8.3 - Trigonometric Integrals

Well begin by looking at integrals of the form

$$
\int \sin ^{m} x \cos ^{n} x d x
$$

where $m$ and $n$ are non-negative integers.

Warm up: $\int \sin ^{m} x \cos x d x$
Sub $u=\sin x, d u=\cos x d x$ to get $\int u^{m} d u$ (Easy!)

What about $\int \sin ^{m} x \cos ^{3} x d x$ ?
Again, sub $u=\sin x, d u=\cos x d x$ to get

$$
\begin{aligned}
\int u^{m} \cos ^{2} x \cdot \cos x d x & =\int u^{m}\left(1-\sin ^{2} x\right) d u \\
& =\int u^{m}\left(1-u^{2}\right) d u \quad \text { (Easy!) }
\end{aligned}
$$

This strategy will work whenever $n$ is odd! If instead $m$ is odd, well set $u=\cos x$.

Strategy for Evaluating $\int \sin ^{m} x \cos ^{n} x d x$
(i) If $m$ is odd, let $u=\cos x$. If both are odd, let $u$ be the function with
(ii) If $n$ is odd, let $u=\sin x$. the higher power!
(iii) If $m \& n$ are even, use the identities

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x), \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)
$$

Ex: (a) $\int \sin ^{3} x \cdot \cos ^{8} x d x$
Solution: $m$ odd $\Rightarrow u=\cos x, \quad d u=-\sin x d x$, giving

$$
\begin{aligned}
\int \sin ^{2} x \cdot u^{8} \cdot \underbrace{\sin x d x}_{=-d u} & =-\int\left(1-\cos ^{2} x\right) \cdot u^{8} d u \\
& =-\int\left(1-u^{2}\right) u^{8} d u
\end{aligned}
$$

$$
\begin{aligned}
& =\int\left(u^{10}-u^{8}\right) d u \\
& =\frac{u^{11}}{11}-\frac{u^{9}}{9}+C \\
& =\frac{\cos ^{11} x}{11}-\frac{\cos ^{9} x}{9}+C
\end{aligned}
$$

(b) $\int \sin ^{15} x \cdot \cos ^{5} x d x$

Solution: Both powers are odd, but $\sin x$ has the bigger power. Let $u=\sin x, d u=\cos x d x$, giving

$$
\begin{aligned}
\int u^{15} \cos ^{4} x \cdot \underbrace{\cos x d x}_{=d u} & =\int u^{15}\left(1-u^{2}\right)^{2} d u \\
& =\int u^{15}\left(1-2 u^{2}+u^{4}\right) d u \\
& =\int\left(u^{15}-2 u^{17}+u^{19}\right) d u \\
\begin{array}{l}
\text { If instead we } \\
\text { used } u=\cos x, \text { we } \\
\text { would need to } \\
\text { expand }\left(1-u^{2}\right)^{7} \ldots \text { Nw. }
\end{array} & =\frac{u^{16}}{16}-\frac{2 u^{18}}{18}+\frac{u^{20}}{20}+C
\end{aligned}
$$

$$
=\frac{\sin ^{16} x}{16}-\frac{\sin ^{18} x}{9}+\frac{\sin ^{20} x}{20}+C
$$

(c) $\int \sin ^{2} x \cos ^{2} x d x$

Solution: Both powers are even, so use the double angle identities.

$$
\begin{aligned}
& \int \sin ^{2} x \cos ^{2} x d x=\int \frac{1}{2}(1-\cos 2 x) \cdot \frac{1}{2}(1+\cos 2 x) d x \\
& =\frac{1}{4} \int\left(1-\cos ^{2}(2 x)\right) d x \\
& =\frac{1}{4} \int\left(1-\frac{1}{2}(1+\cos 4 x)\right) d x \\
& =\frac{1}{4} \int\left(\frac{1}{2}-\frac{\cos 4 x}{2}\right) d x \\
& =\frac{1}{8} \int(1-\cos 4 x) d x\left\{\begin{array}{l}
\text { could do a } u-\text {-sub } \\
(u s 4 x) \text { or note that } \\
\int \cos (n x) d x=\frac{\sin (n x)}{n}+c \text { ! }
\end{array}\right. \\
& =\frac{1}{8}\left(x-\frac{\sin 4 x}{4}\right)+c
\end{aligned}
$$

Let's now look at integrals of the form

$$
\int \tan ^{m} x \cdot \sec ^{n} x d x
$$

where again, $m$ and $n$ are non-negative integers.

Strategy for Evaluating $\int \tan ^{m} x \sec ^{n} x d x$
(i) If $n$ is even, let $u=\tan x$ and use $\sec ^{2} x=\tan ^{2} x+1$. $>$ If $n$ is even and $m$ is odd, let $u$ be the function with the higher power!
(ii) If $m$ is odd, let $u=\sec x$ and use $\tan ^{2} x=\sec ^{2} x-1$.

Ex: $\int \tan ^{3} x \sec ^{7} x d x$
Solution: $m$ is odd, so let $u=\sec x$. We have $d u=\sec x \tan x d x$, hence

$$
\int \tan ^{3} x \sec ^{7} x d x=\int \tan ^{2} x \sec ^{6} x \cdot \underbrace{\sec x \tan x d x}_{d x}
$$

$$
\begin{aligned}
& =\int\left(\sec ^{2} x-1\right) u^{6} d u \\
& =\int\left(u^{2}-1\right) u^{6} d u \\
& =\int\left(u^{8}-u^{6}\right) d u \\
& =\frac{u^{9}}{9}-\frac{u^{7}}{7}+c=\frac{\sec ^{9} x}{9}-\frac{\sec ^{7} x}{7}+c
\end{aligned}
$$

Ex: $\int \tan ^{4} x \sec ^{4} x d x$
Solution: $n$ is even, so let $u=\tan x, d u=\sec ^{2} x d x$.
We have

$$
\begin{aligned}
\int \tan ^{4} x \sec ^{4} x d x & =\int \tan ^{4} x \sec ^{2} x \cdot \underbrace{\sec ^{2} x d x}_{d u} \\
& =\int u^{4}\left(\tan ^{2} x+1\right) d u \\
& =\int u^{4}\left(u^{2}+1\right) d u \\
& =\int\left(u^{6}+u^{4}\right) d u
\end{aligned}
$$

$$
=\frac{u^{7}}{7}+\frac{u^{5}}{5}+c=\frac{\tan ^{7} x}{7}+\frac{\tan ^{5} x}{5}+c
$$

What about cases like

$$
\int \tan ^{2} x \sec x d x
$$

where $m$ is even and $n$ is odd?

Step 1: Use $\tan ^{2} x=\sec ^{2} x-1$ to get only powers of $\sec x$ :

$$
\int \tan ^{2} x \sec x d x=\int\left(\sec ^{2} x-1\right) \cdot \sec x d x=\int\left(\sec ^{3} x-\sec x\right) d x
$$

Step 2: Integrate powers of $\sec x$ as follows:

$$
\int \sec x d x=\ln |\sec x+\tan x|+C \quad \int \sec ^{2} x d x=\tan x+C
$$

and for integers $n \geqslant 3$,

$$
\int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x
$$

[This is called a "reduction formula" for powers of secant. See end of notes for a proof!]

Example using the Reduction Formula:

$$
\begin{aligned}
\int_{\sec ^{4} x d x} & =\frac{1}{3} \sec ^{2} x \tan x+\frac{2}{3} \int \sec ^{2} x d x \\
& =\frac{1}{3} \sec ^{2} x \tan x+\frac{2}{3} \tan x+C
\end{aligned}
$$

Okay, back to our original problem!

Ex: $\int \tan ^{2} x \sec x d x$

Solution: $\int \tan ^{2} x \sec x d x=\int\left(\sec ^{3} x-\sec x\right) d x$

$$
\begin{aligned}
& =\int \sec ^{3} x d x-\int \sec x d x \\
& =\left[\frac{1}{2} \sec x \tan x+\frac{1}{2} \int \sec x d x\right]-\int \sec x d x
\end{aligned}
$$

$\uparrow$ Reduction formula!

$$
\begin{aligned}
& =\frac{1}{2} \sec x \tan x-\frac{1}{2} \int \sec x d x \\
& =\frac{1}{2} \sec x \tan x-\frac{1}{2} \ln |\sec x+\tan x|+C
\end{aligned}
$$

Appendix: Proof of the Reduction Formula

To calculate $\int \sec ^{n} x d x$, use IBP with

| $u=\sec ^{n-2} x$ | $v=\tan x$ |
| :---: | :---: |
| $d u=(n-2) \sec ^{n-3} x \cdot \sec x \tan x d x$ | $d v=\sec ^{2} x d x$ |
| $=(n-2) \sec ^{n-2} x \tan x d x$ |  |

$$
\begin{aligned}
& \int \sec ^{n} x d x=\sec ^{n-2} x \tan x-\int(n-2) \sec ^{n-2} x \tan ^{2} x d x \\
& =\sec ^{n-2} x \tan x-(n-2) \int \sec ^{n-2} x\left(\sec ^{2} x-1\right) d x \\
& =\sec ^{n-2} x \tan x-(n-2) \int \sec ^{n} x d x+(n-2) \int \sec ^{n-2} x d x \\
& \text { original integral! Move to LHS! } \\
& \Rightarrow(n-1) \int \sec ^{n} x d x=\sec ^{n-2} x \tan x+(n-2) \int \sec ^{n-2} x d x \\
& \stackrel{\div(n-1)}{\Longrightarrow} \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x
\end{aligned}
$$

