$\S 4.1$ - Introduction to Differential Equations

A differential equation ($D E$) is an equation involving an unknown function and its derivatives. The equation may contain $x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$.

Typically, our goal is to solve the equation for the function (s) y.
$E x: y^{\prime}=y \quad$ "Which functions) y differentiates to itself?"

Solutions to this $D E$ include $y=e^{x}$, but also $y=0$, $y=2 e^{x}, y=\pi e^{x}, \ldots$ In general, $y=c e^{x}, c \in \mathbb{R}$

The complete set of solutions to a $D E$ (including any arbitrary constants) is called the general solution.

Definition: The order of a $D E$ is the order of the highest derivative that appears.

Examples:
(a) $y^{\prime}=y \quad \Rightarrow$ order 1
(b) $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=y^{3} \Rightarrow$ order 2
(c) $\sqrt{y^{\prime \prime}}+\sin (x y)=1 \Rightarrow$ order 2

In MATH 138, we'll focus mainly on BEs of order 1.

Well learn methods for solving two types of LEs:

1. Separable DEs (next lesson!)
2. Linear DEs, which have the form

$$
A_{n}(x) y_{\uparrow}^{(n)}+A_{n-1}(x) y^{(n-1)}+\cdots+A_{1}(x) y^{\prime}+A_{0}(x) y=C(x)
$$

Examples:
(a) $y^{\prime \prime}+\sin (x) y=x^{3} \Rightarrow$ linear
(b) $y^{\prime} y=e^{x} \quad \Rightarrow$ non-linear (due to $y^{\prime} y$)
(c) $y^{\prime}+y^{2}=x+2 \quad \Rightarrow$ non-linear (due to y^{2})

Although finding solutions to BEs can be hard, it's
usually easy to verify whether a specific function is a Solution or not.

Ex: Is $y=\sqrt{x^{2}+1}$ a solution to the $D E$

$$
\frac{d y}{d x}=\frac{x}{y} ?
$$

Solution: Let's compute the left and right hand sides.
LBS: $\quad \frac{d y}{d x}=\frac{d}{d x} \sqrt{x^{2}+1}=\not 2 x \cdot \frac{1}{R}\left(x^{2}+1\right)^{-1 / 2}=\frac{x}{\sqrt{x^{2}+1}}$

RMS: $\quad \frac{x}{y}=\frac{x}{\sqrt{x^{2}+1}}$

Since LHS $=$ RHS: yes $y=\sqrt{x^{2}+1}$ is a Solution.

Direction Fields

Given a $D E$ of the form $y^{\prime}=g(x, y)$, we can actually
see graphically what its solution curves will look like!

Indeed, at each point $(x, y), y^{\prime}=g(x, y)$ tells us the slope of the tangent line to $y=f(x)$ at (x, y).

Ex: Consider the $D E \quad y^{\prime}=\frac{x}{y}$.

At each (x, y), let's plot a small line with slope $y^{\prime}=\frac{x}{y}$!

We get the direction
field shown on the right
(a few points have been singled out randomly.)

Two solutions to the

DE $y^{\prime}=\frac{x}{y}$. The
sloped lines are tangent to the curves at each point (x, y).

