$\xi 15.2$ - Separable Differential Equations
A first order DE is said to be separable if it can be written as

$$
\frac{d y}{d x}=g(x) \cdot h(y)
$$

That is, we can factor the non-derivative terms as a product of an x-part and a y-part.
e.g.: $\frac{d y}{d x}=\frac{x}{y} \quad\left(=x \cdot \frac{1}{y}\right) \Rightarrow$ separable

$$
\frac{d y}{d x}=x+2 y, \quad \frac{d y}{d x}=\sin (x y) \Rightarrow \text { Non-separable }
$$

To solve: Split up the differential, separate the x 's and $y^{\prime} s$, and integrate!

$$
\begin{aligned}
\frac{d y}{d x}=g(x) h(y) & \Rightarrow \frac{1}{h(y)} d y=g(x) d x \\
& \Rightarrow \int \frac{1}{h(y)} d y=\int g(x) d x
\end{aligned}
$$

Ex: Solve $\frac{d y}{d x}=\frac{x}{y}$
Solution: $\frac{d y}{d x}=\frac{x}{y} \Rightarrow y d y=x d x$

$$
\Rightarrow \quad \int y d y=\int x d x
$$

$$
\begin{aligned}
\begin{array}{l}
\text { Now isolate for } \\
y \text { (if possible!) }
\end{array} & \Rightarrow \frac{y^{2}}{2}=\frac{x^{2}}{2}+C \quad \text { For convenience } \\
& \Rightarrow y^{2}=x^{2}+2 C \quad D=2 c . \\
& \Rightarrow y= \pm \sqrt{x^{2}+D}, D \in \mathbb{R}
\end{aligned}
$$

Note: When $D=1$ we get $y=\sqrt{x^{2}+1}$, which is the solution we verified in our last example!

If we are told the value of the unknown function y at some given x, we can figure out the arbitrary constant. A DE together with point (x_{0}, y_{0}) is called an initial value problem (IVP).

Ex: Solve the IVP $\frac{d y}{d x}=\frac{x \ln x}{3 y^{2}}, y(1)=0$.
Solution: $\begin{aligned} & \int 3 y^{2} d y=\int x \ln x d x \\ & \Rightarrow y^{3}=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x\end{aligned}$

$$
\Rightarrow y^{3}=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+c \longleftarrow
$$

$$
\Rightarrow \quad y^{3}=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+\frac{1}{4}
$$

$$
\Rightarrow y=\sqrt[3]{\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+\frac{1}{4}}
$$

Ex: Find the general solution to $\frac{d y}{d x}=\frac{y \cos x}{1+2 y^{2}}$.
Solution: $\int \frac{1+2 y^{2}}{y} d y=\int \cos x d x$

$$
\Rightarrow \quad \int\left(\frac{1}{y}+2 y\right) d y=\sin x+C
$$

$$
\Rightarrow \ln |y|+y^{2}=\sin x+C
$$

Can't solve for $y=f(x)$, so well stop here.

BUT WAIT - there may be another solution!
We divided by y in the first step \circledast, but what if $y \equiv 0$?

The notation " $y \equiv 0$ " means " y is identically/constantly 0 ."

We'll need to check the $y \equiv 0$ case separately!

If $y \equiv 0$ then $\frac{d y}{d x}=0$ and $\frac{y \cos x}{1+2 y^{2}}=\frac{0 \cdot \cos x}{1+0}=0$
So yes, $\frac{d y}{d x}=\frac{y \cos x}{1+2 y^{2}}$ when $y \equiv 0!$

General Solution:

$$
y \equiv 0 \quad \text { or } \quad \ln |y|+y^{2}=\sin x+c, \quad c \in \mathbb{R}
$$

Ex: Solve the IVP $y^{\prime}=x y, \quad y(0)=2$.
Solution: $\frac{d y}{d x}=x y \Rightarrow \frac{d y}{y}=x d x$ if $y \neq 0$
(but in this case $y(0)=2$,

$$
\Rightarrow \int \frac{d y}{y}=\int x d x
$$

so $y \equiv 0$ isn't possible!)
$\Rightarrow \ln |y|=\frac{x^{2}}{2}+C$

$$
\Rightarrow|y|=e^{\frac{x^{2}}{2}+c}=e^{c} e^{\frac{x^{2}}{2}}
$$

$$
\Rightarrow y= \pm e^{c} e^{\frac{x^{2}}{2}}=A e^{\frac{x^{2}}{2}}
$$

For convenience, write $A= \pm e^{c}$

Using the initial condition $y(0)=2$, we have

$$
2=A e^{\frac{0^{2}}{2}}=A \cdot 1 \Rightarrow A=2
$$

Thus, $y=2 e^{\frac{x^{2}}{2}}$

Additional Exercises

1. Find the general solution to $\frac{d y}{d x}=y^{2}$.
2. Solve the $\operatorname{IVP} \frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2 y-2}, y(0)=-1$

Solutions

1. $\frac{d y}{d x}=y^{2}$
weill separately check $y \equiv 0$

$$
\begin{aligned}
& \Rightarrow \int \frac{1^{2}}{y^{2}} d y=\int 1 \cdot d x \\
& \Rightarrow \frac{-1}{y}=x+C \\
& \Rightarrow \frac{1}{y}=-x-C \\
& \Rightarrow y=\frac{1}{D-x}, D \in \mathbb{R}
\end{aligned}
$$

Check $y \equiv 0$: $\quad \frac{d y}{d x}=0, y^{2}=0$ (equal!)

$$
\Rightarrow y \equiv 0 \text { is a Solution! }
$$

Thus, $y \equiv 0$ or $y=\frac{1}{D-x}, D \in \mathbb{R}$
2.

$$
\begin{aligned}
\frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2 y-2} & \Rightarrow \int(2 y-2) d y=\int\left(3 x^{2}+4 x+2\right) d x \\
& \Rightarrow \quad y^{2}-2 y=x^{3}+2 x^{2}+2 x+C
\end{aligned}
$$

Since $y(0)=-1$, we have

$$
(\underbrace{(-1)^{2}-2(-1)}_{=3}=\underbrace{0^{3}+2(0)^{2}+2(0)}_{=0}+C,
$$

and hence $C=3$. Thus,

$$
y^{2}-2 y=x^{3}+2 x^{2}+2 x+3
$$

Solve for y by completing the square:

$$
\begin{aligned}
\left(y^{2}-2 y+1\right)-1 & =x^{3}+2 x^{2}+2 x+3 \\
\Rightarrow \quad(y-1)^{2} & =1+\left(x^{3}+2 x^{2}+2 x+3\right) \\
\Rightarrow \quad y-1 & = \pm \sqrt{x^{3}+2 x^{2}+2 x+4} \\
\Rightarrow \quad y & =1 \pm \sqrt{x^{3}+2 x^{2}+2 x+4}
\end{aligned}
$$

However, only

$$
y=1-\sqrt{x^{3}+2 x^{2}+2 x+4}
$$

satisfies the initial condition $y(0)=-1$.

