
 2.3 Partial Frantions

This technique is useful for evaluating dx

where P Q are polynomials and I P t n
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Looks tough but there's a trick We can write

checkthis

3 1 3 1
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This is called a partial fraction decomposition PFD

and it makes integration much easier Indeed

Sinie a dx In a C we have
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Cool But how can we find partial
fraction decompositions ourselves

Step 1 Fully faitor the denominator into linear

terms fax b and irreducible quadratic terms
I

ax't bite is irreducible if it has no real roots

equivalently if b 4ac o
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Step 2 Write down the form of the PFD

Distinct linear factors each get a constant numerator

in the PFD and repeated linear factors get one

constant per power

constants to bedetermined

e.g I I B

4 depends only on the factorsx 214 41 in the denominator
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Distinct irreducible quadratics each get a linear

numerator Axton in the PFD Repeated irreducible

quadratics get a linear numerator per power
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Step 3 Solve for the constants A B C etc

Let's see an example of this

Ex Find the PFD for

solution
3 8 3

Multiply both sides by the denominator of the LHS

3 1 x 111 31
1 3

3 1 A x 3 B x 1

Option 1 solve for A and B by plugging in some

nice values for



2 4 A 1 3 811 11 4A A 1

3 8 A f 3 31 BC3 11 4B B 2
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Option2 solve for A and B by comparing coefficients

3 1 A1 3 Blx it 3 1 A B 13A B

3 At B
solve the

1 3A B system
2

A 1 B 2

Ex Calculate 48 dx using a PFD

Solution 8
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x 8 1 2 4 BE

8 A 1 2 4 Bx C
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comparing coefficients
t A B

I a

A 2 B 1 C 1

Thus X t 8
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Let's now evaluate f I dx

I dx f a
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2lnx f yeah 4.2sec 0
do

2lnx 2 dat 2540 do

414k

2ln x In a I do

2lnx Len 2 4 20 c
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Ex Evaluate
2

d

Don't use partial fractions yet If the degree of

the numerator is greater than or equal to the

degree of the denominator start with long division



Aside Polynomial Long Division

Ex Consider the division 2

First set up the long division 2 1 3 2x

Next What do we need to multiply

the largest term in the denominator 2 1 2x

by to match the largest term in

the numerator Write the answer

at the top

multiply

Multiply the denominator by
2 1 2xthis answer and subtract the

1
3
2 2 1

result from the numerator 2 2
3x



Repeat the process until

42 1 2x

you obtain a polynomial with _1
3
2 2 1

smaller degree than your _1 2
denominator

2

2 Quotient

The polynomial at the top is 2 1 3 2x

the quotient The polynomial at 1
3
2 2 I
2 2 3x

the bottom is the remainder 1 2 2 4 2

ainder

Quotient_

Remainder
Answer x.KZ Y X
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Easyto integrate usepartialfractions

We have 2 B
2 1 1 2 1 12

2 A 1 B

A 1 B 1



Thus
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Additional Exercises

1 Evaluate earh integral below

1a 4 5
dx 4 2

5 dx

2 Integrate each function given its PFD below

3 2
a

1 2 2 2 2 2 2 12 2 12 1
52 2

b X2 3 9
1 1 972 9731 2 973

Solutions

1 Ia The PFD of the function is

4 5 1 1574 1 5 1

x 5 1 11
5 1



A 1 1 B x 5

5 5 A 5 1 315 51 6A A 516

1 1 At 1 11 BC 1 51 GB B 1 6

4 5 s
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x
dx 8 at f d

56 In 5 In I C

b The PFD of the function is

5 8
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2 12 2,2

5 8 6 2 2 2T

5 8 A 2 Bx 1 2 Cx
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when 1 5111 8 Eft B I 3
t.CL

13 19 30

6 38
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Our PFD is 4 284 xfz 272

5 421
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14 We'll start with long division

3

2 1 2 2 5 4

12 1 x1
6 4
f 6 31

2

Thus 2 2251 4 3 2 1

2 2 5 4 ax 1 31 dx It d
2x 1

4 2 1
du 2d



3x te duNo partial
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Let's convert back to s

3 tano tano 0 artan
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