(-3,3)$.

Ex: Find a power series representation centred at $x=0$ for $f(x)=\frac{x^{2}}{x+7}$.

Solution: Again, $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$, so

$$
\begin{aligned}
\frac{x^{2}}{x+7}=\frac{x^{2}}{7}\left(\frac{1}{1+\frac{x}{7}}\right) & =\frac{x^{2}}{7}\left(\frac{1}{1-\left(-\frac{x}{7}\right)}\right) \quad \begin{array}{l}
\text { converges when }
\end{array} \\
& =\frac{x^{2}}{7} \sum_{n=0}^{\infty}\left(\frac{-x}{7}\right)^{n} \rightarrow \begin{array}{l}
\left|-\frac{x}{7}\right|<1, \text { hence } \\
|x|<7 .
\end{array} \\
& =\frac{x^{2}}{7} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{7^{n}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+2}}{7^{n+1}}
\end{aligned}
$$

and this series has radius of convergence $R=7$ and interval of convergence $I=(-7,7)$.

Ex: Find a power series representation centred at $x=2$ for $f(x)=\frac{1}{x}$.

Solution: Were looking for a power series of the form

$$
\frac{1}{x}=\sum_{n=0}^{\infty} c_{n}(x-2)^{n}
$$

To introduce powers of $x-2$, the trick is to add and subract 2 .

$$
\begin{aligned}
\frac{1}{x}=\frac{1}{(x-2)+2} & =\frac{1}{2}\left[\frac{1}{1+\frac{x-2}{2}}\right] \\
& =\frac{1}{2}\left[\frac{1}{1-\left(\frac{-(x-2)}{2}\right)}\right] \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{-(x-2)}{2}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{2^{n+1}}
\end{aligned}
$$

This converges when $\left|\frac{-(x-2)}{2}\right|<1$, hence $|x-2|<2$. Thus, $-2<x-2<2$, or equivalently, $0<x<4$.

Radius of convergence: $\quad R=2$
Interval of convergence: $I=(0,4)$

