§5.1- Infinite Series

Let $\left\{a_{n}\right\}$ be a sequence. An infinite series is an expression of the form

$$
a_{1}+a_{2}+a_{3}+a_{4}+\cdots=\sum_{n=1}^{\infty} a_{n}
$$

Ex: $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\underbrace{\frac{1}{2}+\frac{1}{4}}_{\text {sum }=0.75}+\frac{1}{8}+\frac{1}{16}+\cdots$

Perhaps these terms add to 1? Hard to tell...

Let's formalize the ideas from the examples above.
Definition: Given a series $\sum_{n=1}^{\infty} a_{n}$, we define its $N^{\text {th }}$ partial sum by

$$
S_{N}=a_{1}+a_{2}+\cdots+a_{N}=\sum_{n=1}^{N} a_{n}
$$

If $\lim _{N \rightarrow \infty} S_{N}=S$ for some (finite) real number S, then
we say $\sum_{n=1}^{\infty} a_{n}$ converges to S and write

$$
\sum_{n=1}^{\infty} a_{n}=S
$$

If instead $\lim _{N \rightarrow \infty} S_{N}$ DNE (i.e., doesn't approach anything or is $\pm \infty$), we say $\sum_{n=1}^{\infty} a_{n}$ diverges.

Ex: For $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots$, we have

$$
\begin{aligned}
& S_{1}=1 / 2 \\
& S_{2}=1 / 2+1 / 4=3 / 4 \\
& S_{3}=1 / 2+1 / 4+1 / 8=7 / 8 \\
& S_{4}=1 / 2+1 / 4+1 / 8+1 / 16=15 / 16
\end{aligned}
$$

Noticing a pattern, we have $S_{N}=\frac{2^{N}-1}{2^{N}}$, hence

$$
\lim _{n \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} \frac{2^{N}-1}{2^{N}}=\lim _{N \rightarrow \infty}\left(1-\frac{1^{0}}{2^{N}}\right)=1 .
$$

Thus, $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1 \quad$ (convergent!)

You can think about this particular sum as follows:
Imagine sharing a cake with your infinitely many friends.

Mmmmm! Cake!

Well divide up the cake in the following way:

In total, $1 / 2+1 / 4+1 / 8+1 / 16+\cdots=1$ cake!

Ex: For $\sum_{n=0}^{\infty}(-1)^{n}=1-1+1-1+\cdots$, we have

$$
\begin{aligned}
& S_{0}=1 \\
& S_{1}=1-1=0, \\
& S_{2}=1-1+1=1 \\
& S_{3}=1-1+1-1=0, \ldots
\end{aligned}
$$

In general, $S_{N}= \begin{cases}1 & \text { if } N \text { is even, } \\ 0 & \text { if } N \text { is odd. }\end{cases}$
Thus, $\lim _{N \rightarrow \infty} S_{N}$ DNE, so $\sum_{n=0}^{\infty}(-1)^{n}$ diverges.

Ex: For $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$, we have

$$
\begin{aligned}
& S_{1}=1-\frac{1}{2} \\
& S_{2}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)=1-\frac{1}{3} \\
& S_{3}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)=1-\frac{1}{4}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& S_{N}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots \\
& \cdots+\left(\frac{1}{N-1}+\frac{1}{N}\right)+\left(\frac{1}{N}-\frac{1}{N+1}\right)=1-\frac{1}{N+1}
\end{aligned}
$$

Thus, $\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N+1}\right)^{0}=1$, hence

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1 \quad(\text { convergent! })
$$

Note: $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$ referred to as a telescoping series.
Since the middle terms "collapse" when we compute S_{N} !

Ex: It turns out that the harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

diverges, even though the terms $\frac{1}{n}$ are very tiny When n is large. Let's see why!

$$
\begin{aligned}
& S_{2}=1+1 / 2 \\
& S_{4}=1+1 / 2+\underbrace{1 / 3}_{\geqslant \frac{1}{4}+\frac{1}{4}=1 / 2}+1 / 4 \geqslant 1+2\left(\frac{1}{2}\right) \\
& S_{8}=1+\frac{1}{2}+\underbrace{\frac{1}{3}+\frac{1}{4}}_{\geqslant 1 / 2}+\underbrace{\frac{1}{5}}_{\geqslant 18+1 / 8+1 / 8+1 / 8}+1 / 2 \\
& \frac{1}{6}+\frac{1}{7}+\frac{1}{8} \geqslant 1+3\left(\frac{1}{2}\right) \\
& S_{16}=1+\frac{1}{2}+\underbrace{\frac{1}{3}+\frac{1}{4}}_{\geqslant 1 / 2}+\underbrace{\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}}_{\geqslant 1 / 2}+\underbrace{\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}}_{\geqslant 1 / 16+1 / 16+116+116+1 / 16+116+1 / 16+1 / 16=\frac{1}{9}} \\
& \geqslant 1+4(1 / 2)
\end{aligned}
$$

In general,

$$
S_{2^{N}} \geqslant \underbrace{1+N\left(\frac{1}{2}\right)}_{\rightarrow \infty} \text { as } N \rightarrow \infty
$$

Thus, $\lim _{N \rightarrow \infty} S_{N}=\infty$, meaning $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

It turns out that convergent series possess many of the same properties as finite sums. The

Properties of Convergent Series
Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge with $\sum_{n=1}^{\infty} a_{n}=A$
and $\sum_{n=1}^{\infty} b_{n}=B$.

1. For any $k \in \mathbb{R}, \sum_{n=1}^{\infty} k a_{n}$ converges and $\sum_{n=1}^{\infty} k a_{n}=k A$
2. $\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)$ converges and $\sum_{n=1}^{\infty}\left(a_{n} \pm b_{n}\right)=A \pm B$

Furthermore, if $\left\{C_{n}\right\}_{n=1}^{\infty}$ is a sequence of real numbers and $j \in \mathbb{N}$, then
3. $\sum_{n=1}^{\infty} C_{n}$ converges if and only if $\sum_{n=j}^{\infty} C_{n}$ converges.

Note: 1. \& 2. follow from rules for sums and scalar multiples of sequences, applied to the sequence of partial sums $\left\{S_{N}\right\}_{N=1}^{\infty}$ for $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$.
3. follows from the fact that

$$
\sum_{n=1}^{\infty} c_{n}=\underbrace{\left(c_{1}+c_{2}+\cdots+c_{j-1}\right)}_{\text {finite! }}+\sum_{n=j}^{\infty} c_{n}
$$

So convergence of the LHS $\left(\sum_{n=1}^{\infty} C_{n}\right)$ will occur exactly when $\sum_{n=j}^{\infty} c_{n}$ converges.

Property 3 tells us that when checking the convergence/ divergence of series, we can look past (i.e., ignore) any finite number of terms.

Convergence / divergence is determined by the infinitely many terms at the end of the series!

