\$1.3-Properties of the Integral

Theorem: Let f and g be integrable on $[a, b]$.
(i) For any $c \in \mathbb{R}, \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
(ii) $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(iii) If $m \leq f(x) \leq M$, for $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

(iv) If $f(x) \geqslant 0$, then $\int_{a}^{b} f(x) d x \geq 0$
(v) If $f(x) \leqslant g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

(vi) $|f|$ is integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Proofs: (i), (ii): follow from the limit laws for sequences.
(iii): Consider the regular right endpoint Riemann sums

$$
\sum_{i=1}^{n} f\left(t_{i}\right) \Delta t
$$

Since $m \leq f\left(t_{i}\right) \leq M$ for all i, we have

$$
\begin{aligned}
& \quad \sum_{i=1}^{n} m \Delta t \leq \sum_{i=1}^{n} f\left(t_{i}\right) \Delta t \leq \sum_{i=1}^{n} M \Delta t \\
\Rightarrow \quad & m \underbrace{\sum_{i=1}^{n} \Delta t} \leq \sum_{i=1}^{n} f\left(t_{i}\right) \Delta t \leq M \underbrace{\sum_{i=1}^{n} \Delta t}_{\text {length of }[a, b]} \\
\Rightarrow & m(b-a) \leq \sum_{i=1}^{n} f\left(t_{i}\right) \Delta t \leq M(b-a)
\end{aligned}
$$

Taking limits as $n \rightarrow \infty$, we get

$$
m(b-a) \leq \int_{a}^{b} f(t) d t \leq M(b-a)
$$

Basically, (iii) says that f encloses more than the red area but less than the blue

(iv): follows from (iii) with $m=0$.
(v): If $f(x) \leqslant g(x)$, then $0 \leqslant g(x)-f(x)$. Hence,

$$
0 \leq \int_{a}^{b} g(x)-f(x) d x=\int_{B_{y} \text { (iv) }}^{b} g(x) d x-\int_{a}^{b} f(x) d x
$$

Thus, $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
$\left(v_{i}\right)$: Follows from the triangle inequality.

Additional Properties: Suppose f is integrable on an interval containing a, b, and c. We have
(i) $\int_{a}^{a} f(x) d x=0 \quad$ (This is really a definition!)
(ii) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(iii) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

You can think of (iii) in terms of areas:

and it even works when c isn't between a and b !

For instance, if $a<b<c$, then

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x-\int_{b}^{c} f(x) d x \quad \begin{array}{l}
\text { Flip the } \\
\text { bounds } \\
\text { using (ii) }
\end{array} \\
\Rightarrow \quad \int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\end{aligned}
$$

Geometric Interpretation of the Integral

Suppose f is integrable on $[a, b]$.

If $f(x) \geqslant 0$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x$ represents the area under the graph of f and above the x-axis.

More generally, $\int_{a}^{b} f(x) d x$ represents the signed area between the graph of f and the x-axis with area below the x-axis counted negatively

$$
\int_{a}^{b} f(x) d x=A_{1}-A_{2}
$$

Example: What is $\int_{-\pi}^{\pi} \sin x d x$?

Solution: This is probably too complicated to do with
Riemann sums. However, since $\int_{-\pi}^{\pi} \sin x d x$ is the signed area between $y=\sin x$ and the x-axis...

... We will get $\int_{-\pi}^{\pi} \sin x d x=A_{1}-A_{2}=0$, since $\sin x$ is odd and hence symmetric about the origin.

