§6.9- The Binomial Series
You may be familiar with the binomial formula for expanding $(1+x)^{m}$ when m is a positive integer:

Binomial Formula: If m is a positive integer, then

$$
(1+x)^{m}=\sum_{n=0}^{m}\binom{m}{n} x^{n} \text { where }\binom{m}{n}=\frac{m!}{n!(m-n)!}
$$

Example:

$$
\begin{aligned}
(1+x)^{3} & =\binom{3}{0} x^{0}+\binom{3}{1} x+\binom{3}{2} x^{2}+\binom{3}{3} x^{3} \\
& =\frac{3!}{0!(3-0)!}+\frac{3!}{1!(3-1)!} x+\frac{3!}{2!(3-2)!} x^{2}+\frac{3!}{3!(3-3)!} x^{3} \\
& =\frac{3!}{0!\cdot 3!}+\frac{3!}{1!2!} x+\frac{3!}{2!1!} x^{2}+\frac{3!}{3!0!} x^{3} \\
& =1+3 x+3 x^{2}+x^{3}
\end{aligned}
$$

Using Maclaurin series, we can expand $(1+x)^{m}$ for any real number m, not just positive integers!

$$
\begin{array}{ll}
f(x)=(1+x)^{m} & f(0)=1 \\
f^{\prime}(x)=m(1+x)^{m-1} & \\
f^{\prime \prime}(x)=m(m-1)(x+1)^{m-2} & f^{\prime}(0)=m \\
f^{\prime \prime \prime}(x)=m(m-1)(m-2)(x+1)^{m-3} & f^{\prime \prime}(0)=m(m-1) \\
&
\end{array}
$$

In general, we have $f(0)=1$ and for $n \in \mathbb{N}$,

$$
f^{(n)}(0)=m(m-1)(m-2) \cdots(m-n+1)
$$

Hence, we obtain the Maclaurin series

$$
1+\sum_{n=1}^{\infty} \frac{m(m-1)(m-2) \cdots(m-n+1)}{n!} x^{n}
$$

Let's use the ratio test to find its radius of convergence!

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{\frac{m(m-1)(m-2) \cdots(m-n+1)(m-n)}{(n+1)!} x^{n+1}}{\frac{m(m-1)(m-2) \cdots(m-n+1)}{n!} x^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{m-n}{n+1}\right||x| \\
& =|x|
\end{aligned}
$$

We have $L<1 \Leftrightarrow|x|<1 \Leftrightarrow x \in(-1,1)$, so the Maclaurin series has radius 1 and converges at least for $x \in(-1,1)$.

Remarks:

1. Depending on m, the series may also converge at the endpoints, but this is complicated. Youire not expected to know this for $(1+x)^{m}$.
2. When $m \in \mathbb{N}$, the Maclaurin series is just a polynomial,
since $m(m-1)(m-2) \cdots(m-n+1)=0$ when $m \in \mathbb{N}$ and $n>m$; hence it converges for all x. In fact, it just ends up being our usual binomial formula!

Notation: We adopt the "m choose n" notation for any $m \in \mathbb{R}$. For $m \in \mathbb{R}$, we define $\binom{m}{0}=1$ and

$$
\binom{m}{n}=\frac{m(m-1)(m-2) \cdots(m-n+1)}{n!} \text { for } n \geqslant 1
$$

When $m \in \mathbb{N}$, this is exactly $\frac{m!}{n!(m-n)!}$ - but " m !" isn't defined for $m \notin \mathbb{N}$. Writing $\frac{m(m-1)(m-2) \cdots(m-n+1)}{n!}$ instead allows us to make sense of $\binom{m}{n}$ for any $m \in \mathbb{R}$!

It turns out that $(1+x)^{m}$ is equal to its Maclaurin series for all x in the interval of convergence. We
wont prove this here. Instead, let's summarize our results and explore some examples!

The Binomial Series: For any $m \in \mathbb{R}$ and all $x \in(-1,1)$,

$$
(1+x)^{m}=\sum_{n=0}^{\infty}\binom{m}{n} x^{n}
$$

where $\binom{m}{0}=1$ and $\binom{m}{n}=\frac{m(m-1)(m-2) \cdots(m-n+1)}{n!} \quad(n \geqslant 1)$.

Ex: Find the Maclaurin series for each function.
(a) $f(x)=\frac{1}{\sqrt{1+x}}$

Solution:

$$
\begin{aligned}
\frac{1}{\sqrt{1+x}}=(1+x)^{-1 / 2} & =\sum_{n=0}^{\infty}\binom{-1 / 2}{n} x^{n} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1 / 2)(-3 / 2)(-5 / 2) \cdots(-1 / 2-n+1)}{n!} x^{n} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2} x^{n}
\end{aligned}
$$

and this is valid for $|x|<1$.
(b) $\quad g(x)=\frac{1}{\sqrt{1-x^{2}}}$

Solution:
Replace x in (a) with $-x^{2}$

$$
\begin{aligned}
\frac{1}{\sqrt{1-x^{2}}}=\frac{1}{\sqrt{1+\left(-x^{2}\right)}} & =1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{2^{n} \cdot n!}\left(-x^{2}\right)^{n} \\
& =1+\sum_{n=1}^{\infty} \frac{\overbrace{(-1)^{n}(-1)^{n}}^{=1} 1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot n!} x^{2 n} \\
& =1+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot n!} x^{2 n}
\end{aligned}
$$

and this is valid when $\left|-x^{2}\right|<1 \Leftrightarrow|x|^{2}<1 \Leftrightarrow|x|<1$
(c) $\quad h(x)=\arcsin x$

Solution: Integrate the series from (b)!

$$
\arcsin x=\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

$$
\begin{aligned}
& =\int\left(1+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot n!} x^{2 n}\right) d x \\
& =x+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot n!(2 n+1)} x^{2 n+1}+C \longleftarrow \\
& =x+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot n!(2 n+1)} x^{2 n+1} \quad
\end{aligned} \quad \text { and } c=0 \text { since } \quad \text { arcsin(0)=0. }
$$

Since integration doesn't affect the radius of convergence, this is valid for $|x|<1$ (and, as mentioned earlier, we wont deal with endpoints for the binomial series!)

