Taylor's Inequality
Recall that the $n^{\text {th }}$-degree Taylor polynomial for $f(x)$ centred at $x=a$ is

$$
\begin{aligned}
T_{n, a}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
\end{aligned}
$$

Since $T_{n, a}(x) \approx f(x)$ for x near a, we can use $T_{n, a}(x)$ for approximations!

Ex: Use $T_{2,1}(x)$ for $f(x)=\sqrt{x}$ to approximate $\sqrt{1.1}$.

Solution: In an earlier example, we found

$$
T_{2,1}(x)=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}
$$

Hence, $\sqrt{1.1}=f(1.1) \approx T_{2,1}(1.1)$

$$
=1+\frac{1}{2}(1.1-1)-\frac{1}{8}(1.1-1)^{2}
$$

$$
\left.\begin{array}{l}
=1+\frac{1}{2}(\underbrace{0.1)}_{=\frac{1}{10}}-\frac{1}{8} \underbrace{(0.1)^{2}}_{=\left(\frac{1}{10}\right)^{2}} \\
=1+\frac{1}{100} \\
20
\end{array} \frac{1}{800}=\frac{839}{800} \quad \text { (or } 1.04875\right) .
$$

How good is this approximation?

Definition: The error (or remainder) in using $T_{n, a}(x)$ to approximate $f(x)$ is $R_{n, a}(x)=f(x)-T_{n, a}(x)$

The following result allows us to estimate $\left|R_{n, a}(x)\right|$, the magnitude of the error.

Taylor's Inequality
The error in using $T_{n, a}(x)$ to approximate $f(x)$ satisfies

$$
\left|R_{n, a}(x)\right| \leqslant \frac{M|x-a|^{n+1}}{(n+1)!}
$$

where $\left|f^{(n+1)}(t)\right| \leq M$ for all t between a and x.

Ex: Let $f(x)=\sqrt{x}$. Estimate the size of the error when $T_{2.1}(1.1)=1.04875$ is used to approximate

$$
f(1.1)=\sqrt{1.1} .
$$

Solution: By Taylor's inequality,

$$
\left|E_{\text {rror }}\right|=\left|R_{2,1}(x)\right| \leqslant \frac{M|x-1|^{2+1}}{(2+1)!}=\frac{M|x-1|^{3}}{3!}
$$

When $x=1.1$, we get

$$
\left|R_{2,1}(1.1)\right| \leq \frac{M|1.1-1|^{3}}{3!}=\frac{M(0.1)^{3}}{6}=\frac{M}{6000}
$$

To find M, we look at

$$
f^{\prime \prime \prime}(x)=\frac{3}{8} x^{-5 / 2}=\frac{3}{8 x^{5 / 2}}
$$

On $[1,1.1]$, we have
we consider all values between $a=1$ and $x=1.1$

$$
\left|f^{\prime \prime \prime}(x)\right|=\frac{3}{8 x^{5 / 2}} \leq \frac{3}{8 \cdot 1^{5 / 2}}=\frac{3}{8} \downarrow
$$

Thus,

$$
\begin{aligned}
\mid \text { Error }\left|=\left|R_{2,1}(x)\right| \leqslant \frac{M}{6000}\right. & =\frac{3 / 8}{6000} \\
& =\frac{1}{16000}=0.0000625 .
\end{aligned}
$$

[For reference, $\sqrt{1.1} \approx 1.0488$, which is indeed quite close to our estimate $T_{2,1}(1.1)=1.04875$.]

Ex: Use $T_{5,0}(x)$ for $f(x)=\sin x$ to approximate $\sin 1$, then find an upper bound on the error in this approximation.

Solution: Earlier, we showed that

$$
T_{5,0}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
$$

Hence,

$$
\begin{aligned}
\sin 1=f(1) & \approx T_{5,0}(1) \\
& =1-\frac{1}{6}+\frac{1}{120}=\frac{101}{120}
\end{aligned}
$$

For the error, Taylor's inequality states that

$$
\left|E_{\text {rror }}\right|=\left|R_{5,0}(x)\right| \leqslant \frac{M|x-0|^{5+1}}{(5+1)!}=\frac{M \cdot x^{6}}{6!}
$$

and hence for $x=1$, we get

$$
\left|R_{5,0}(1)\right| \leqslant \frac{M \cdot(1)^{6}}{6!}=\frac{M}{720}
$$

To find M, we look at $f^{(6)}(x)=-\sin x$ for $x \in[0,1]$.

We have

$$
\left|f^{(6)}(x)\right|=|-\sin x| \leqslant 1 \quad \text { for } x \in[0,1] \text {. }
$$

[Note: We could have let $M=\sin 1$ the maximum of $\left|f^{(6)}(x)\right|$ for $x \in[0,1]$ - but this would be a little silly, since $\sin 1$ is what were approximating!]

Thus, $\quad\left|E_{\text {error }}\right|=\left|R_{5,0}(1)\right| \leq \frac{M}{720}=\frac{1}{720}$

We can now use this error bound to find a range of possible values for $\sin 1$:

$$
\begin{aligned}
\left|R_{2,1}(1)\right| \leq \frac{1}{720} & \Rightarrow\left|f(1)-T_{5,0}(1)\right| \leq \frac{1}{720} \\
& \Rightarrow-\frac{1}{720} \leq \sin 1-\frac{101}{120} \leq \frac{1}{720}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{101}{120}-\frac{1}{720} \leq \sin 1 \leq \underbrace{\frac{101}{120}+\frac{1}{720}}_{\approx 0.8403} \\
& \Rightarrow \underbrace{\frac{605}{720}}_{\approx 0.8431} \leq \sin 1 \leq \underbrace{\frac{607}{720}}
\end{aligned}
$$

Actual value

$$
\approx 0.8415
$$

