
 5.9 5.10 The Ratio and Root Tests

Our final two convergence tests can in some

cases tell us that a series converges absolutely

The Ratio Test

Consider a series an and suppose I times

exists or is 0

it If 1 1 an converges absolutely

Iii If 1 an diverges

iii If 2 the test is inconclusive The series

could converge absolutely conditionally or diverge

Remark The ratio test is often effective when dealing

with factorials We define 0 1 and
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Ex Determine whether each series below converges

absolutely converges conditionally or diverges
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Solution We'll use the ratio test
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Solution Again let's try the ratio test
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Solution Maybe the ratio test will work again
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Uh oh if 1 1 the ratio test is inconclusive

To determine if Ez nite converges absolutely

we'll need to examine
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The Root Test

Consider a series an and suppose L man an

exists or is 0

it If 1 1 an converges absolutely

ii If 1 an diverges

iii If 2 the test is inconclusive The series

could converge absolutely conditionally or diverge

Remark The root test is often effective when dealing

with series involving expressions like fin
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Since L L the series converges absolutely by the

root test
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Thus since 2 1 the series diverges by the root test



Additional Exercise

Ex Let an bn 0 for all n Prove that if

Σ bn converges and Σ converges absolutely

then an converges absolutely

Solution Sine
b converges we have

finds p 0 by the divergence test This means that

for n sufficiently large we have b 1 or

equivalently
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Since bn converges him bn 0 by the divergence

test and hence
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By the squeeze theorem

S 0

Thus an converges absolutely by the ratio test


