§3.1 -Area Between Curves
Recall: If $f(x) \geqslant 0$, then the area between the graph of f and the x-axis from $x=a$ to $x=b$ is

$$
\begin{equation*}
\text { Area }=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

More generally, the area between two curves from $x=a$ to $x=b$ can be calculated as

Note: Formula (1) is really a special case of formula (2) where $y_{\text {upper }}=f(x)$ and $y_{\text {lower }}=0$, the x-axis.

Ex: Find the area enclosed between $y=x$ and $y=x^{2}$
(a) from $x=2$ to $x=3$
(b) from $x=0$ to $x=3$

Solution: Start with a picture!
(a) For $x \in[2,3]$, we have $x \leq x^{2}$, hence

$$
\begin{aligned}
\text { Area } & =\int_{2}^{3}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x \\
& =\int_{2}^{3}\left(x^{2}-x\right) d x \\
& =\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{2}^{3}=\ldots=\frac{23}{6}
\end{aligned}
$$

(b) The curves intersect when $x^{2}=x$, so $x=0$ or $x=1$.

For $x \in[0,1]$, we have $x^{2} \leq x$; while for $x \in[1,3]$, we have $x \leq x^{2}$, hence

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x+\int_{1}^{3}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x \\
& =\int_{0}^{1}\left(x-x^{2}\right) d x+\int_{1}^{3}\left(x^{2}-x\right) d x \\
& =\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}+\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{3}=\cdots=\frac{1}{6}+\frac{14}{3}=\frac{29}{6}
\end{aligned}
$$

Ex: Calculate the area enclosed between $y=x^{2}$ and

$$
y=2 x^{2}-1
$$

Solution: The curves intersect when $x^{2}=2 x^{2}-1$, or equivalently, when $x^{2}=1$, hence $x= \pm 1$. We have $y_{\text {upper }}=x^{2}$ and $y_{\text {lower }}=2 x^{2}-1$. Thus,

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{1}\left(x^{2}-\left(2 x^{2}-1\right)\right) d x \\
& =\int_{-1}^{1}\left(1-x^{2}\right) d x \\
& =\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=\cdots=\frac{4}{3}
\end{aligned}
$$

Ex: Calculate the area enclosed between $y=\cos x$ and $y=\sin x$ from $x=0$ to $x=\pi$.

Solution: The curves cross when $x=\pi / 4$. We'll need to use two separate integrals to calculate the area.

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 4}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x+\int_{\pi / 4}^{\pi}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x \\
& =\int_{0}^{\pi / 4}(\cos x-\sin x) d x+\int_{\pi / 4}^{\pi}(\sin x-\cos x) d x \\
& =[\sin x+\cos x]_{0}^{\pi / 4}+[-\cos x-\sin x]_{\pi / 4}^{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right)-(\sin 0+\cos 0)\right]+\left[(-\cos \pi-\sin \pi)-\left(-\cos \frac{\pi}{4}-\sin \frac{\pi}{4}\right)\right] \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-1-(-1)+\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=2 \sqrt{2}
\end{aligned}
$$

If the region is enclosed between a left curve and a right curve from $y=c$ to $y=d$, then we can get the area in between by integrating with respect to y :

$$
\text { Area }=\int_{y=c}^{y=d}\left(X_{\text {rightmost }}-X_{\text {leftmost }}\right) d y
$$

Ex: Find the area between $x=y-1$ and $x=y^{2}$ for $y \in[0,2]$.
Solution:

Here, the region is bounded between $X_{\text {leftmost }}=y-1$ and $x_{\text {rightmost }}=y^{2}$ from $y=0$ to $y=2$.

$$
\begin{aligned}
\therefore \text { Area } & =\int_{0}^{2}\left(y^{2}-(y-1)\right) d y \\
& =\left[\frac{y^{3}}{3}-\frac{y^{2}}{2}+y\right]_{0}^{2}=\frac{8}{3}-\frac{4}{2}+2=\frac{8}{3}
\end{aligned}
$$

