§ 5.9, 5.10 - The Ratio and Root Tests

Our final two convergence tests can, in Some cases, tell us that a series converges absolutely. The Ratio Test Consider a series $\sum_{n \to \infty} a_n$ and suppose $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists or is 00. (i) If L<1, Z. an converges absolutely (ii) If L > 1, $\sum a_n$ diverges (iii) If L=1, the test is inconclusive. The series could converge absolutely, conditionally, or diverge.

Remark: The ratio test is often effective when dealing
with factorials: We define
$$0! = 1$$
 and
 $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$ ($n \in \mathbb{N}$)
e.g., $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$

Ex: Determine whether each series below converges
absolutely, converges conditionally, or diverges.
(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 3^n}{n!}$$

Solution: We'll use the ratio test!
 $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{G_n^{n+1} \cdot 3^{n+1}}{G_n^{n+1}} \right|$
 $= \lim_{n \to \infty} \frac{3^{n+1}}{3^n} \left(\frac{n!}{(n+1)!} \right)^n = \frac{n!}{n}$
 $= \lim_{n \to \infty} 3 \cdot \frac{1}{n+1} = 0$

Since
$$L < 1$$
, $\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{n!}$ converges absolutely by

the ratio test.

(b)
$$\sum_{n=1}^{\infty} \frac{9^n}{n \cdot 2^{n+1}}$$

Solution: Again, let's try the ratio test!

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{q^{n+1}}{(n+1) \cdot 2^{n+2}}}{\frac{q^n}{n \cdot 2^{n+1}}} \right|$$

$$= \lim_{n \to \infty} \frac{q^{nn}}{q^n} \cdot \frac{2}{2^{n+2}} \cdot \frac{n}{n+1}$$
$$= \lim_{n \to \infty} \frac{q}{2} \left(\frac{n}{n+1}\right) = \frac{LH}{2}$$

Since
$$L > 1$$
, $\sum_{n=1}^{\infty} \frac{q^n}{n \cdot 2^{n+1}}$ diverges by the ratio test.

$$(c) \sum_{n=a}^{\infty} \frac{(-1)^n}{n^2 \cdot \ln(n)}$$

Solution: Maybe the ratio test will work again?

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-n)^{n+1}}{(n+1)^2 \ln(n+1)}}{\frac{(-n)^n}{n^2 \cdot \ln(n)}} \right|$$
$$= \lim_{n \to \infty} \frac{n^2}{(n+1)^2} \cdot \frac{\ln(n)}{\ln(n+1)}$$

$$= \lim_{\substack{n \to \infty \\ n \to \infty}} \left(\frac{n}{n+1} \right)^{2} \cdot \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{l_{n}(n)}{l_{n}(n+1)} = \frac{1}{1}$$

$$= \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{l_{n}(n)}{l_{n+1}}$$

$$= \lim_{\substack{n \to \infty \\ n \to \infty}} \frac{n+1}{n} = \lim_{\substack{n \to \infty \\ n \to \infty}} (1+\frac{1}{n}) = 1$$

Uh oh ... if L=1, the ratio test is inconclusive!

To determine if
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 \cdot ln(n)}$$
 converges absolutely,

we'll need to examine

$$\sum_{n=2}^{\infty} \left| \frac{(-1)^n}{n^2 \cdot l_n(n)} \right| = \sum_{n=2}^{\infty} \frac{1}{n^2 \cdot l_n(n)} .$$

Note that
$$\frac{1}{n^2 \cdot l_n(n)} \leq \frac{1}{n^2}$$
 and $\sum_{n=2}^{\infty} \frac{1}{n^2}$ is a

convergent p-series (as p=2>1). Thus, $\sum_{n=2}^{\infty} \frac{1}{n^2 \ln(n)}$

Converges, so
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 \cdot ln(n)}$$
 Converges absolutely.

The Root Test
Consider a series
$$\sum a_n$$
 and suppose $L = \lim_{n \to \infty} \sqrt{|a_n|}$
exists or is ∞ .
(i) If $L < 1$, $\sum a_n$ converges absolutely
(ii) If $L > 1$, $\sum a_n$ diverges
(iii) If $L > 1$, $\sum a_n$ diverges
(iii) If $L = 1$, the test is inconclusive. The series
could converge absolutely, conditionally, or diverge.

Remark: The root test is often effective when dealing
with series involving expressions like $(f(n))^n$.

Ex: Apply the root test to $\sum_{n=1}^{\infty} (\frac{n+1}{3n+1})^n$.
Solution: $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

$$= \lim_{n \to \infty} \left\| \sqrt{\left| \left(\frac{n+1}{3n+1} \right)^n \right|} \right\|$$

$$= \lim_{n \to \infty} \frac{n+1}{3n+1}$$
$$= \frac{1}{3}$$

Since L<1, the series <u>converges</u> absolutely by the

root test.

 $\underbrace{E_{x:}}_{n=1} \operatorname{Apply}_{n=1} \text{ the root test to } \sum_{n=1}^{\infty} \frac{(-1)^{n} e^{n^{2}}}{n^{n}}.$ $\underbrace{Solution:}_{n \to \infty} L = \lim_{n \to \infty} \sqrt{|a_{n}|} = \lim_{n \to \infty} \sqrt{\left|\frac{(n^{n} e^{n^{2}})}{n^{n}}\right|}$ $= \lim_{n \to \infty} \left(\frac{e^{n^{2}}}{n^{n}}\right)^{\nu_{n}}$ $= \lim_{n \to \infty} \frac{e^{n}}{n}$ $\underbrace{LH}_{n \to \infty} \frac{e^{n}}{1} = \infty.$

Thus, since L>I, the series diverges by the root test.

Additional Exercise

Ex: Let
$$a_n$$
, $b_n \neq 0$ for all n . Prove that if
 $\sum b_n$ converges and $\sum \frac{a_{n+1}}{a_n b_n}$ converges absolutely,
then $\sum a_n$ converges absolutely.
Solution: Since $\sum \left| \frac{a_{n+1}}{a_n b_n} \right|$ converges, we have
 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n b_n} \right| = 0$ by the divergence test. This means that
for n sufficiently large, we have $\left| \frac{a_{n+1}}{a_n b_n} \right| < 1$, or
equivalently

$$0 \leq \left| \frac{a_{n+1}}{a_n} \right| < |b_n|$$

Since $\sum b_n$ converges, $\lim_{n \to \infty} b_n = 0$ by the divergence test, and hence

$$\lim_{n \to \infty} |b_n| = \left| \lim_{n \to \infty} b_n \right| = 0.$$

By the squeeze theorem,

$$\frac{\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0$$

Thus, <u>S</u>, an converges absolutely by the ratio test.