$\S 5.5$ - The Comparison Tests

We can compare series in much the same way that we compare improper integrals!

The Comparison Test
Suppose that $0 \leq a_{n} \leq b_{n}$ for all n sufficiently large.
(i) If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
(ii) If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.

Note: If $\sum a_{n}$ converges or $\sum b_{n}$ diverges, the comparison test gives no information!

Ex: Do the following Converge or diverge?
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{5}+2}$

Solution: Note that $0 \leq \frac{1}{n^{5}+2} \leq \frac{1}{n^{5}}$ for all n.

Since $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ is a convergent p-series (here, $p=5>1$), $\sum_{n=1}^{\infty} \frac{1}{n^{5}+2}$ converges by comparison.
(b) $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+n}$

Solution: We have $0 \leqslant \frac{2^{n}}{3^{n}+n} \leqslant \frac{2^{n}}{3^{n}}=\left(\frac{2}{3}\right)^{n}$ and $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}$ is a convergent geometric series $(|r|=2 / 3<1)$.

Consequently, $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+n}$ converges by comparison.
(c) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+n+1}}{n^{2}}$

Solution: We have

$$
\frac{\sqrt{n^{3}+n+1}}{n^{2}} \geqslant \frac{\sqrt{n^{3}}}{n^{2}}=\frac{n^{3 / 2}}{n^{2}}=\frac{1}{\sqrt{n}} \geqslant 0
$$

and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent p-series (as $p=1 / 2 \leq 1$).

Thus, $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+n+1}}{n^{2}}$ also diverges by comparison.
(d) $\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)+1}{n^{8}}$

Solution: Since $0 \leqslant \cos ^{2}(n) \leqslant 1$, we have

$$
0 \leq \frac{\cos ^{2}(n)+1}{n^{8}} \leq \frac{1+1}{n^{8}}=\frac{2}{n^{8}} .
$$

The series $\sum_{n=1}^{\infty} \frac{2}{n^{8}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{8}}$ converges, as it is 2 times a convergent p-series. As a result, $\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)+1}{n^{8}}$ converges by comparison.
(e) $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$

Idea: Try removing the " -1 " in the denominator.
We have $\frac{1}{2^{n}-1} \geqslant \frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n} \geqslant 0$ for all n and
$\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ is a convergent geometric series ...
... but this isn't helpful!

Recall: Being larger than a convergent series or smaller than a divergent series tells us nothing!

We still guess that $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ converges, as $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges and $\frac{1}{2^{n}-1} \approx \frac{1}{2^{n}}$ when n is large.

To make this precise, we'll need a new test!

The Limit Comparison Test (LCT)
Let $\sum a_{n}$ and $\sum b_{n}$ be series of positive terms, and let

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

If L exists and $0<L<\infty$, then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.

Back to the example of $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$:

Let's try the LCT with $a_{n}=\frac{1}{2^{n}-1}$ and $b_{n}=\frac{1}{2^{n}}$
We have

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \\
&=\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{2^{n}-1}\right)}{\left(\frac{1}{2^{n}}\right)} \\
&=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}-1} \\
&=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}\left(1-\frac{1}{2^{n}}\right)}=\frac{1}{1-0}=1 .
\end{aligned}
$$

Since L exists and $0<L<\infty$, the LCT implies that $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ either both converge or both diverge. Thus, since $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is a convergent geometric series $(|r|=1 / 2), \sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ must converge too!

Ex: Does $\sum_{n=1}^{\infty} \frac{n}{n^{2}+6}$ converge or diverge?
$\left.\begin{array}{l}\text { Previously we used the integral test } \\ \text { to show this is divergent.... but that } \\ \text { took a lot of work! }\end{array}\right]$

Solution: Let's try the LCT with $a_{n}=\frac{n}{n n^{2}+6}$ and

$$
b_{n}=\frac{n}{n^{2}}=\frac{1}{n} .
$$

Lip: Use the most dominant term
in the numerator and denominator to define b_{n} !

We have

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\left(\frac{n}{n^{2}+6}\right)}{\left(\frac{1}{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+6} \\
& =\lim _{n \rightarrow \infty} \frac{2 n}{2 n}=1 \in(0, \infty) .
\end{aligned}
$$

By the LCT, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (it's the harmonic series!), $\sum_{n=1}^{\infty} \frac{n}{n^{2}+6}$ must also diverge.

Ex: Does $\sum_{n=1}^{\infty} \frac{\sqrt{n^{6}+4}}{2 n^{5}+1}$ converge or diverge?
Solution: Use the LCT with $a_{n}=\frac{\sqrt{n^{6}+4}}{2 n^{5}+1}$ and $b_{n}=\frac{\sqrt{n^{6}}}{n^{5}}=\frac{n^{3}}{n^{5}}=\frac{1}{n^{2}}$. We have

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\left(\frac{\sqrt{n^{6}+4}}{2 n^{5}+1}\right)}{\left(\frac{1}{n^{2}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2} \sqrt{n^{6}+4}}{2 n^{5}+1} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2} \sqrt{n^{6}} \sqrt{1+4 / n^{6}}}{2 n^{5}+1} \\
& =\lim _{n \rightarrow \infty} \frac{n^{5} \sqrt{1+4 / n^{6}}}{n^{5}\left(2+1 / n^{5}\right)}=\frac{\sqrt{1+0}}{2+0}=\frac{1}{2} \in(0, \infty) .
\end{aligned}
$$

Thus, by the LCT, since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent p-series $\quad(p=2>1), \sum_{n=1}^{\infty} \frac{\sqrt{n^{6}+4}}{2 n^{5}+1}$ must converge too!

Ex: Suppose that $a_{n}>0$ for all n and $\sum a_{n}$ converges. Show that $\sum \sin \left(a_{n}\right)$ must also converge.

Solution: Since $\sum a_{n}$ converges, $\lim _{n \rightarrow \infty} a_{n}=0$ by the divergence test. Thus, for n sufficiently large, well have $0<a_{n}<\pi / 2$, meaning $\sin \left(a_{n}\right)>0$. Now let's compare!

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{\sin \left(a_{n}\right)^{0}}{q_{n}^{0}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{x}=1 \in(0, \infty)
\end{aligned}
$$

By the LCT, since $\sum a_{n}$ converges, $\sum \sin \left(a_{n}\right)$ also converges.

Extensions of the LCT

Assume that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms and let

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

(i) If $L=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
(ii) If $L=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Ex: Does $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ Converge or diverge?

Solution: If we try the LCT with $a_{n}=\frac{1}{\ln n}$ and and $b_{n}=\frac{1}{n}$, we get

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{1}{\ln n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{n}{\ln n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1 / n} \\
& =\lim _{n \rightarrow \infty} n=\infty
\end{aligned}
$$

Since $L=\infty$ and $\sum b_{n}=\sum \frac{1}{n}$ diverges, by the LCT, $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges too!
[Alternatively, one could use a direct comparison!
Since $\ln n \leq n$, we have $\frac{1}{\ln n} \geqslant \frac{1}{n}>0$; and since $\sum \frac{1}{n}$ diverges, $\sum \frac{1}{\ln n}$ must diverge by comparison.]

