§5.7 - Alternating Series
A series $\sum a_{n}$ is said to be alternating if the terms a_{n} alternate between positive and negative values.

Ex: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$ is alternating (it is known as the alternating harmonic series.)

Ex: $\quad 1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}-\frac{1}{7}+\cdots$ is not considered to be alternating (sign must change from each term to the next!)
[Look for things like $(-1)^{n+1},(-1)^{n}, \cos (n \pi)$, etc.]

Below is a very simple test that can be used to show that certain alternating series converge.

The Alternating Series Test (AST)
Consider the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots
$$

where $b_{n}>0$ for all n. If
(i) $\left\{b_{n}\right\}$ is a decreasing sequence, and
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$,
then $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ converges.

Let's apply the AST to the alternating harmonic series, $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$

Here we have $b_{n}=\frac{1}{n}$. Note that
(i) $\left\{\frac{1}{n}\right\}$ is a decreasing sequence, and
(ii) $\lim _{n \rightarrow \infty} \frac{1}{n}=0$,
hence, by the AST, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges!

Remarks about the AST:

1. AST also applies to series of the form $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ $\sum_{n=0}^{\infty}(-1)^{n-1} b_{n}$, etc. Just make sue the series is alternating!
2. If only (i) fails (i.e., $\left\{b_{n}\right\}$ is non-decreasing), the AST provides no information.
3. However, if (ii) fails (i.e., $\lim _{n \rightarrow \infty} b_{n} \neq 0$), then $\lim _{n \rightarrow \infty}(-1)^{n+1} b_{n}$ DNE, hence $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ diverges by the divergence test.

More Examples!
(a) $\sum_{n=2}^{\infty}(-1)^{n} \sin \left(\frac{\pi}{n}\right)=\sin \left(\frac{\pi}{2}\right)-\sin \left(\frac{\pi}{3}\right)+\sin \left(\frac{\pi}{4}\right)-\cdots$

Try the AST with $b_{n}=\sin (\pi / n)$. Note that
(i) $\left\{b_{n}\right\}$ is decreasing, as seen in the graph on the right.

[Alternatively, $f(x)=\sin (\pi / x)$ is decreasing since $f^{\prime}(x)=\frac{-\pi}{x^{2}} \cos (\pi / x)<0$.]
(ii) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \sin \left(\frac{\pi}{n}\right)=\sin 0=0$.

Hence $\sum_{n=2}^{\infty}(-1)^{n} \sin \left(\frac{\pi}{n}\right)$ converges by the AST.
(b) $\sum_{n=1}^{\infty}(-1)^{n} e^{1 / n}=-e^{1}+e^{1 / 2}-e^{1 / 3}+e^{1 / 4}-e^{1 / 5}+\cdots$

Try AST with $b_{n}=e^{1 / n}$. Note that
(i) $\left\{b_{n}\right\}$ is decreasing, since $f(x)=e^{1 / x}$ has derivative $f^{\prime}(x)=\frac{-1}{x^{2}} e^{\frac{1}{x}}<0$ everywhere.
(ii) $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} e^{1 / n}=e^{0}=1$ However, we can rese the divergence test!

Since $\lim _{n \rightarrow \infty}(-1)^{n} e^{1 / n}$ DNE (it jumps between ≈ 1 and ≈-1), $\sum_{n=1}^{\infty}(-1)^{n} e^{1 / n}$ diverges by the divergence test.

Why does the AST work?
Suppose that $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ converges by the AST so $b_{n}>0,\left\{b_{n}\right\}$ is decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$

Since the terms b_{n} are decreasing, the partial sums

$$
S_{1}, S_{2}, S_{3}, S_{4}, \ldots
$$

"spiral inward" on the number line. The distance
between the S_{n} 's approaches O (since $\lim _{n \rightarrow \infty} b_{n}=0$), meaning that the S_{n} 's approach some limit S. This S is the sum of the series!

Application: Estimating Sums
From our "picture proof" of the the AST, the sum S lies between any S_{N} and S_{N+1}.

Thus, if we approximate S using a partial sum,
S_{N}, the error $R_{N}=S-S_{N}$ satisfies

$$
\begin{aligned}
\left|R_{N}\right|=\left|S-S_{N}\right| & \leq\left|S_{N+1}-S_{N}\right| \\
& =\underbrace{\left|\sum_{n=1}^{N+1}(-1)^{n+1} b_{n}-\sum_{n=1}^{N}(-1)^{n+1} b_{n}\right|}_{\text {Everything except }(N+1)^{+1} \text { term cancels! }}=\left| \pm b_{N+1}\right|=b_{N+1},
\end{aligned}
$$

Thus, we have the following result:

Alternating Series Estimation Theorem
If $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ converges by the $A S T$, then the error in approximating the sum S by S_{N} satisfies

$$
\left|R_{N}\right|=\left|S-S_{N}\right| \leq b_{N+1}
$$

Ex: The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges by the AST.
(a) Estimate the size of the error when we use

$$
S_{4}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}=0.58 \overline{3}
$$

to approximate the sum, S.

Solution: Since $b_{n}=\frac{1}{n}$, the error satisfies

$$
\left|R_{4}\right| \leq b_{4+1}=b_{5}=\frac{1}{5} \quad(\text { or } 0.2)
$$

(Note: Since $\left|R_{4}\right|=\left|S-S_{4}\right| \leq 0.2$, we have

$$
\begin{aligned}
&-0.2 \leq S-S_{4} \leq 0.2 \\
& \Rightarrow-0.2 \leq S-0.58 \overline{3} \\
&+0.58 \overline{3} \leq 0.2 \\
&+0.58 \overline{3} \overline{3} \\
& \Rightarrow 0.38 \overline{3} \leq S \leq 0.78 \overline{3}
\end{aligned}
$$

(b) Is S_{4} an overestimate or underestimate of the sum, S ?

Solution:

Since the final term in $S_{4}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}$ is negative, the partial sum S_{4} will underestimate S.
(So we can actually say $0.58 \overline{3} \leq S \leq 0.78 \overline{3}$)

Ex: The series $S=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ converges by the AST.
(a) How many terms N will guarantee that the partial sum S_{N} approximates S with $\left|E_{\text {error }}\right| \leqslant \frac{1}{1000}$?

Solution: With $b_{n}=\frac{1}{n!}$, the error satisfies

$$
\left|R_{N}\right| \leq b_{N+1}=\frac{1}{(N+1)!}
$$

Thus, we want

$$
\frac{1}{(N+1)!} \leq \frac{1}{1000} \Leftrightarrow(N+1)!\geqslant 1000
$$

It will be easiest to check small values of N :

N	3	4	5	6
$(N+1)!$	24	120	720	5040

Thus we will need at least $N=6$ terms!
(b) Is S_{100} an overestimate or underestimate of the overall sum, S ?

Solution: Note that the final term in S_{100} is

$$
\frac{(-1)^{100}}{100!}=\frac{1}{100!}
$$

which is positive. This means S_{100} will overestimate S.

