§10.3 -Taylor Polynomials (Series will be back soon!)
One of our main goals in MATH 118 is to be able to approximate complicated functions with simple functions: polynomials! We saw a case of this in MATH 116 when studying linear approximations.

Recall: The linear approximation to $f(x)$ at $x=a$ is

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

$L(x)$ is just the tangent line to $f(x)$ at $x=a$!

$$
L(x) \approx f(x) \text { for } x \text { near } a .
$$

Note: $L(a)=f(a)\} L$ uses the values of $f(a)$ $L^{\prime}(a)=f^{\prime}(a) \quad$ and $f^{\prime}(a)$ to model $f(x)$!

Idea: Maybe we can obtain a better approximation by adding a squared term!

$$
\frac{Q(x)=f(a)+f^{\prime}(a)(x-a)+C^{c}(x-a)^{2}}{\mathcal{L}_{\text {Quadratic }}}
$$

We can model the concavity of $f(x)$ by insisting that $Q^{\prime \prime}(a)=f^{\prime \prime}(a)$. This will allow us to determine C !

$$
\begin{aligned}
Q(x) & =\underbrace{f(a)}_{\text {constant! }}+f^{\prime}(a)(x-a)+C(x-a)^{2} \\
\Rightarrow Q^{\prime}(x) & =\underbrace{f^{\prime}(a)}_{\text {constant! }}+2 c(x-a) \\
\Rightarrow Q^{\prime \prime}(x) & =2 c
\end{aligned}
$$

so $Q^{\prime \prime}(a)=2 c=f^{\prime \prime}(a) \Rightarrow C=\frac{f^{\prime \prime}(a)}{2}$.

$$
\Rightarrow \quad Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}
$$

Ex: Find the quadratic approximation to $f(x)=\sqrt{x}$ at $a=1$.

Solution: $f(x)=\sqrt{x} \quad \Rightarrow \quad f(1)=1$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} \Rightarrow f^{\prime}(1)=\frac{1}{2} \\
f^{\prime \prime}(x) & =-\frac{1}{4} x^{-3 / 2} \Rightarrow f^{\prime \prime}(1)=\frac{-1}{4} \\
\Rightarrow Q(x) & =f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2}(x-1)^{2} \\
& =1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}
\end{aligned}
$$

For reference, the linear approximation is

$$
L(x)=1+\frac{1}{2}(x-1)
$$

But why stop here??

We can approximate with a polynomial of degree 3 or 4 or $5 \cdots$ or really any degree n :

$$
P(a)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+\cdots+C_{n}(x-a)^{n}
$$

If we insist that $P^{(k)}(a)=f^{(k)}(a)$ for $k=0,1,2, \ldots, n$
(as we did for the quadratic approximation), we get

$$
C_{k}=\frac{f^{(k)}(a)}{k!}
$$

Thus, we get the following approximating polynomial.

Definition: The $n^{\text {th }}$-degree Taylor polynomial for $f(x)$ centred at $x=a$ is

$$
\begin{aligned}
T_{n, a}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

Note: The linear approximation is $L(x)=T_{1, a}(x)$.
The quadratic approximation is $Q(x)=T_{2}, a(x)$.
We'll use the " $T_{n, a}(x)$ " notation from now on.

Ex: Find $T_{3,0}(x)$ for $f(x)=e^{x}$.
Solution: We need $f(a), f^{\prime}(a), f^{\prime \prime}(a), f^{\prime \prime \prime}(a)$ where $a=0$:

$$
\begin{array}{lll}
f(x)=e^{x} & \Rightarrow & f(0)=e^{0}=1 \\
f^{\prime}(x)=e^{x} & \Rightarrow & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=e^{x} & \Rightarrow & f^{\prime \prime}(0)=1 \\
f^{\prime \prime \prime}(x)=e^{x} & \Rightarrow & f^{\prime \prime \prime}(0)=1
\end{array}
$$

We have

$$
\begin{aligned}
T_{3,0}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}(x-0)^{3} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
\end{aligned}
$$

Remark: Taylor polynomials centred at $a=0$ (i.e., $T_{n, 0}(x)$) are often referred to as Maclaurin polynomials.

Ex: Find the $5^{\text {th }}$ - degree Maclaurin polynomial, $T_{5,0}(x)$ for $f(x)=\sin x$.

Solution: $f(x)=\sin x \quad \Rightarrow \quad f(0)=0$

$$
\begin{array}{lll}
f^{\prime}(x)=\cos x & \Rightarrow & f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin x & \Rightarrow & f^{\prime \prime}(0)=0 \\
f^{\prime \prime \prime}(x)=-\cos x & \Rightarrow & f^{\prime \prime \prime}(0)=-1 \\
f^{(4)}(x)=\sin x & \Rightarrow & f^{(4)}(0)=0 \\
f^{(5)}(x)=\cos x & \Rightarrow & f^{(5)}(0)=1
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow T_{5,0}(x)=f(0)+\overbrace{f^{\prime}(0)}^{=1}(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\overbrace{\frac{f^{\prime \prime \prime}(0)}{3!}(x-0)^{3}}^{=-1} \\
& \quad+\frac{f^{(4)}(0)}{4!}(x-0)^{4}+\frac{\overbrace{\frac{f^{(5)}(0)}{5!}}^{=1}(x-0)^{5}}{=0} \\
& \Rightarrow T_{5,0}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
\end{aligned}
$$

Lower-degree approximations:

$$
\left.\begin{array}{l}
T_{1,0}(x)=x \\
T_{2,0}(x)=x \\
T_{3,0}(x)=x-\frac{x^{3}}{3!} \\
T_{4,0}(x)=x-\frac{x^{3}}{3!}
\end{array}\right\}
$$

The Maclaurin polynomials contain only odd powers of x, which is due to the fact that $\sin x$ is an odd function!

The Maclaurin polynomials for $\cos x$ follow a similar pattern, except involve only even powers (which is due to the fact that $\cos x$ is an even function!) For $f(x)=\cos (x)$:

$$
\begin{aligned}
& T_{1,0}(x)=1 \\
& T_{2,0}(x)=T_{3,0}(x)=1-\frac{x^{2}}{2!} \\
& T_{4,0}(x)=T_{5,0}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}
\end{aligned}
$$

