§3.1 - Area Between Curves
Recall: If
$$f(x) \ge 0$$
, then the area between the
graph of f and the x-axis from $x=a$ to $x=b$ is

Area =
$$\int_{a}^{b} f(x) dx$$
 (1)

Ex: Find the area enclosed between
$$y = x$$
 and $y = x^{2}$
(a) from $x = 2$ to $x = 3$
(b) from $x = 0$ to $x = 3$
Solution: Start with a picture!
(a) For $x \in [2,3]$, we have $x \leq x^{2}$, hence
Area = $\int_{a}^{3} (y_{upper} - y_{lower}) dx$
 $y = x^{2}/2$

$$= \int_{a}^{3} (x^{2} - x) dx$$

= $\left[\frac{x^{3}}{3} - \frac{x^{2}}{2}\right]_{z}^{3} = \dots = \frac{23}{6}$

(b) The curves intersect when $X^2 = X$,

For
$$X \in [0,1]$$
, we have $X^2 \leq X$; while
for $X \in [1,3]$, we have $X \leq X^2$, hence

Area =
$$\int_{0}^{1} (y_{upper} - y_{lower}) dx + \int_{1}^{3} (y_{upper} - y_{lower}) dx$$

= $\int_{0}^{1} (x - x^{2}) dx + \int_{1}^{3} (x^{2} - x) dx$
= $\left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{1} + \left[\frac{x^{3}}{3} - \frac{x^{2}}{2}\right]_{1}^{3} = \dots = \frac{1}{6} + \frac{14}{3} = \frac{29}{6}$

Ex: Calculate the area enclosed between
$$y = x^2$$
 and $y = 2x^2 - 1$.

<u>Solution</u>: The curves intersect when $x^2 = 2x^2 - 1$, or equivalently, when $x^2 = 1$, hence $x = \pm 1$. We have

Yupper = x² and y lower = 2x²-1. Thus,

use two separate integrals to calculate the area.

$$A_{rea} = \int_{0}^{\pi/4} \left(y_{upper} - y_{lower} \right) dx + \int_{\pi/4}^{\pi} \left(y_{upper} - y_{lower} \right) dx$$
$$= \int_{0}^{\pi/4} \left(\cos x - \sin x \right) dx + \int_{\pi/4}^{\pi} \left(\sin x - \cos x \right) dx$$
$$= \left[sin x + \cos x \right]_{0}^{\pi/4} + \left[-\cos x - \sin x \right]_{\pi/4}^{\pi}$$

$$= \left[\left(\sin \frac{\pi}{4} + \cos \frac{\pi}{4} \right) - \left(\sin \theta + \cos \theta \right) \right] + \left[\left(-\cos \pi - \sin \pi \right) - \left(-\cos \frac{\pi}{4} - \sin \frac{\pi}{4} \right) \right]$$
$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - \frac{1}{2} - \left(-\frac{1}{2} \right) + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 2\sqrt{2}$$

If the region is enclosed between a left curve and a right curve from y=c to y=d, then we can get the area in between by integrating with respect to y:

Area =
$$\int_{y=c}^{y=d} (X_{r:ghtmost} - X_{leftmost}) dy$$

Ex: Find the area between $X = y^{-1}$ and $X = y^{2}$ for $y \in [0, 2]$. Solution:

$$\therefore \text{ Area } = \int_{0}^{2} \left(\frac{y^{2}}{y^{2}} - \left(\frac{y^{-1}}{y^{-1}} \right) \right) dy$$
$$= \left[\frac{y^{3}}{3} - \frac{y^{2}}{2} + y \right]_{0}^{2} = \frac{8}{3} - \frac{4}{2} + 2 = \frac{8}{3}$$