Taylor and Maclaurin Series
Recall that Taylor's inequality states that the error in approximating $f(x)$ with $T_{n, a}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$ satisfies

$$
\left|E_{r r o r}\right| \leqslant \frac{M|x-a|^{n+1}}{(n+1)!}
$$

The $(n+1)$! in the denominator suggests that the error may shink as the degree of $T_{n, a}(x)$ increases, which begs the question:

What if we use infinitely many terms in our approximation?

We no longer have a polynomial... we have a series!

Definition: The Taylor series for $f(x)$ centred at $x=a$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
$$

and if $a=0$, we call $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ the
Maclaurin series of $f(x)$.

Remark: A Taylor series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ is just a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ where the C_{n} 's are given by

$$
c_{n}=\frac{f^{(n)}(a)}{n!}
$$

for some function $f(x)$.

Ex: What is the Maclaurin series for $f(x)=e^{x}$?
Solution: $f^{(n)}(x)=e^{x}$, so $f^{(n)}(0)=e^{0}=1$ for all n.
Thus, the Maclaurin series is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)} /(0)^{1}}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

[Note: Since a Taylor or Maclaurin series is just a type of power series, we can use the ratio test to see where it converges!]

In our lesson on power series, we used the ratio test to show that $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all $x \in \mathbb{R}$.

Ex: What is the Maclaurin series for $f(x)=\cos x$? What is its interval of convergence?

Solution: $f(x)=\cos x \quad f(0)=1$

$$
\begin{array}{lll}
f^{\prime}(x)=-\sin x & f^{\prime}(0) & =0 \\
f^{\prime \prime}(x)=-\cos x & f^{\prime \prime} \\
f^{\prime \prime \prime}(x)=\sin x & & f^{\prime \prime}(0)=-1 \\
f^{(4)}(x)=\cos x_{\text {(Repeat!) }} & f^{\prime \prime \prime}(0)=0 \\
f^{(4)}(0)=1
\end{array} \text { (Repeat!) }^{l}
$$

The Maclaurin series is

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

Using the ratio test:

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} x^{2(n+1)}}{(2(n+1))!}}{\frac{(-)^{n} x^{2 n}}{(2 n)!}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(2 n)!}{(2 n+2)!} \cdot \frac{|x|^{2 n+2}}{|x|^{2 n}} \\
& =\lim _{n \rightarrow \infty} \frac{|x|^{2}}{(2 n+2)(2 n+1)}=0 \quad \text { for all } x \in(-\infty, \infty) .
\end{aligned}
$$

Since $L<1$ always, $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ converges for all X in $I=(-\infty, \infty)$, the interval of convergence.

The Maclaurin series for $\sin x$ is similar but includes only odd powers:

The odd integers.

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

Exercise: Use the ratio test to show that the Maclaurin series for $\sin x$ converges for all $x \in \mathbb{R}$

Another important example: Find the Maclaurin series and interval of convergence for $f(x)=\frac{1}{1-x}$

Solution: We compute $f^{(n)}(0)$:

$$
\left.\begin{array}{rl}
f(x) & =\frac{1}{1-x} \\
f^{\prime}(x) & =\frac{1}{(1-x)^{2}} \\
f^{\prime \prime}(x) & =\frac{2 \cdot 1}{(1-x)^{3}} \\
f^{\prime \prime \prime}(x) & =\frac{3 \cdot 2 \cdot 1}{(1-x)^{4}}
\end{array}\right\} \quad \text { In general, } f^{(n)}(x)=\frac{n!}{(1-x)^{n+1}}
$$

Thus, the Maclaurin series for $\frac{1}{1-x}$ is

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{n!}{n!} x^{n} & =\sum_{n=0}^{\infty} x^{n} \\
& =1+x+x^{2}+x^{3}+\cdots
\end{aligned}
$$

which we know (from geometric series) converges when $|x|<1$, or equivalently, for $x \in(-1,1)$.

Amazing fact: The functions $e^{x}, \sin x, \cos x$, and $\frac{1}{1-x}$ are exactly equal to their Maclaurin series for X in the interval of convergence! We have eliminated any error in our approximation!

Summary:

$$
\begin{array}{ll}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots & I=(-\infty, \infty) \\
R=\infty \\
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots & I=(-\infty, \infty) \\
R=\infty \\
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots & I=(-\infty, \infty) \\
R=\infty \\
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots & I=(-1,1) \\
& R=1
\end{array}
$$

Note: We can plug in $X \in I$ to both sides of the above equalities to get some interesting results...

Ex: Subbing $x=1$ into $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=e^{x}$ gives

$$
\sum_{n=0}^{\infty} \frac{1}{n!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots=e^{1}=e
$$

Ex: Subbing $x=\pi$ into $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=\sin x$ gives

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!}=\pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\cdots=\sin \pi=0
$$

Well see more exciting applications soon!

