A differential equation (DE) is an equation involving an UnKnown function and its derivatives. The equation may contain X, Y, Y', Y", ..., $Y^{(n)}$. Typically, our goal is to solve the equation for the function(s) Y.

Solutions to this DE include
$$y = e^x$$
, but also $y = 0$,
 $y = 2e^x$, $y = \pi e^x$, ... In general, $y = Ce^x$, $C \in \mathbb{R}$

Examples :

- (a) $y' = y \implies \text{order 1}$ (b) $\frac{d^2y}{dx^2} + x \frac{dy}{dx} = y^3 \implies \text{order 2}$ (c) $\sqrt{y''} + \sin(xy) = 1 \implies \text{order 2}$
- In MATH 138, we'll focus mainly on DEs of order 1. We'll learn methods for solving two types of DEs:
 - 1. Separable DEs (next lesson!)
 - 2. Linear DEs, which have the form

$$A_n(x) y^{(n)} + A_{n-1}(x) y^{(n-1)} + \dots + A_1(x) y' + A_0(x) y = C(x)$$

Examples:

(a)
$$y'' + \sin(x)y = x^3 \implies linear$$

(b) $y'y = e^x \implies non-linear$ (due to $y'y$)
(c) $y' + y^2 = x + 2 \implies non-linear$ (due to y^2)

a solution or not.

Ex: Is
$$y = \sqrt{x^2 + 1}$$
 a solution to the DE
 $\frac{dy}{dx} = \frac{x}{y}$?

<u>Solution</u>: Let's compute the left and right hand sides. <u>LHS</u>: $\frac{dy}{dx} = \frac{d}{dx}\sqrt{x^2+1} = \frac{2}{x} \cdot \frac{1}{2}(x^2+1)^2 = \frac{x}{\sqrt{x^2+1}}$

$$\frac{RHS:}{Y} = \frac{x}{\sqrt{x^2+1}}$$

Since LHS = RHS: Yes $y = \sqrt{x^2+1}$ is a solution.

Direction Fields

Given a DE of the form y' = g(x,y), we can actually see graphically what its solution curves will look like! Indeed, at each point (x,y), y' = g(x,y) tells us the slope of the tangent line to y = f(x) at (x,y).

Ex: Consider the DE
$$y' = \frac{x}{y}$$
.

At each (x,y), let's plot a small line with

slope
$$y' = \frac{x}{y}$$
!

Two solutions to the DE $y' = \frac{x}{y}$. The sloped lines are tangent to the curves at each point (x,y).