Theorem: Let f and g be integrable on [a,b].
(i) For any
$$C \in \mathbb{R}$$
, $\int_{a}^{b} C f(x) dx = C \int_{a}^{b} f(x) dx$
(ii) $\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$
(iii) If $m \leq f(x) \leq M$, for $x \in [a,b]$, then
 $m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$
(iv) If $f(x) \geq 0$, then $\int_{a}^{b} f(x) dx \geq 0$
(v) If $f(x) \leq g(x)$ for all $x \in [a,b]$, then
 $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$
(vi) $|f|$ is integrable on $[a,b]$ and
 $\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx$

Proofs: (i), (ii): follow from the limit laws for sequences. (iii): Consider the regular right endpoint Riemann sums $\sum_{i=1}^{n} f(t_i) \Delta t$ Since $m \leq f(t_i) \leq M$ for all i, we have $\sum_{i=1}^{n} m\Delta t \leq \sum_{i=1}^{n} f(t_i) \Delta t \leq \sum_{i=1}^{n} M\Delta t$ $\Rightarrow m \sum_{i=1}^{n} \Delta t \leq \sum_{i=1}^{n} f(t_i) \Delta t \leq M \sum_{i=1}^{n} \Delta t$

= length of [a,b]

$$\Rightarrow \qquad m(b-a) \leq \sum_{i=1}^{n} f(t_i) \Delta t \leq M(b-a)$$

Taking limits as $n \rightarrow \infty$, we get $m(b-a) \leq \int_{a}^{b} f(t) dt \leq M(b-a)$

= length of [a,b]

(iv): follows from (iii) with
$$m = 0$$
.
(v): If $f(x) \leq g(x)$, then $0 \leq g(x) - f(x)$. Hence,
 $0 \leq \int_{a}^{b} g(x) - f(x) dx = \int_{a}^{b} g(x) dx - \int_{a}^{b} f(x) dx$
 $\int_{a}^{b} g(x) - g(x) dx = \int_{a}^{b} g(x) dx - \int_{a}^{b} f(x) dx$
By (iv) By (i), (ii)
Thus, $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$
(vi): Follows from the triangle inequality.

Additional Properties: Suppose
$$f$$
 is integrable on
an interval containing $a, b, and c$. We have
(i) $\int_{a}^{a} f(x) dx = 0$ (This is really a definition!)
(ii) $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
(iii) $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx + \int_{c}^{b} f(x) dx$

Geometric Interpretation of the Integral Suppose f is integrable on [a,b]. If $f(x) \ge 0$ for all $x \in [a, b]$, then $\int_{a}^{b} f(x) dx$ represents

the area under the graph of f and above the x-axis.

More generally,
$$\int_{a}^{b} f(x) dx$$
 represents the signed area
between the graph of f and the x-axis with area
below the x-axis counted negatively

<u>Solution</u>: This is probably too complicated to do with Riemann sums. However, since $\int_{-\pi}^{\pi} \sin x \, dx$ is the signed area between $y = \sin x$ and the x-axis...

sinx is odd and hence symmetric about the origin.