§2.3-Partial Fractions
This technique is useful for evaluating $\int \frac{P(x)}{Q(x)} d x$, where $P, Q$ are polynomials and degree of $P(x)<$ degree of $Q(x)$

Motivating Example: $\int \frac{3 x+1}{x^{2}+2 x-3} d x$.
Looks tough... but there's a trick! We can write

$$
\frac{3 x+1}{x^{2}+2 x-3}=\frac{3 x+1}{(x-1)(x+3)} \xlongequal\left[(\text { check this!) }]{=} \frac{1}{x-1}+\frac{2}{x+3}\right.
$$

This is called a partial fraction decomposition (PFD) and it makes integration much easier! Indeed,

Since $\int \frac{1}{x+a} d x=\ln |x+a|+c$, we have (Exercise! Let $u=x+a$.)

$$
\begin{aligned}
\int \frac{3 x+1}{x^{2}+2 x-3} d x & =\int\left(\frac{1}{x-1}+\frac{2}{x+3}\right) d x \\
& =\ln |x-1|+2 \ln |x+3|+C
\end{aligned}
$$

Cool! But how can we find partial fraction decompositions ourselves??

Step 1: Fully factor the denominator into linear terms $(a x+b)$ and $\frac{\text { irreducible quadratic terms. }}{\downarrow}$ $a x^{2}+b x+c$ is irreducible if it has no real roots (equivalently, if $b^{2}-4 a c<0$ )
egg.

$$
\begin{aligned}
& \frac{1}{x^{3}+2 x^{2}+x}=\frac{1}{x\left(x^{2}+2 x+1\right)}=\frac{1}{x(x+1)^{2}} \\
& \frac{x+2}{x^{4}+4 x^{2}}=\frac{x+2}{x^{2}\left(x^{2}+4\right)} \\
& \text { linear (repeated) }
\end{aligned}
$$

Step 2: Write down the form of the PFD.

Distinct linear factors each get a constant numerator in the PFD, and repeated linear factors get one constant per power.


$$
\frac{2}{x^{3}(x+1)^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x+1}+\frac{E}{(x+1)^{2}}
$$

Distinct irreducible quadratics each get a linear numerator $(A x+B)$ in the PFD. Repeated irreducible quadratics get a linear numerator per power.
e.g. $\frac{1}{(x+2)\left(x^{2}+4\right)}=\frac{A}{x+2}+\frac{B x+C}{x^{2}+4}$

$$
\begin{aligned}
& \frac{x+3}{x\left(x^{2}+1\right)\left(x^{2}+x+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}+\frac{D x+E}{x^{2}+x+4} \\
& \frac{x^{2}+x+1}{(x+4)^{2}\left(x^{2}+9\right)^{3}}=\frac{A}{x+4}+\frac{B}{(x+4)^{2}}+\frac{C x+D}{x^{2}+9}+\frac{E x+F}{\left(x^{2}+9\right)^{2}}+\frac{G x+H}{\left(x^{2}+9\right)^{3}}
\end{aligned}
$$

Step 3: Solve for the constants $A, B, C$, etc...
Let's see an example of this!
Ex: Find the PFD for $\frac{3 x+1}{x^{2}+2 x-3}$.

Solution: $\frac{3 x+1}{x^{2}+2 x-3}=\frac{3 x+1}{(x-1)(x-3)}=\frac{A}{x-1}+\frac{B}{x+3}$.

Multiply both sides by the denominator of the LHS:

$$
\begin{aligned}
3 x+1 & =(x-1)(x+3)\left(\frac{A}{x-1}+\frac{B}{x+3}\right) \\
\Rightarrow \quad 3 x+1 & =A(x+3)+B(x-1)
\end{aligned}
$$

Option 1: Solve for $A$ and $B$ by plugging in some nice values for $x$.

$$
\begin{aligned}
& x=1 \Rightarrow 4=A \cdot(1+3)+B(1-1)=4 A \Rightarrow A=1 \\
& x=-3 \Rightarrow-8=A(-3+3)+B(-3-1)=-4 B \Rightarrow B=2 \\
& \therefore \frac{3 x+1}{x^{2}+2 x-3}=\frac{A}{x-1}+\frac{B}{x+3}=\frac{1}{x-1}+\frac{2}{x-3}
\end{aligned}
$$

Option 2: Solve for $A$ and $B$ by comparing coefficients!

$$
\begin{aligned}
3 x+1=A(x+3)+B(x-1) & \Rightarrow\left\{\begin{array}{l}
3=A+B \\
1=3 A-B
\end{array}\right) \begin{array}{l}
\text { Solve the } \\
\text { system! }
\end{array} \\
& \Rightarrow(A+B) x+(3 A-B) \\
& \Rightarrow A=1, B=2
\end{aligned}
$$

Ex: Calculate $\int \frac{x^{2}+x+8}{x^{3}+4 x} d x$ using a PFD.
Solution: $\frac{x^{2}+x+8}{x^{3}+4 x}=\frac{x^{2}+x+8}{x\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}+x+8=x\left(x^{2}+4\right)\left[\frac{A}{x}+\frac{B x+C}{x^{2}+4}\right] \\
& \Rightarrow \quad x^{2}+x+8=A\left(x^{2}+4\right)+(B x+C) x \\
& \Rightarrow \quad x^{2}+x+8=(A+B) x^{2}+C x+4 A
\end{aligned}
$$

Comparing coefficients: $\left\{\begin{array}{l}1=A+B \\ 1=C \\ 8=4 A\end{array} \Rightarrow A=2, B=-1, C=1\right.$

Thus, $\quad \frac{x^{2}+x+8}{x^{3}+4 x}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}=\frac{2}{x}+\frac{-x+1}{x^{2}+4}$

Let's now evaluate $\int \frac{x^{2}+x+8}{x^{3}+4 x} d x$ !

$$
\int \frac{x^{2}+x+8}{x^{3}+4 x} d x=\underbrace{\int \frac{2}{x} d x}_{2 \ln |x|}+\underbrace{\int \frac{-x+1}{x^{2}+4} d x}_{\text {Harder... let's split up the integral! }}
$$

$$
=2 \ln |x|-\underbrace{\int \frac{x}{x^{2}+4} d x}_{u-\operatorname{sub!} \begin{aligned}
u=x^{2}+4 \\
d u=2 x d x
\end{aligned}}+\underbrace{\int \frac{1}{x^{2}+4} d x}_{\text {trig sub! } x=2 \tan \theta}=2 \sec ^{2} \theta d \theta .
$$

$$
\left.\begin{array}{l}
=2 \ln |x|-\int \frac{x}{u} \cdot \frac{d u}{2 x}+\int \frac{1}{4 \tan ^{2} \theta+4} \cdot 2 \sec ^{2} \theta d \theta \\
=2 \ln |x|-\frac{1}{2} \int \frac{1}{u} d u+\int \frac{2 \sec ^{2} \theta}{4\left(\tan ^{2} \theta+1\right)} \sec ^{2} \theta
\end{array} \theta\right]=2 \ln |x|-\frac{1}{2} \ln |u|+\frac{1}{2} \int 1 d \theta \quad\binom{x=2 \tan \theta}{=\theta=\arctan \left(\frac{x}{2}\right)}
$$

Ex: Evaluate $\int \frac{x^{3}-2 x}{x^{2}+2 x+1} d x$

Don't use partial fractions yet! If the degree of the numerator is greater than or equal to the degree of the denominator, start with long division!

Aside: Polynomial Long Division

Ex: Consider the division $\frac{x^{3}-2 x}{x^{2}+2 x+1}$

First, set up the long division.


Next, what do we need to multiply the largest term in the denominator $x ^ { 2 } + 2 x + 1 \longdiv { x } \frac { x } { x ^ { 3 } - 2 x }$ by to match the largest term in
the numerator? Write the answer
at the top.

Multiply the denominator by this answer and subtract the result from the numerator.
multiply!

$$
\begin{array}{r}
x ^ { 2 } + 2 x + 1 \longdiv { x ^ { 3 } - 2 x } \\
-\frac{\left(x^{3}+2 x^{2}+x\right)}{-2 x^{2}-3 x}
\end{array}
$$

Repeat the process until you obtain a polynomial with smaller degree than your

$$
x ^ { 2 } + 2 x + 1 \longdiv { x ^ { 3 } - 2 x }
$$ denominator.

$$
\begin{aligned}
- & \frac{\left(x^{3}+2 x^{2}+x\right)}{-2 x^{2}-3 x} \\
& -\frac{\left(-2 x^{2}-4 x-2\right)}{x+2}
\end{aligned}
$$

The polynomial at the top is

$$
\begin{array}{rl}
x^{2}+2 x+1 & x-2 x^{\text {Quotient }}-2 x \\
& \frac{\left(x^{3}+2 x^{2}+x\right)}{-2 x^{2}-3 x} \\
& \frac{\left(-2 x^{2}-4 x-2\right)}{\text { Remainder }}
\end{array}
$$ the quotient. The polynomial at the bottom is the remainder.

Answer: $\frac{x^{3}-2 x}{x^{2}+2 x+1}=$ Quotient. $_{\substack{\text { Easy to integrate } \\ \text { Ese partial fractions! }}}^{\text {Remainder }}$

We have $\frac{x+2}{x^{2}+2 x+1}=\frac{x+2}{(x+1)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad x+2=A(x+1)+B \\
& \Rightarrow \quad A=1, B=1
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\frac{x^{3}-2 x}{x^{2}+2 x+1} & =x-2+\frac{x+2}{x^{2}+2 x+1} \\
& =x-2+\left(\frac{1}{x+1}+\frac{1}{(x+1)^{2}}\right) \\
\Rightarrow \int \frac{x^{3}-2 x}{x^{2}+2 x+1} d x & =\int(x-2) d x+\int \frac{1}{x+1} d x+\int_{C_{u}}^{(x+1)^{2}} d x \\
& =\frac{x^{2}}{2}-2 x+\ln |x+1|+\int \frac{1}{u^{2}} d u=d x \\
& =\frac{x^{2}}{2}-2 x+\ln |x+1|-\frac{1}{u}+C \\
& =\frac{x^{2}}{2}-2 x+\ln |x+1|-\frac{1}{x+1}+C
\end{aligned}
$$

Additional Exercises:

1. Evaluate each integral below.
(a) $\int \frac{x}{x^{2}-4 x-5} d x$
(b) $\int \frac{5 x+8}{x^{3}+4 x^{2}+4 x} d x$
(c) $\int \frac{2 x^{2}-5 x-4}{2 x+1} d x$
2. Integrate each function given its PFD below:
(a) $\frac{x^{3}-2}{\left(x^{2}+2 x+2\right)(x+2)^{2}}=\frac{1}{x^{2}+2 x+2}+\frac{1}{x+2}-\frac{5}{(x+2)^{2}}$
(b) $\frac{x^{2}-3 x+9}{\left(x^{2}+9\right)^{3}}=\frac{1}{\left(x^{2}+9\right)^{2}}-\frac{3 x}{\left(x^{2}+9\right)^{3}}$

Solutions

1. (a) The PFD of the function is

$$
\begin{aligned}
& \frac{x}{x^{2}-4 x-5}=\frac{x}{(x-5)(x+1)}=\frac{A}{x-5}+\frac{B}{x+1} \\
& \Rightarrow \quad x=(x-5)(x+1)\left(\frac{A}{x-5}+\frac{B}{x+1}\right)
\end{aligned}
$$

$$
\left.\begin{array}{c}
\Rightarrow x=A(x+1)+B(x-5) \\
x=5 \Rightarrow 5=A \cdot(5+1)+B(5-5)=6 A \Rightarrow \frac{A=5 / 6}{} \\
x=-1 \Rightarrow-1=A(-1 /+1)+B(-1-5)=-6 B \Rightarrow B=1 / 6 \\
\therefore \frac{x}{x^{2}-4 x+5}=\frac{A}{x-5}+\frac{B}{x+1}=\frac{5 / 6}{x-5}+\frac{1 / 6}{x+1} \\
\Rightarrow \int \frac{x}{x^{2}-4 x+5} d x
\end{array}\right)=\frac{5}{6} \int \frac{1}{x-5} d x+\frac{1}{6} \int \frac{1}{x+1} d x .
$$

(b) The PFD of the function is

$$
\begin{aligned}
& \frac{5 x+8}{x^{3}+4 x^{2}+4 x}=\frac{5 x+8}{x(x+2)^{2}}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}} \\
& \Rightarrow 5 x+8=x(x+2)^{2}\left(\frac{A}{x}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}\right) \\
& \Rightarrow 5 x+8=A(x+2)^{2}+B x(x+2)+C x
\end{aligned}
$$

When $x=0: 5(0)+8=A(0+2)^{2}+0+0$

$$
\begin{aligned}
& \Rightarrow 8=4 A \\
& \Rightarrow A=2
\end{aligned}
$$

When $x=-2: \quad 5(-2)+8=0+0+C(-2)$

$$
\begin{aligned}
& \Rightarrow-2=-2 C \\
& \Rightarrow C=1
\end{aligned}
$$

When $x=1: \quad 5(1)+8=\underbrace{A \cdot 3^{2}}_{=18}+B \cdot 1 \cdot 3+\underbrace{C \cdot 1}_{=1}$
$\begin{aligned} & \text { Plug in anything } \\ & \text { else to find } B\end{aligned} \quad \Rightarrow 13=19+3 B$

$$
\begin{aligned}
& \Rightarrow \quad-6=3 B \\
& \Rightarrow \quad B=-2
\end{aligned}
$$

Our PFD is $\frac{5 x+8}{x^{3}+4 x^{2}+4 x}=\frac{2}{x}-\frac{2}{x+2}+\frac{1}{(x+2)^{2}}$

$$
\int \frac{5 x+8}{x^{3}+4 x^{2}+4 x} d x=\int\left(\frac{2}{x}-\frac{2}{x+2}+\frac{1}{(x+2)^{2}}\right) d x
$$

$$
\begin{aligned}
& =2 \ln |x|-2 \ln |x+2|+\int \frac{1}{(x+2)^{2}} \sum_{\text {let } u=x+2} d x \\
& =2 \ln |x|-2 \ln |x+2|+\int u^{-2} d u \\
& =2 \ln |x|-2 \ln |x+2|-\frac{1}{x+2}+D
\end{aligned}
$$

(c) Well start with long division.

$$
\begin{aligned}
& 2 x + 1 \longdiv { 2 x ^ { 2 } - 5 x - 4 } \\
& \frac{-\left(2 x^{2}+x\right)}{-6 x-4} \\
& \frac{-(-6 x-3)}{-1}
\end{aligned}
$$

Thus, $\quad \frac{2 x^{2}-5 x-4}{2 x+1}=x-3-\frac{1}{2 x+1}$

$$
\begin{aligned}
& \Rightarrow \int \frac{2 x^{2}-5 x-4}{2 x+1} d x=\int(x-3) d x-\int \frac{1}{2 x+1} d x \\
& \uparrow u=2 x+1 \\
& d u=2 d x
\end{aligned}
$$

No partial
fractions needed!

$$
\begin{aligned}
& =\frac{x^{2}}{2}-3 x-\frac{1}{2} \int \frac{1}{u} d u \\
& =\frac{x^{2}}{2}-3 x-\frac{1}{2} \ln |2 x+1|+C
\end{aligned}
$$

$2(a)$

$$
\begin{aligned}
\int \frac{x^{3}-2}{\left(x^{2}+2 x+2\right)(x+2)^{2}} d x & =\underbrace{\int \frac{1}{x^{2}+2 x+2} d x}_{\text {Complete the square! }}+\underbrace{\int \frac{1}{x+2} d x-5 \underbrace{d u=d x}_{u-\text { sub: } u=x+2}\}}_{=\ln |x+2|} \frac{1}{(x+2)^{2}} d x \\
& =\underbrace{\int \frac{1}{(x+1)^{2}+1} d x}_{\text {trig sub: } x+1}+\tan \theta \\
& =\int \frac{1}{\frac{\sec ^{2} \theta d \theta}{\sec ^{2} \theta}} \underbrace{\tan ^{2} \theta+1}_{=\sec ^{2} \theta} d \theta+\ln |x+2|-5\left[\frac{u^{-1}}{-1}\right] \\
& =\int \frac{1}{u^{2}} d u \\
& =\theta+\ln |x+2|+\frac{5}{x+2}+C
\end{aligned}
$$

$$
=\arctan (x+1)+\ln |x+2|+\frac{5}{x+2}+c
$$

(b)

$$
\begin{aligned}
\int \frac{x^{2}-3 x+9}{\left(x^{2}+9\right)^{3}} d x & =\underbrace{\int \frac{1}{\left(x^{2}+9\right)^{2}} d x}_{\text {trig sub: } \begin{array}{r}
x=3 \tan \theta \\
d x=3 \sec ^{2} \theta d \theta
\end{array}}-\underbrace{\int \frac{3 x}{\left(x^{2}+9\right)^{3}} d x}_{\begin{array}{r}
u-\operatorname{sub}: u=x^{2}+9 \\
d u=2 x d x \\
(\text { so } d x=d u / 2 x)
\end{array}} \\
& =\int \frac{3 \sec ^{2} \theta}{\left(9 \tan ^{2} \theta+9\right)^{2}} d \theta-\int \frac{3 x}{u^{3}} \cdot \frac{d u}{2 x} \\
& =\int \frac{3 \sec ^{2} \theta}{9^{2}\left(\frac{\left.\tan ^{2} \theta+1\right)^{2}}{\sec ^{2} \theta}\right.} d \theta-\frac{3}{2} \int u^{-3} d u \\
& =\frac{1}{27} \int \frac{\sec ^{2} \theta}{\sec ^{4} \theta} d \theta-\frac{3}{2} \cdot \frac{u^{-2}}{-2}+C \\
& =\frac{1}{27} \int \cos ^{2} \theta d \theta+\frac{3}{4\left(x^{2}+9\right)^{2}}+C \\
& =\frac{1}{27} \int \frac{1}{2}(1+\cos 2 \theta) d \theta \\
& =\frac{1}{54}\left[\theta+\frac{\sin ^{2} 2 \theta}{2}\right]+\frac{3}{4\left(x^{2}+9\right)^{2}}+C
\end{aligned}
$$

Let's convert back to $x$ 's!

$$
x=3 \tan \theta \Rightarrow \tan \theta=\frac{x}{3}=\frac{\text { opposite }}{\text { adjacent }} \Rightarrow \theta=\arctan \left(\frac{x}{3}\right) .
$$



$$
\begin{aligned}
\frac{\sin 2 \theta}{2} & =\frac{2 \sin \theta \cos \theta}{2} \\
& =\left(\frac{x}{\sqrt{x^{2}+9}}\right)\left(\frac{3}{\sqrt{x^{2}+9}}\right) \\
& =\frac{3 x}{x^{2}+9}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \int \frac{x^{2}-3 x+9}{\left(x^{2}+9\right)^{3}} d x & =\frac{1}{54}\left[\theta+\frac{\sin 2 \theta}{2}\right]+\frac{3}{4\left(x^{2}+9\right)^{2}}+C \\
& =\frac{1}{54}\left[\operatorname{artan}\left(\frac{x}{3}\right)+\frac{3 x}{x^{2}+9}\right]+\frac{3}{4\left(x^{2}+9\right)^{2}}+C
\end{aligned}
$$

