Series Convergence Tests

For series that are neither geometric nor telescoping, it can be VERY hard to find a nice expression for the partial sums, SN. As a result, it is often VERY hard to find the exact sum of such a series!

e.g. We will soon be able to show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$

Converges. But what's the sum? $S_2 = 1.25$, $S_3 \approx 1.361$, $S_4 \approx 1.424$ Perhaps the sum is 1.5? 2? Nope! In 1735, after Many prominent Mathematicians failed to find the sum, Euler proved that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$
Proof: Beyond the
scope of
MATH 138!

From this point onward, We Won't be interested in
finding exact sums, but deciding whether a series
converges or diverges. We have many tests for this!
$$\frac{§5.3 - \text{The Divergence Test}}{Our first test}$$
 is based on the following observation:
If $\sum_{n=1}^{\infty} a_n$ has any hope of converging, the
terms a_n must become small (i.e., $a_n \rightarrow 0$).

The Divergence Test
If
$$\lim_{n\to\infty} a_n \neq 0$$
 (or if $\lim_{n\to\infty} a_n DNE$) then $\sum_{n=1}^{\infty} a_n$ diverges.

<u>Proof</u>: We will prove the contrapositive :

"If
$$\sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{n \to \infty} a_n = 0$ "
So, suppose $\sum_{n=1}^{\infty} a_n$ converges. This means that

 $\lim_{n \to \infty} S_n = S \quad \text{for some SER, where } S_n = a_1 + a_2 + \dots + a_n$

is the nth partial sum. Thus,

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\underbrace{(a_1 + a_2 + \dots + a_n)}_{S_n} - \underbrace{(a_1 + a_2 + \dots + a_{n-1})}_{S_{n-1}} \right)$$
$$= \lim_{n \to \infty} \underbrace{(S_n - S_{n-1})}_{\Rightarrow S \to S}$$
$$= S - S$$
$$= 0.$$

$$\frac{E_{X}}{\sum_{n=1}^{\infty}} \frac{n}{n+1} = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots$$

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1+0} = 1$$

Since
$$\lim_{n \to \infty} \frac{n}{n+1} \neq 0$$
, $\sum_{n=1}^{\infty} \frac{n}{n+1} = \frac{diverges}{diverges}$ by the divergence test.
 $\underline{E_{X:}} = \sum_{n=1}^{\infty} Sec(\frac{1}{n}) = Sec(1) + Sec(\frac{1}{2}) + Sec(\frac{1}{3}) + \cdots$
 $\lim_{n \to \infty} Sec(\frac{1}{n}) = Sec(\lim_{n \to \infty} \frac{1}{n}) = Sec(0) = 1 \quad (\neq 0)$
Thus, $\sum_{n=1}^{\infty} Sec(\frac{1}{n}) = \frac{diverges}{diverges}$ by the divergence test.
 $\underline{E_{X:}} = \sum_{n=1}^{\infty} \frac{1}{n(1+lnn)}$
In this case we have $\lim_{n \to \infty} \frac{1}{n(1+lnn)} = 0$. So, what
can we conclude from this?
NOTHING!

Important Remark:
The divergence test gives no information if
$$\lim_{n \to \infty} a_n = 0$$
.
The series could converge or diverge!

Ex: Both
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
 and $\sum_{n=1}^{\infty} \frac{1}{n}$ satisfy $\lim_{n \to \infty} a_n = 0$,

yet
$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$
 converges while $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.