§5.5 - The Comparison Tests

We can compare series in much the same way that we compare improper integrals!

The Comparison Test
Suppose that
$$0 \le a_n \le b_n$$
 for all n sufficiently large.
(i) If $\sum b_n$ converges, then $\sum a_n$ converges.
(ii) If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Note: If
$$\sum$$
 an converges or \sum bn diverges,
the comparison test gives no information!

Ex: Do the following Converge or diverge?
(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{s}+2}$$

<u>Solution:</u> Note that $0 \leq \frac{1}{n^{5}+2} \leq \frac{1}{n^{5}}$ for all n.

Since
$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{p}}}$$
 is a convergent p-series (here, $p=5>1$),
 $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{p}}+2}$ converges by comparison.
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+n}$
Solution: We have $0 \le \frac{2^{n}}{3^{n}+n} \le \frac{2^{n}}{3^{n}} = (\frac{2}{3})^{n}$ and
 $\sum_{n=0}^{\infty} (\frac{2}{3})^{n}$ is a convergent geometric series $(|r| = \frac{3}{3} \le 1)$.
Consequently, $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+n}$ converges by comparison.
(c) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{\frac{1}{2}}+n+1}}{n^{\frac{n}{2}}}$
Solution: We have
 $\frac{\sqrt{n^{\frac{3}{2}}+n+1}}{n^{\frac{n}{2}}} \ge \frac{\sqrt{n^{\frac{3}{2}}}}{n^{\frac{3}{2}}} = \frac{1}{\sqrt{n}} \ge 0$
and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent p-series (as $p=\frac{1}{2} \le 1$).

Thus,
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + n + 1}}{n^2}$$
 also diverges by comparison.
(d) $\sum_{n=1}^{\infty} \frac{\cos^2(n) + 1}{n^8}$

(d)
$$\sum_{n=1}^{\infty} \frac{\cos^2(n)+1}{N^8}$$

<u>Solution</u>: Since $0 \le \cos^2(n) \le 1$, we have

$$0 \leq \frac{\cos^{2}(n)+1}{n^{8}} \leq \frac{1+1}{n^{8}} = \frac{2}{n^{8}}$$

$$n^{\circ} \qquad n^{\circ} \qquad n^{\circ} \qquad n^{\circ}$$
The series $\sum_{n=1}^{\infty} \frac{2}{n^{\circ}} = 2 \sum_{n=1}^{\infty} \frac{1}{n^{\circ}}$ converges, as it is
2 times a convergent p-series. As a result,
 $\sum_{n=1}^{\infty} \frac{\cos^{2}(n) + 1}{n^{\circ}} = \frac{\operatorname{converges}}{n^{\circ}}$ by comparison.
(e) $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$

$$\sum_{n=1}^{\infty} \frac{\cos^2(n) + 1}{n^8} = \frac{\operatorname{converges}}{n^8} \text{ by Comparison.}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

Idea: Try removing the "-1" in the denominator. We have $\frac{1}{2^n-1} \ge \frac{1}{2^n} = \left(\frac{1}{2}\right)^n \ge 0$ for all n and

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$
 is a convergent geometric series ...
... but this isn't helpful!

We still guess that
$$\sum_{n=1}^{\infty} \frac{1}{2^n-1}$$
 converges, as $\sum_{n=1}^{\infty} \frac{1}{2^n}$
converges and $\frac{1}{2^n-1} \approx \frac{1}{2^n}$ when n is large.
To make this precise, we'll need a new test!

The Limit Comparison Test (LCT)
Let
$$\sum a_n$$
 and $\sum b_n$ be series of positive terms,
and let
 $L = \lim_{n \to \infty} \frac{a_n}{b_n}$
If L exists and $0 \le L \le \infty$, then $\sum a_n$ and $\sum b_n$
either both converge or both diverge.

Back to the example of
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$
:
Let's try the LCT with $a_n = \frac{1}{2^n - 1}$ and $b_n = \frac{1}{2^n}$
We have
 $L = \lim_{n \to \infty} \frac{a_n}{b_n}$

nΛ

$$= \lim_{n \to \infty} \frac{\left(\frac{1}{2^{n}-1}\right)}{\left(\frac{1}{2^{n}}\right)}$$
$$= \lim_{n \to \infty} \frac{2^{n}}{2^{n}-1}$$

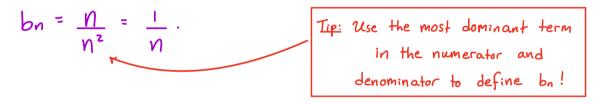
$$= \lim_{n \to \infty} \frac{\underline{\lambda}^n}{\underline{\lambda}^n \left(1 - \frac{1}{\underline{\lambda}^n}\right)} = \frac{1}{1 - 0} = 1.$$

Since L exists and O<L<00, the LCT implies

- that $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ either both converge or
- both diverge. Thus, since $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is a convergent
- geometric series $(|r|=\frac{1}{2}), \sum_{n=1}^{\infty} \frac{1}{2^n-1}$ must <u>converge</u> too!

Ex: Does
$$\sum_{n=1}^{\infty} \frac{n}{n^2+6}$$
 converge or diverge?
Previously we used the integral test
to show this is divergent... but that
took a lot of work!

Solution: Let's try the LCT with
$$a_n = \frac{h}{(n^2)+6}$$
 and



We have

$$L = \lim_{n \to \infty} \frac{\alpha_n}{b_n} = \lim_{n \to \infty} \frac{\left(\frac{n}{n^2 + 6}\right)}{\left(\frac{1}{n}\right)}$$
$$= \lim_{n \to \infty} \frac{n^2}{n^2 + 6}$$
$$\frac{LH}{m + \infty} \frac{2n}{2n} = 1 \in (0, \infty).$$
By the LCT, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (it's the harmonic series!), $\sum_{n=1}^{\infty} \frac{n}{n^2 + 6}$ must also diverge.

Ex: Does
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^6+4}}{2n^5+1}$$
 converge or diverge?
Solution: Use the LCT with $a_n = \frac{\sqrt{n^6+4}}{2n^5+1}$ and
 $b_n = \frac{\sqrt{n^6}}{n^5} = \frac{n^3}{n^5} = \frac{1}{n^2}$. We have
 $L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt{\sqrt{n^6+4}}}{(\frac{1}{n^2})}$
 $= \lim_{n \to \infty} \frac{n^2\sqrt{n^6}\sqrt{1+\frac{4}{n^6}}}{2n^5+1}$
 $= \lim_{n \to \infty} \frac{n^2\sqrt{n^6}\sqrt{1+\frac{4}{n^6}}}{2n^5+1}$
 $= \lim_{n \to \infty} \frac{n^2\sqrt{n^6}\sqrt{1+\frac{4}{n^6}}}{2n^5+1}$
Thus, by the LCT, since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent

p-series (p=2>1),
$$\sum_{n=1}^{1} \frac{\sqrt{n^{6}+4}}{2n^{5}+1}$$
 must converge too!

<u>Ex:</u> Suppose that $a_n > 0$ for all n and $\sum a_n$ converges. Show that $\sum sin(a_n)$ must also converge.

Solution: Since
$$\sum a_n$$
 converges, $\lim_{n \to \infty} a_n = 0$ by the
divergence test. Thus, for n sufficiently large, we'll have
 $0 \le a_n \le \frac{\pi}{2}$, meaning $\sin(a_n) > 0$. Now let's compare!
 $L = \lim_{n \to \infty} \frac{\sin(a_n)}{2n^0}$
 $= \lim_{x \to 0^+} \frac{\sin(x)}{x} = 1 \in (0,\infty)$
By the LCT, since $\sum a_n$ converges, $\sum \sin(a_n)$ also

Converges.

Extensions of the LCT Assume that $\sum a_n$ and $\sum b_n$ are series with positive terms and let $L = \lim_{n \to \infty} \frac{a_n}{b_n}.$

(i) If
$$L=0$$
 and $\sum b_n$ converges, then $\sum a_n$ converges.
(ii) If $L=\infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Ex: Does
$$\sum_{n=2}^{\infty} \frac{1}{\ln n}$$
 Converge or diverge?

Solution: If we try the LCT with
$$a_n = \frac{1}{lnn}$$
 and $b_n = \frac{1}{n}$, we get

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{\ln n}}{\frac{1}{n}}$$
$$= \lim_{n \to \infty} \frac{n}{\ln n}$$
$$= \lim_{n \to \infty} \frac{1}{\ln n}$$
$$= \lim_{n \to \infty} \frac{1}{\ln n}$$
$$= \lim_{n \to \infty} n = \infty$$

Since $L = \infty$ and $\sum b_n = \sum \frac{1}{n}$ diverges, by the

LCT,
$$\sum_{n=2}^{\infty} \frac{1}{\ln n}$$
 diverges too!

[Alternatively, one could use a direct comparison! Since $lnn \in n$, we have $\frac{1}{lnn} \ge \frac{1}{n} \ge 0$; and since $\sum \frac{1}{n}$ diverges, $\sum \frac{1}{lnn}$ must diverge by comparison.]