Sequences, Series, and Approximation We're now entering our next major unit of the Course on <u>sequences</u>, <u>Series</u>, and <u>approximation</u>. Our goal over the next many weeks is to learn how to approximate complicated functions using sequences of simpler functions — polynomials!

Approximating functions in this way has tons of applications throughout math, physics, and engineering. But before we can study <u>sequences of functions</u>, we'll need to understand <u>sequences of numbers</u>. \$10.1, 10.8 - Sequences and their Limits

An sequence is a list of numbers with a definite order:
$$a_1, a_2, a_3, a_4, \dots, a_n, \dots$$
 (aieR)

<u>Notation</u>: The sequence $\{a_1, a_2, a_3, ...\}$ may also be written as $\{a_n\}_{n=1}^{\infty}$ or $\{a_n\}_{n=1}^{\infty}$

A sequence may have each term specified <u>explicitly</u> (in terms of n):

 $\underbrace{e.q.}_{n=1} \left\{ \frac{1}{n} \right\}_{n=1}^{\infty} : \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots \\
 \underbrace{e.q.}_{n=3} \left\{ \sqrt{n+2} \right\}_{n=3}^{\infty} : \sqrt{5}, \sqrt{6}, \sqrt{7}, \dots \\
 \underbrace{e.q.}_{n=1} \left\{ (-1)^{n} \right\}_{n=1}^{\infty} : -1, 1, -1, 1, \dots$

e.g.
$$a_1 = \frac{1}{2}$$
 and $a_{n+1} = \frac{1+a_n}{2}$ (n > 1) describes

e.g. The Fibonacci sequence is defined by
$$a_1 = 1$$
, $a_2 = 1$, and $a_{n+2} = a_{n+1} + a_n$ (n ≥ 1)

We have
$$a_1 = 1$$
,
 $a_2 = 1$
 $a_3 = a_2 + a_1 = 1 + 1 = 2$
 $a_4 = a_3 + a_2 = 2 + 1 = 3$
 \vdots $(l_1 l_1 2, 3, 5, 8, 13, 2l, ...)$

We have encounted sequences already in MATH 116/118! <u>Ex:</u> Newton's method uses recursive sequences to approximate roots!

$$X_0 = Some initial guess$$

 $X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}, n \ge 1$

<u>Ex</u>: Riemann sums form a sequence of approximations to the area under a curve:

Visualizing Sequences

We can visualize a sequence on the real number line!

$$\underline{E_{X}}: \left\{ \frac{1}{n_{1}^{2}} \right\}_{n=1}^{\infty}: \frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \cdots$$

$$\begin{array}{c} & & \\$$

Or we can visualize a sequence in 2D!

Ex: Create a 2D plot of the following sequences:
(a)
$$\{(-1)^n\}_{n=1}^{\infty}$$
 (b) $\{1+\frac{(-1)^n}{n}\}_{n=1}^{\infty}$

Limits of Sequences
From the plots in the last example, it seems that
• {
$$\frac{1}{n^2}$$
 converges to 0 as n tends to infinity.
• { $1 + \frac{(-1)^n}{n}$ converges to 1 as n tends to infinity.
But let's not get ahead of ourselves — we haven't
even defined yet what it means for a sequence to

<u>Q</u>: What does it mean for a sequence $\{a_n\}$ to converge to a value L as n tends to ∞ ?

Good start... $\{\frac{1}{n^2}\}$ gets closer and closer to O, however it also gets closer and closer to -1, $-\frac{2}{3}$, etc. What's special about L=0?

Better, but still imprecise. What does "<u>infinitely close</u>" mean? And how do we measure "<u>closeness"</u>? Use $|a_n-L|$ to measure distance between $a_n = L$.

Attempt 3: "For every
$$\varepsilon > 0$$
, eventually the distance $|a_n - L|$ is less than ε ."

Very close, but what do we mean by "<u>eventually</u>"? L For all n after some cutoff, N.

Attempt 4: "For every
$$\varepsilon > 0$$
, there exists a number N such that $|a_n - L| < \varepsilon$ for all $n > N$."

This is the definition we want!

Definition: A real number L is the limit of
$$\{a_n\}$$
 if:
For all $E > 0$, there exists a number N such that
 $|a_n - L| < E$ for all $n > N$.
In this case we say $\{a_n\}$ converges to L and write
 $\lim_{n \to \infty} a_n = L$.
If instead no such L exists, we say $\{a_n\}$ diverges.

For instance, suppose we wished to use the above definition to show that

 $\lim_{n\to\infty}\frac{1}{n^2}=0.$

If $\mathcal{E} = \frac{1}{100}$ is given, we must find a point \mathcal{N} after which $|a_n - L| = |\frac{1}{n^2} - 0| = \frac{1}{n^2}$ is less than $\mathcal{E} = \frac{1}{100}$

Note that

 $\frac{1}{N^2} < \frac{1}{100} \implies 100 < N^2 \implies N > 10.$

So $|a_n-L| < \frac{1}{100}$ will be true for all n after N = 10. We have successfully found an N for this E!

Note: The above is NOT a proof that
$$\lim_{n \to \infty} \frac{1}{n^2} = 0$$
.
So far we have considered just $\mathcal{E} = \frac{1}{100}$. Can we find N that works when $\mathcal{E} = \frac{1}{1000}$? $\mathcal{E} = \frac{1}{10000000}$? We must generalize our argument to work for every \mathcal{E} !

Ex: Use the definition of the limit of a sequence
to prove the following:
(a)
$$\lim_{n \to \infty} \frac{1}{n^2} = 0$$
.

Solution:

Rough Work: Given
$$E > 0$$
, we want
 $|a_n - L| = |\frac{1}{n^2} - 0| < E$
 $\Rightarrow \frac{1}{n^2} < E$
 $\Rightarrow \frac{1}{e} < n^2$
 $\Rightarrow \frac{1}{\sqrt{E}} < n$
Aha! The inequality will work for n after $N = \frac{1}{\sqrt{E}}$!
Now we write our proof!

Proof that $\lim_{n \to \infty} \frac{1}{n^2} = 0$: Let $\varepsilon > 0$ be given. Let $N = \frac{1}{\sqrt{\varepsilon}}$. In this case, if n > N, we $\left| \frac{1}{n^2} - 0 \right| = \frac{1}{n^2} < \frac{1}{N^2}$ $= \frac{1}{(\sqrt{\varepsilon})^2}$ $= \frac{1}{\sqrt{\varepsilon}} = \varepsilon$.

(b)
$$\lim_{n \to \infty} \frac{n+4}{n+9} = 1$$

Rough work: Given
$$\varepsilon > 0$$
, We want
 $\left|a_{n}-L\right| = \left|\frac{n+4}{n+9}-1\right| = \left|\frac{n+4-(n+4)}{n+9}\right|$
 $= \left|\frac{-5}{n+9}\right| = \frac{5}{n+9} < \varepsilon$
 $\Rightarrow \frac{5}{\varepsilon} < n+9$
 $\Rightarrow \frac{5}{\varepsilon} - 9 < n$
Okay, let's pick $N = \frac{5}{\varepsilon} - 9$.

Proof that
$$\lim_{n \to \infty} \frac{n+4}{n+9} = 1$$
:
Let $\varepsilon > 0$ be given. Let $N = \frac{5}{\varepsilon} - 9$. In this case,
if $n > N$, then
$$\begin{pmatrix} n > N \Rightarrow n+9 > N+9 \\ \Rightarrow \frac{5}{n+9} < \frac{5}{N+9} \end{pmatrix}$$

$$\begin{vmatrix} \frac{n+4}{n+9} - 1 \end{vmatrix} = \frac{5}{n+9} < \frac{5}{N+9}$$

$$= \frac{5}{(\frac{5}{\varepsilon} - g) + g}$$

(c)
$$\lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$$

Rough work:
$$G_{1}$$
: ver $\varepsilon \ge 0$, we want
 $\left|\frac{N}{2n+1} - \frac{1}{2}\right| = \left|\frac{2n - (2n+1)}{2(2n+1)}\right| = \left|\frac{-1}{4n+2}\right| = \frac{1}{4n+2} \le \varepsilon$
 $\Rightarrow \frac{1}{\varepsilon} < 4n+2$
 $\Rightarrow \frac{1}{\varepsilon} - 2 < 4n$
 $\Rightarrow \gamma_{1} > \frac{1}{4}(\frac{1}{\varepsilon} - 2)$
Okay, let's pick $N = \frac{1}{4}(\frac{1}{\varepsilon} - 2)$.

Proof that $n \rightarrow \infty \frac{1}{2n+1} = \frac{1}{2}$:

Let
$$\varepsilon > 0$$
 be given. Let $N = \frac{1}{4} \left(\frac{1}{\varepsilon} - 2 \right)$.
In this case, if $n > N$, then
 $\left| \frac{n}{2n+1} - \frac{1}{2} \right| = \frac{1}{4n+2} < \frac{1}{4N/+2} = \frac{1}{N\left[\frac{1}{4}(\frac{1}{\varepsilon} - 2)\right] + 2}$
 $= \frac{1}{\left(\frac{1}{\varepsilon} - \frac{1}{\varepsilon}\right) + \frac{1}{\varepsilon}}$
 $= \varepsilon$.

(d)
$$\lim_{n \to \infty} \frac{\sin(n)}{n^2 + 6} = 0.$$

Solution :

Rough work: We want

$$\left|\frac{\sin(n)}{n^{2}+6}\right| = \frac{\left|\sin(n)\right|}{n^{2}+6} \leq \frac{1}{n^{2}+6} \leq \varepsilon \Rightarrow \frac{1}{\varepsilon} \leq n^{2}+6$$

$$\Rightarrow n^{2} > \frac{1}{\varepsilon} \leq n^{2}+6$$

$$\Rightarrow n^{2} > \frac{1}{\varepsilon} = -6$$

$$\Rightarrow n > \sqrt{\frac{1}{\varepsilon} - 6}$$
Okay, let's pick $N = \sqrt{\frac{1}{\varepsilon} - 6}$.

Proof that
$$\lim_{n \to \infty} \frac{\sin(n)}{n^2 + 6} = 0$$
:
Let $\varepsilon > 0$ be given. Let $N = \sqrt{\frac{1}{\varepsilon} - 6}$. In this case,
if $n > N$, then
 $\left| \frac{\sin(n)}{n^2 + 6} \right| \le \frac{1}{n^2 + 6} < \frac{1}{N^2 + 6} = \frac{1}{(\sqrt{\frac{1}{\varepsilon} - 6})^2 + 6} = \frac{1}{(\frac{1}{\varepsilon} - \beta) + 6} = \varepsilon$

In practice, there are easier ways to calculate limits
so only use the definition of convergence if asked to!
Limits of Sequences in Practice
Let's again consider
$$\lim_{n \to \infty} \frac{n}{2n+1}$$
.

Trick: consider the function

$$f(x) = \frac{x}{2x+1}$$
 where $X \in \mathbb{R}$, $X \neq \frac{-1}{2}$.

From limits in MATH 116, we know that

$$\lim_{X \to \infty} \frac{x}{2x+1} = \lim_{X \to \infty} \frac{\cancel{x} \cdot 1}{\cancel{x} (2 + \frac{1}{x})} = \frac{1}{2+0} = \frac{1}{2}$$

More generally, we have the following:
If
$$a_n = f(n)$$
 and $\lim_{X \to \infty} f(x) = L$, where LER or
 $L = \pm \infty$, then $\lim_{n \to \infty} a_n = L$ also.

By thinking of
$$\lim_{n \to \infty} a_n$$
 (the limit of a sequence) as
 $\lim_{x \to \infty} f(x)$ (the limit of a function of x, xER),
we get all of our usual limit laws...

Limit Laws: If
$$\lim_{n \to \infty} a_n = A$$
 and $\lim_{n \to \infty} b_n = B$,
where $A, B \in \mathbb{R}$ (i.e., these limits exist), then
(i) $\lim_{n \to \infty} (a_n \pm b_n) = A \pm B$
(ii) $\lim_{n \to \infty} a_n \cdot b_n = A \cdot B$
(iii) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$ if $B \pm O$.
(iv) $\lim_{n \to \infty} C \cdot a_n = C \cdot A$, $C \in \mathbb{R}$
(v) $\lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(A)$ if f is continuous.

Squeeze Theorem: Since we only care what happens as $n \to \infty$, we only need $a_n \le b_n \le Cn$ for large n!If $a_n \le b_n \le Cn$ (eventually) and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} C_n = L$ then $\lim_{n \to \infty} b_n = L$ also.

and even L'Hopital's rule!

Examples:

(a)
$$\lim_{h \to \infty} \frac{n^3 + n}{4n^3 + 1} = \lim_{n \to \infty} \frac{n^3 (1 + \frac{1}{n^2})}{n^2 (4 + \frac{1}{n^3})} = \frac{1 + 0}{4 + 0} = \frac{1}{4}$$

(b)
$$\lim_{n \to \infty} \ln\left(\frac{n+1}{\sqrt{n^2+1}}\right) = \ln\left(\lim_{n \to \infty} \frac{y(1+y_n)}{\sqrt{x^2}\sqrt{1+y_n^2}}\right)$$

Bring limit inside $= \ln\left(\frac{1+0}{\sqrt{1+0}}\right) = \ln(1) = 0$.

(c)
$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) \cdot \frac{(\sqrt{n+1} + \sqrt{n})}{(\sqrt{n+1} + \sqrt{n})} = \lim_{n \to \infty} \frac{(n+1) - n}{\sqrt{n+1} + \sqrt{n}}$$

" $\infty - \infty$ " \Rightarrow indeterminate!
= $\lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$

$$(e) \lim_{n \to \infty} \frac{\cos(n^3 + n + 1)}{n^2}$$

Note:
$$-1 \leq \cos(n^3 + n + 1) \leq 1 \Rightarrow \frac{-1}{n^2} \leq \frac{\cos(n^3 + n + 1)}{n^2} \leq \frac{1}{n^2}$$

 $\rightarrow 0$

$$\therefore \lim_{n \to \infty} \frac{\cos(n^3 + n + 1)}{n^2} = 0 \text{ by the squeeze theorem!}$$

(f) $\lim_{n\to\infty} \sin(\pi n)$

However... sin(In) = O for all nelN! Thus,

 $\lim_{n\to\infty}\sin(\pi n)=0.$