Sequences, Series, and Approximation
Were now entering our next major unit of the Course on sequences, Series, and approximation. Our goal over the next many weeks is to learn how to approximate complicated functions using sequences of simpler functions - polynomials!

Approximating functions in this way has tons of applications throughout math, physics, and engineering. But before we can study sequences of functions, well need to understand sequences of numbers.
§10.1,10.8 - Sequences and their Limits
An sequence is a list of numbers with a definite order: $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots \quad\left(a_{i} \in \mathbb{R}\right)$

Notation: The sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ may also be written as $\left\{a_{n}\right\}_{n=1}^{\infty}$ or $\left\{a_{n}\right\}$.

A sequence may have each term specified explicitly (in terms of n):
e.g. $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}: \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
e.g. $\{\sqrt{n+2}\}_{n=3}^{\infty}: \sqrt{5}, \sqrt{6}, \sqrt{7}, \ldots$
e.g. $\left\{(-1)^{n}\right\}_{n=1}^{\infty}:-1,1,-1,1, \ldots$

Or a sequence may be defined recursively (in terms of previous terms):
e.g. $a_{1}=\frac{1}{2}$ and $a_{n+1}=\frac{1+a_{n}}{2} \quad(n \geqslant 1)$ describes
the sequence $a_{1}=\frac{1}{2}$

$$
\begin{aligned}
& a_{2}=\frac{1+1 / 2}{2}=\frac{3}{4} \\
& a_{3}=\frac{1+3 / 4}{2}=\frac{7}{8} \\
& a_{4}=\frac{1+7 / 8}{2}=\frac{15}{16}
\end{aligned}
$$

e.g. The Fibonacci sequence is defined by

$$
a_{1}=1, a_{2}=1, \text { and } a_{n+2}=a_{n+1}+a_{n} \quad(n \geq 1)
$$

We have $a_{1}=1$,

$$
\begin{aligned}
& a_{2}=1 \\
& a_{3}=a_{2}+a_{1}=1+1=2 \\
& a_{4}=a_{3}+a_{2}=2+1=3 \\
& \vdots
\end{aligned} \quad(1,1,2,3,5,8,13,21, \ldots) .
$$

We have encounted sequences already in MATH $116 / 118$!
Ex: Newton's method uses recursive sequences to approximate roots!
$X_{0}=$ Some initial guess

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, n \geqslant 1
$$

Ex: Riemann sums form a sequence of approximations to the area under a curve:
$a_{1}=$ approximation using 1 rectangular area
$a_{2}=$ approximation using 2 rectangular areas

Visualizing Sequences
We can visualize a sequence on the real number line!
Ex: $\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}: \frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \cdots$

(a bit crowded!)

Or we can visualize a sequence in 2D!

Ex: $\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}: \frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots$

This is similar to the graph of $f(x)=\frac{1}{x^{2}}$, but the domain is restriced to the set of natural numbers,$\quad \mathbb{N}=\{1,2,3,4, \ldots\}$.

Ex: Create a $2 D$ plot of the following sequences:
(a) $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$
(b) $\left\{1+\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$

Solution:
(a) $\left\{(-1)^{n}\right\}_{n=1}^{\infty}:-1,1,-1,1, \ldots$

(b) $\left\{1+\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}: 1-\frac{1}{1}, 1+\frac{1}{2}, 1-\frac{1}{3}$,

$$
1-\frac{1}{4}, 1+\frac{1}{5}, \ldots
$$

Limits of Sequences
From the plots in the last example, it seems that

- $\left\{\frac{1}{n^{2}}\right\}$ converges to 0 as n tends to infinity.
- $\left\{1+\frac{(-1)^{n}}{n}\right\}$ converges to 1 as n tends to infinity.

But let's not get ahead of ourselves -we haven't
even defined yet what it means for a sequence to
converge to a number L !

Q: What does it mean for a sequence $\left\{a_{n}\right\}$ to converge to a value L as n tends to ∞ ?

Attempt 1: "an gets closer and closer to L as n becomes large"

Good start... $\left\{\frac{1}{n^{2}}\right\}$ gets closer and closer to 0 , however it also gets closer and closer to $-1,-2 / 3$, etc. What's special about $L=0$?

Attempt 2: "an gets infinitely close to L as n becomes large"

Better, but still imprecise. What does "infinitely close" mean? And how do we measure "closeness"? given value"

Use $\left|a_{n}-L\right|$ to measure distance between $a_{n} \& L$.

Attempt 3: "For every $\varepsilon>0$, eventually the distance $\left|a_{n}-L\right|$ is less than ε."

Very close, but what do we mean by "eventually"?
For all n after some cutoff, N.

Attempt 4: "For every $\varepsilon>0$, there exists a number N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n>N$."

This is the definition we want!

Definition: A real number L is the limit of $\left\{a_{n}\right\}$ if: For all $\varepsilon>0$, there exists a number N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n>N$.

In this case we say $\left\{a_{n}\right\}$ converges to L and write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

If instead no such L exists, we say $\left\{a_{n}\right\}$ diverges.

For every $\varepsilon>0$, we need to find an N after which all a_{n} 's are no more than ε away from L.

For instance, suppose we wished to use the above definition to show that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

If $\varepsilon=\frac{1}{100}$ is given, we must find a point N after which $\left|a_{n}-L\right|=\left|\frac{1}{n^{2}}-0\right|=\frac{1}{n^{2}}$ is less than $\varepsilon=\frac{1}{100}$

Note that

$$
\frac{1}{n^{2}}<\frac{1}{100} \Rightarrow 100<n^{2} \quad \Rightarrow \quad n>10
$$

So $\left|a_{n}-L\right|<\frac{1}{100}$ will be true for all n after $N=10$.

We have successfully found an N for this ε !

Note: The above is NOT a proof that $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.
So for we have considered just $\varepsilon=\frac{1}{100}$. Can we find N that works when $\varepsilon=\frac{1}{1000}$? $\quad \varepsilon=\frac{1}{1000000} ?$ We must generalize our argument to work for every ε !

EX: Use the definition of the limit of a sequence to prove the following:
(a) $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.

Solution:
Rough Work: Given $\varepsilon>0$, we want

$$
\begin{aligned}
\left|a_{n}-L\right| & =\left|\frac{1}{n^{2}}-0\right|<\varepsilon \\
& \Rightarrow \frac{1}{n^{2}}<\varepsilon \\
& \Rightarrow \frac{1}{\varepsilon}<n^{2} \\
& \Rightarrow \frac{1}{\sqrt{\varepsilon}}<n
\end{aligned}
$$

Aha! The inequality will work for n after $N=\frac{1}{\sqrt{\varepsilon}}$!
Now we write our proof!

Proof that $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$:
Let $\varepsilon>0$ be given. Let $N=\frac{1}{\sqrt{\varepsilon}}$. In this case, if $n>N$, we

$$
\begin{aligned}
& \text { We } \\
& \begin{aligned}
\left|\frac{1}{n^{2}}-0\right|=\frac{1}{n^{2}} & <\frac{1}{N^{2}} \\
& =\frac{1}{(1 / \sqrt{\varepsilon})^{2}} \\
& =\frac{1}{1 / \varepsilon}=\varepsilon .
\end{aligned}
\end{aligned}
$$

(b) $\lim _{n \rightarrow \infty} \frac{n+4}{n+9}=1$

Rough work: Given $\varepsilon>0$, We want

$$
\begin{aligned}
\left|a_{n}-L\right|=\left|\frac{n+4}{n+9}-1\right| & =\left|\frac{n+4-(n+9)}{n+9}\right| \\
& =\left|\frac{-5}{n+9}\right|=\frac{5}{n+9}<\varepsilon \\
& \Rightarrow \frac{5}{\varepsilon}<n+9 \\
& \Rightarrow \frac{5}{\varepsilon}-9<n
\end{aligned}
$$

Okay, let's pick $N=\frac{5}{\varepsilon}-9$.

Proof that $\lim _{n \rightarrow \infty} \frac{n+4}{n+9}=1$:
Let $\varepsilon>0$ be given. Let $N=\frac{5}{\varepsilon}-9$. In this case, if $n>N$, then

$$
(n>N \Rightarrow n+9>N+9
$$

$$
\begin{aligned}
\left|\frac{n+4}{n+9}-1\right|=\frac{5}{n+9} & <\frac{5}{N+9} \\
& \left.=\frac{5}{\left(\frac{5}{\varepsilon}-9\right)+9}<\frac{5}{N+9}\right) \\
& =\frac{5}{5 / \varepsilon}=\varepsilon
\end{aligned}
$$

(c) $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}$

Rough work: Given $\varepsilon>0$, we want

$$
\begin{aligned}
\left|\frac{n}{2 n+1}-\frac{1}{2}\right|=\left|\frac{2 n-(2 n+1)}{2(2 n+1)}\right|=\left|\frac{-1}{4 n+2}\right| & =\frac{1}{4 n+2}<\varepsilon \\
& \Rightarrow \frac{1}{\varepsilon}<4 n+2 \\
& \Rightarrow \frac{1}{\varepsilon}-2<4 n \\
& \Rightarrow n>\frac{1}{4}\left(\frac{1}{\varepsilon}-2\right)
\end{aligned}
$$

Okay, let's pick $N=\frac{1}{4}\left(\frac{1}{\varepsilon}-2\right)$.

Proof that $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}$:

Let $\varepsilon>0$ be given. Let $N=\frac{1}{4}\left(\frac{1}{\varepsilon}-2\right)$.
In this case, if $n>N$, then

$$
\begin{aligned}
\left|\frac{n}{2 n+1}-\frac{1}{2}\right|=\frac{1}{4 n+2}<\frac{1}{4 N+2} & =\frac{1}{4\left[\frac{1}{4}\left(\frac{1}{\varepsilon}-2\right)\right]+2} \\
& =\frac{1}{\left.\left(\frac{1}{\varepsilon}-2\right)^{2}\right)+2} \\
& =\varepsilon .
\end{aligned}
$$

(d) $\lim _{n \rightarrow \infty} \frac{\sin (n)}{n^{2}+6}=0$.

Solution:
Rough work: We want

$$
\begin{aligned}
\left|\frac{\sin (n)}{n^{2}+6}\right|=\frac{|\sin (n)|}{n^{2}+6} \leq \frac{1}{n^{2}+6}<\varepsilon & \Rightarrow \frac{1}{\varepsilon}<n^{2}+6 \\
& \Rightarrow n^{2}>\frac{1}{\varepsilon}-6 \\
& \Rightarrow n>\sqrt{\frac{1}{\varepsilon}-6}
\end{aligned}
$$

Okay, let's pick $N=\sqrt{\frac{1}{\varepsilon}-6}$.
$\underline{\text { Proof that } \lim _{n \rightarrow \infty} \frac{\sin (n)}{n^{2}+6}=0}$
Let $\varepsilon>0$ be given. Let $N=\sqrt{\frac{1}{\varepsilon}-6}$. In this case, if $n>N$, then

$$
\left|\frac{\sin (n)}{n^{2}+6}\right| \leq \frac{1}{n^{2}+6}<\frac{1}{N^{2}+6}=\frac{1}{\left(\sqrt{\frac{1}{\varepsilon}-6}\right)^{2}+6}=\frac{1}{\left(\frac{1}{\varepsilon}-8\right)+6}=\varepsilon
$$

In practice, there are easier ways to calculate limits so only use the definition of convergence if asked to!

Limits of Sequences in Practice
Let's again consider $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}$.

Trick: consider the function

$$
f(x)=\frac{x}{2 x+1} \text { where } x \in \mathbb{R}, \quad x \neq \frac{-1}{2} .
$$

From limits in MATH 116, we know that

$$
\lim _{x \rightarrow \infty} \frac{x}{2 x+1}=\lim _{x \rightarrow \infty} \frac{x \cdot 1}{x\left(2+\frac{1}{x}\right)}=\frac{1}{2+0}=\frac{1}{2}
$$

Since $\left\{\frac{n}{2 n+1}\right\}_{n=1}^{\infty}$ is contained within the graph of $f(x)=\frac{x}{2 x+1}$, this sequence must also have a limit of $\frac{1}{2}$!

More generally, we have the following:
If $a_{n}=f(n)$ and $\lim _{x \rightarrow \infty} f(x)=L$, where $L \in \mathbb{R}$ or $L= \pm \infty$, then $\lim _{n \rightarrow \infty} a_{n}=L$ also.

By thinking of $\lim _{n \rightarrow \infty} a_{n}$ (the limit of a sequence) as $\lim _{x \rightarrow \infty} f(x)$ (the limit of a function of $x, x \in \mathbb{R}$), we get all of our usual limit laws...

Limit Laws: If $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$, where $A, B \in \mathbb{R}$ (ie., these limits exist), then
(i) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=A \pm B$
(ii) $\lim _{n \rightarrow \infty} a_{n} \cdot b_{n}=A \cdot B$
(iii) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B}$ if $B \neq 0$.
(iv) $\lim _{n \rightarrow \infty} c \cdot a_{n}=c \cdot A, c \in \mathbb{R}$
(v) $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(A)$ if f is continuous.

As well as the squeeze theorem...
Squeeze Theorem: Since we only care what happens as $n \rightarrow \infty$, We only need $a_{n} \leqslant b_{n} \leqslant c_{n}$ for large n !
If $a_{n} \leq b_{n} \leq c_{n}$ (eventually) and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} C_{n}=L$ then $\lim _{n \rightarrow \infty} b_{n}=L$ also.
and even L'Hopital's rule!

Examples:
(a) $\lim _{n \rightarrow \infty} \frac{n^{3}+n}{4 n^{3}+1}=\lim _{n \rightarrow \infty} \frac{n^{3}\left(1+1 / n^{2}\right)}{x^{3}\left(4+1 / n^{3}\right)}=\frac{1+0}{4+0}=\frac{1}{4}$
(b) $\lim _{n \rightarrow \infty} \ln \left(\frac{n+1}{\sqrt{n^{2}+1}}\right)=\ln \left(\lim _{n \rightarrow \infty} \frac{x(1+1 / n)}{\left.\sqrt{\sqrt{n^{2}} \sqrt{1+1 / n^{2}}}\right), ~(1)}\right)$
$\begin{aligned} & \text { Bring limit inside } \\ & \text { since } \ln (x) \text { is cts! }\end{aligned}=\ln \left(\frac{1+0}{\sqrt{1+0}}\right)=\ln (1)=0$.
(c)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \underbrace{(\sqrt{n+1}-\sqrt{n})} \cdot \frac{(\sqrt{n+1}+\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})} & =\lim _{n \rightarrow \infty} \frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}=0
\end{aligned}
$$

(e) $\lim _{n \rightarrow \infty} \frac{\cos \left(n^{3}+n+1\right)}{n^{2}}$

Note: $-1 \leq \cos \left(n^{3}+n+1\right) \leq 1 \Rightarrow \underbrace{\frac{-1}{n^{2}}}_{\rightarrow 0} \leq \frac{\cos \left(n^{3}+n+1\right)}{n^{2}} \leq \underbrace{\frac{1}{n^{2}}}_{\rightarrow 0}$
$\therefore \lim _{n \rightarrow \infty} \frac{\cos \left(n^{3}+n+1\right)}{n^{2}}=0$ by the squeeze theorem!
(f) $\lim _{n \rightarrow \infty} \sin (\pi n)$

Note that $\lim _{x \rightarrow \infty} \sin (\pi x)$ DNE:

However... $\sin (\pi n)=0$ for all $n \in \mathbb{N}$! Thus,

$$
\lim _{n \rightarrow \infty} \sin (\pi n)=0
$$

