§5.9, 5.10 - The Ratio and Root Tests
Our final two convergence tests can, in some cases, tell us that a series converges absolutely.

The Ratio Test
Consider a series $\sum a_{n}$ and suppose $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists or is ∞.
(i) If $L<1, \sum a_{n}$ converges absolutely
(ii) If $L>1, \sum a_{n}$ diverges
(iii) If $L=1$, the test is inconclusive. The series could converge absolutely, conditionally, or diverge.

Remark: The ratio test is often effective when dealing with factorials: We define $0!=1$ and

$$
\begin{aligned}
n! & =n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 \quad(n \in \mathbb{N}) \\
\text { e.g. } 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 & =120
\end{aligned}
$$

Ex: Determine whether each series below converges absolutely, converges conditionally, or diverges.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot 3^{n}}{n!}$

Solution: We'll use the ratio test!

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} \cdot 3^{n+1}}{(n+1)!}}{\frac{(-1)^{n} \cdot 3^{n}}{n!}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{3^{n+1}}{3^{n}} \frac{n!}{(n+1)!}=\frac{n!}{(n+1) \cdot n!}=\frac{1}{n!} \\
& =\lim _{n \rightarrow \infty} 3 \cdot \frac{1}{n+1}=0
\end{aligned}
$$

Since $L<1, \sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{n!}$ converges absolutely by the ratio test.
(b) $\sum_{n=1}^{\infty} \frac{9^{n}}{n \cdot 2^{n+1}}$

Solution: Again, let's try the ratio test!

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{q^{n+1}}{(n+1) \cdot 2^{n+2}}}{\frac{q^{n}}{n \cdot 2^{n+1}}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{q^{n+1}}{q^{n}} \cdot \frac{2^{n+1}}{2^{n+2}} \cdot \frac{n}{n+1} \\
& =\lim _{n \rightarrow \infty} \frac{9}{2}\left(\frac{n}{n+1}\right) \stackrel{L H}{=} \frac{9}{2}
\end{aligned}
$$

Since $L>1, \sum_{n=1}^{\infty} \frac{9^{n}}{n \cdot 2^{n+1}}$ diverges by the ratio test.
(c) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2} \cdot \ln (n)}$

Solution: Maybe the ratio test will work again?

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}}{(n+1)^{2} \ln (n+1)}}{\frac{(-2)^{n}}{n^{2} \cdot \ln (n)}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}} \cdot \frac{\ln (n)}{\ln (n+1)}
\end{aligned}
$$

$$
\begin{aligned}
&=\underbrace{\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{2}}_{\underline{\text { LH }}\left(\lim _{n \rightarrow \infty} \frac{1}{1}\right)^{2}=1} \cdot \underbrace{}_{\underset{=\lim _{n \rightarrow \infty} \frac{1 / n}{1 / n+1}}{\lim _{n \rightarrow \infty} \frac{\ln (n)}{\ln (n+1)}}=1} \\
&=\lim _{n \rightarrow \infty} \frac{n+1}{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)=1
\end{aligned}
$$

Uh oh... if $L=1$, the ratio test is inconclusive!

To determine if $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2} \cdot \ln (n)}$ converges absolutely,
well need to examine

$$
\sum_{n=2}^{\infty}\left|\frac{(-1)^{n}}{n^{2} \cdot \ln (n)}\right|=\sum_{n=2}^{\infty} \frac{1}{n^{2} \cdot \ln (n)}
$$

Note that $\frac{1}{n^{2} \cdot \ln (n)} \leqslant \frac{1}{n^{2}}$ and $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ is a convergent p-series (as $p=2>1$). Thus, $\sum_{n=2}^{\infty} \frac{1}{n^{2} \ln (n)}$ converges, So $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2} \cdot \ln (n)}$ converges absolutely.

The Root Test
Consider a series $\sum a_{n}$ and suppose $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ exists or is ∞.
(i) If $L<1, \sum a_{n}$ converges absolutely
(ii) If $L>1, \sum a_{n}$ diverges
(iii) If $L=1$, the test is inconclusive. The series could converge absolutely, conditionally, or diverge.

Remark: The root test is often effective when dealing with series involving expressions like $(f(n))^{n}$.

Ex: Apply the root test to $\sum_{n=1}^{\infty}\left(\frac{n+1}{3 n+1}\right)^{n}$.
Solution:

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \\
& =\lim _{n \rightarrow \infty} \sqrt[n]{\left|\left(\frac{n+1}{3 n+1}\right)^{n}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{n+1}{3 n+1} \\
& =\frac{1}{3}
\end{aligned}
$$

Since $L<1$, the series converges absolutely by the root test.

Ex: Apply the root test to $\sum_{n=1}^{\infty} \frac{(-1)^{n} e^{n^{2}}}{n^{n}}$.
Solution: $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(-1)^{n} e^{n^{2}}}{n^{n}}\right|}$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{e^{n^{2}}}{n^{n}}\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{e^{n}}{n} \\
& =\lim _{n \rightarrow \infty} \frac{e^{n}}{1}=\infty .
\end{aligned}
$$

Thus, since $L>1$, the series diverges by the root test.

Additional Exercise

Ex: Let $a_{n}, b_{n} \neq 0$ for all n. Prove that if $\sum b_{n}$ converges and $\sum \frac{a_{n+1}}{a_{n} b_{n}}$ converges absolutely, then $\sum a_{n}$ converges absolutely.

Solution: Since $\sum\left|\frac{a_{n+1}}{a_{n} b_{n}}\right|$ converges, we have $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n} b_{n}}\right|=0$ by the divergence test. This means that for n sufficiently large, we have $\left|\frac{a_{n+1}}{a_{n} b_{n}}\right|<1$, or equivalently

$$
0 \leq\left|\frac{a_{n+1}}{a_{n}}\right|<\left|b_{n}\right|
$$

Since $\sum b_{n}$ converges, $\lim _{n \rightarrow \infty} b_{n}=0$ by the divergence test, and hence

$$
\lim _{n \rightarrow \infty}\left|b_{n}\right|=\left|\lim _{n \rightarrow \infty} b_{n}\right|=0 .
$$

By the squeeze theorem,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0
$$

Thus, $\sum a_{n}$ converges absolutely by the ratio test.

