$\frac{§5.7 - Alternating Series}{A series <math>\sum a_n$  is said to be <u>alternating</u> if the terms  $a_n$  alternate between positive and negative values.

$$\underline{E_{X:}} \qquad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$
 is  
alternating (it is known as the alternating  
harmonic series.)

Ex: 
$$1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \cdots$$
 is not  
considered to be alternating (sign must change  
from each term to the next!)

[Look for things like  $(-1)^{n+1}$ ,  $(-1)^n$ ,  $cos(n\pi)$ , etc.]

Below is a very simple test that can be used to show that certain alternating series converge.

The Alternating Series Test (AST)  
Consider the alternating series  

$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots$$
where  $b_n > 0$  for all  $n$ . If  
(i) { $b_n$ } is a decreasing sequence, and  
(ii)  $\lim_{n \to \infty} b_n = 0$ ,  
then  $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$  converges.

Let's apply the AST to the alternating harmonic  
Series, 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Here we have  $b_n = \frac{1}{n}$ . Note that

(i) 
$$\{\frac{1}{n}\}$$
 is a decreasing sequence, and  
(ii)  $\lim_{n \to \infty} \frac{1}{n} = 0$ ,

hence, by the AST, 
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges!  
Remarks about the AST:  
1. AST also applies to series of the form  $\sum_{n=1}^{\infty} (-1)^n \ln n$   
 $\sum_{n=0}^{\infty} (-1)^{n-1} \ln n$ , etc. Just make sure the series  
is alternating!  
2. If only (i) fails (i.e.,  $\{\ln n\}$  is non-decreasing),  
the AST provides no information.  
3. However, if (ii) fails (1.e.,  $\lim_{n\to\infty} \ln \neq 0$ ), then  
 $\lim_{n\to\infty} (-1)^{n-1} \ln DNE$ , hence  $\sum_{n=1}^{\infty} (-1)^{n-1} \ln diverges$   
by the divergence test.

(a) 
$$\sum_{n=2}^{\infty} (-1)^n \operatorname{Sin}\left(\frac{\pi}{n}\right) = \operatorname{Sin}\left(\frac{\pi}{2}\right) - \operatorname{Sin}\left(\frac{\pi}{3}\right) + \operatorname{Sin}\left(\frac{\pi}{4}\right) - \cdots$$

Try the AST with 
$$b_n = sin(T_n)$$
. Note that  
(i) { $b_n$ } is decreasing, as  
seen in the graph on  
the right.  
 $T_{y} T_{y} T_{y} T_{y} T_{y} T_{y} T_{y} T_{y}$ 

 $\left[\text{Alternatively, } f(x) = \sin(\pi/x) \text{ is decreasing since } f'(x) = \frac{-\pi}{x^2} \cos(\pi/x) < 0.\right]$ 

(ii) 
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \sin\left(\frac{\pi}{n}\right) = \sin 0 = 0$$
.

Hence 
$$\sum_{n=2}^{\infty} (-1)^n \sin(\frac{\pi}{n})$$
 converges by the AST.

(b) 
$$\sum_{n=1}^{\infty} (-1)^n e^{t/n} = -e^{t} + e^{t/2} - e^{t/3} + e^{t/4} - e^{t/5} + \cdots$$
  
Try AST with  $b_n = e^{t/n}$ . Note that

(i) {bn} is decreasing, since 
$$f(x) = e^{yx}$$
 has derivative  
 $f'(x) = \frac{-1}{x^2} e^{\frac{1}{x}} < 0$  everywhere.  
(ii)  $\lim_{n \to \infty} b_n = \lim_{n \to \infty} e^{y_n} = e^{\circ} = 1$  where  $\lim_{n \to \infty} b_n = \lim_{n \to \infty} e^{y_n} = e^{\circ} = 1$  where  $\lim_{n \to \infty} b_n = \lim_{n \to \infty} e^{y_n} = e^{\circ} = 1$  where  $\frac{1}{2}$  where  $\frac{1}{2}$  is the set  $\frac{1}{2}$  of  $\frac{1}{2}$  of \frac{1}{2} of  $\frac{1}{2}$  of \frac{1}{2} of  $\frac{1}{2}$  of  $\frac{1}{2}$  of \frac{1}{2} of  $\frac{1}{2}$  of \frac{1}{2} of  $\frac{1}{2}$  of  $\frac{1}{2}$  of  $\frac{1}{2}$  of \frac{1}{2} of \frac{1}{2} of \frac{1}{2} of \frac{1}{2

Since 
$$\lim_{n\to\infty} (-1)^n e^m$$
 DNE (it jumps between  $\approx 1$  and  $\approx -1$ ),

$$\sum_{n=1}^{\infty} (-1)^n e^{t/n} \frac{diverges}{dverges} by the divergence test.$$

Suppose that 
$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n$$
 converges by the AST 50

 $b_n > 0$ ,  $\{b_n\}$  is decreasing, and  $\lim_{n \to \infty} b_n = 0$ 



Since the terms  $b_1$  are decreasing, the partial sums  $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_4$ , ...

"spiral inward" on the number line. The distance

between the Sn's approaches O (since  $\lim_{n \to \infty} b_n = 0$ ), meaning that the Sn's approach some limit S. This S is the sum of the series!

## Application: Estimating Sums

From our "picture proof" of the the AST, the sum S lies between any SN and SN+1.



Thus, if we approximate S using a partial sum, SN, the error  $R_N = S - S_N$  satisfies

 $\begin{aligned} |\mathbf{R}_{N}| &= |\mathbf{S} - \mathbf{S}_{N}| \leq |\mathbf{S}_{N+1} - \mathbf{S}_{N}| \\ &= \left| \sum_{n=1}^{N+1} (-1)^{n+1} \mathbf{b}_{n} - \sum_{n=1}^{N} (-1)^{n+1} \mathbf{b}_{n} \right| = \left| \pm \mathbf{b}_{N+1} \right| = \mathbf{b}_{N+1} , \\ & \text{Everything except } (N+1)^{\text{th}} \text{ term cancels} ! \end{aligned}$ 

Thus, we have the following result:

Alternating Series Estimation Theorem  
If 
$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n$$
 converges by the AST, then the  
error in approximating the sum S by SN satisfies  
 $|R_N| = |S-S_N| \leq b_{N+1}$ 

$$\frac{E_X}{n}: \text{ The series } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \text{ converges by the AST}$$
(a) Estimate the size of the error when we use
$$S_{4} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} = 0.583$$
to approximate the sum, S.
$$\frac{Solution:}{Since} = \frac{1}{n}, \text{ the error satisfies}$$

$$\frac{|R_4| \le b_{44} = b_5 = \frac{1}{5} \text{ (or } 0.2)}{(Note: Since} = |R_4| = |S - S_4| \le 0.2, \text{ we have}}$$

$$\begin{array}{rcl} -0.2 & \leq & 5-5_{4} & \leq & 0.2 \\ \Rightarrow & -0.2 & \leq & 5-0.58\overline{3} & \leq & 0.2 \\ & +0.58\overline{3} & & +0.58\overline{3} & & +0.58\overline{3} \\ \Rightarrow & 0.38\overline{3} & \leq & 5 & \leq & 0.78\overline{3} \end{array}$$



the partial sum Sy will <u>underestimate</u> S. (So we can actually say  $0.58\overline{3} \leq S \leq 0.78\overline{3}$ )

Ex: The series 
$$S = \sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$
 converges by the AST.

(a) How many terms N will guarantee that the partial sum SN approximates S with  $|Error| \leq \frac{1}{1000}$ ?

Solution: With 
$$b_n = \frac{1}{n!}$$
, the error satisfies  
 $|R_N| \le b_{N+1} = \frac{1}{(N+1)!}$ 

Thus, we want  

$$\frac{1}{(N+1)!} \leq \frac{1}{1000} \iff (N+1)! \ge 1000$$

It will be easiest to check small values of N:

| N      | 3  | 4   | 5   | 6    | _ ≥ 1000 |
|--------|----|-----|-----|------|----------|
| (N+1)! | гч | 120 | 720 | 5040 | - 1000   |

Thus we will need at least N=6 terms!

(b) Is S100 an overestimate or underestimate of the overall sum, S?

Solution: Note that the final term in Size is

$$\frac{(-1)^{100}}{100!} = \frac{1}{100!} ,$$

which is positive. This means S100 Will overestimate S.

