§5.8 - Absolute vs. Conditional Convergence

Some series NEED a mix of positive and negative terms in order to converge ...

e.g.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges by the AST, but

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n} \quad (\text{the harmonic series}) \quad \text{diverges.}$$

e.g.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges by the AST, and also
 $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the p-series test.

It will be important to distinguish between these types of convergence.

Definition: A series
$$\sum an$$
 is said to
(i) converge absolutely if $\sum |a_n|$ converges.
(ii) converge conditionally if $\sum a_n$ converges but
 $\sum |a_n|$ diverges.

Using our new terminology, we can say that
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \text{ converges absolutely, while } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Converges conditionally.

The following result shows that absolute convergence is even stronger than regular convergence.

Theorem: If
$$\sum |a_n|$$
 converges, then $\sum a_n$
converges as well. That is, any absolutely
convergent series is convergent

Proof: Suppose that
$$\sum |a_n|$$
 converges, hence
so too does $\sum 2|a_n|$. We note that
Add $|a_n| \qquad -|a_n| \leq a_n \leq |a_n|$
to all sides $0 \leq a_n + |a_n| \leq 2|a_n|$
terms of a convergent series.
So $\sum (a_n + |a_n|)$ converges by the comparison test.

Thus, since
$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|$$
,
convergent convergent
 $\sum a_n$ must converge too!

This is useful because sometimes it's easier to show that a series converges absolutely! \underline{Ex} : Does $\sum_{n=1}^{\infty} \frac{\sin(n^3)}{n^3}$ converge or diverge? $\int_{n=1}^{\infty} Canit use integral test, comparison test, or LCT$ $because \frac{\sin(n^3)}{n^3}$ is sometimes negative!

Solution: Let's check absolute convergence!

For
$$\sum_{n=1}^{\infty} \left| \frac{\sin(n^3)}{n^3} \right|$$
, we know $0 \leq \left| \frac{\sin(n^3)}{n^3} \right| \leq \frac{1}{n^3}$
positive terms \Rightarrow integral, comparison, LCT unlocked!
and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a convergent p-series $(p=3>1)$, so
 $\sum_{n=1}^{\infty} \left| \frac{\sin(n^3)}{n^3} \right|$ converges by the comparison test. Thus,
 $\sum_{n=1}^{\infty} \frac{\sin(n^3)}{n^3}$ converges absolutely, hence converges.

<u>Ex</u>: Determine whether each series below converges absolutely, converges conditionally or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2+1}}$$

Solution: First note that $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$ Converges by
the AST, as the terms $b_n = \frac{1}{\sqrt{n^2+1}}$ are decreasing
and $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{\sqrt{n^2+1}} = 0.$

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n^2 + 1}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$$

Using the LCT with
$$a_n = \frac{1}{\sqrt{n^2 + 1}}$$
 and $b_n = \frac{1}{\sqrt{n^2}} = \frac{1}{n}$,

we have ...

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(\frac{1}{\sqrt{n^2 + 1}}\right)}{\left(\frac{1}{n}\right)}$$
$$= \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}}$$
$$= \frac{1}{\sqrt{1 + 0}} = 1 \in (0, \infty)$$
By the LCT, Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (it's the

By the LCT, Since
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges (it's the

harmonic series),
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$
 must also diverge.

By the LCT, Since
$$\sum_{n=1}^{7} \frac{1}{n}$$
 diverges (its the
harmonic series), $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ must also diverge.
Thus, $\sum_{n=1}^{\infty} \frac{(-i)^n}{\sqrt{n^2+1}}$ does not converge absolutely.
Conclusion: $\sum_{n=1}^{\infty} \frac{(-i)^n}{\sqrt{n^2+1}}$ Converges conditionally.
(b) $\sum_{n=1}^{\infty} (-i)^n \frac{3^n}{\sqrt{n^2+1}}$

Conclusion:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$$
 Converges conditionally.

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{1+2^n}$$

Solution: The series is alternating, hence the AST may be tempting. Unfortunately, the terms $b_n = \frac{3^n}{1+2^n}$ don't tend to O as $n \rightarrow \infty$. Indeed,

$$\lim_{n \to \infty} \frac{3^{n}}{1+2^{n}} = \lim_{n \to \infty} \frac{3^{n}}{2^{n}} \left(\frac{1}{\frac{1}{z^{n}}+1} \right)$$
$$= \lim_{n \to \infty} \underbrace{\left(\frac{3}{z} \right)^{n}}_{\rightarrow \infty} \underbrace{\left(\frac{1}{\frac{1}{z^{n}}+1} \right)}_{\rightarrow 0} = \infty$$

So the AST doesn't apply ... but we can instead use

the divergence test:
$$\lim_{n \to \infty} (-1)^n \cdot \frac{3^n}{1+2^n}$$
 DNE, hence
 $\sum_{n=1}^{\infty} (-1)^n \cdot \frac{3^n}{1+2^n}$ diverges.

Additional Exercises

Ex: True or False?
(a) If
$$\sum a_n$$
 converges, then $\sum (-1)^n a_n$ converges.
Solution: False. Let $a_n = \frac{(-1)^n}{n}$. Then $\sum a_n$ converges by
the AST, but $\sum (-1)^n a_n = \sum \frac{(-1)^{2n}}{n} = \sum \frac{1}{n}$, the
harmonic series, which diverges.

(b) If $\sum e^{an}$ converges, then $\sum an$ diverges. <u>Solution</u>: True. We'll prove the contrapositive. If $\sum an$ converges, then $\lim_{n \to \infty} a_n = 0$ by the divergence test. Hence, $\lim_{n \to \infty} e^{an} = e^{\lim_{n \to \infty} a_n} = e^{\circ} = 1$ (#0)

and so $\sum e^{a_n}$ diverges by the divergence test.

(c) If
$$\sum a_n$$
 converges absolutely and $\{b_n\}$ is
bounded, then $\sum a_n b_n$ converges absolutely
Solution: True. Since $\{b_n\}$ is bounded, there is a
constant M such that $|b_n| \leq M$ for all n. Consequently,
 $0 \leq |a_n b_n| = |a_n| \cdot |b_n| \leq M |a_n|$
Since $\sum |a_n|$ converges, $\sum M |a_n|$ converges too, and
so $\sum |a_n b_n|$ converges by comparison. That is,
 $\sum a_n b_n$ converges absolutely.