$$\underline{Ex}$$
: Solve $Xy'' + y' = 8x$

Idea: Let
$$y' = v$$
, so $y'' = v'$. This will reduce the
problem to a first order DE involving x and $v!$

Solution: Let
$$y' = v$$
, so $y'' = v'$. We have
 $xy'' + y' = 8x \implies xv' + v = 8x$ (Linear! Divide by x!)

$$\Rightarrow \sqrt{1} + \left(\frac{1}{X}\right) v = 8$$

$$P(x)$$

We multiply by

$$M(x) = e^{\int \frac{1}{x} dx} = e^{\int \frac{1}{x} dx} = x$$

giving us $\underbrace{X \vee ' + \vee}_{[x^2 \vee]'} = 8_X \implies [X \vee]' = 8_X$ $\Rightarrow \quad X \vee = 4_X^2 + C, \ C \in \mathbb{R}$ $\Rightarrow \quad \sqrt{2} = 4_X + \frac{C}{X}, \ C \in \mathbb{R}$.

Recall that V=y', hence we have just shown that

$$y' = 4x + \frac{c}{x}, C \in \mathbb{R}$$

Finally, integrate to get y: $y = \int (4x + \frac{C}{x}) dx$ $\Rightarrow y = 2x^{2} + C \ln |x| + D, C, D \in \mathbb{R}$ We now have a two-parameter family of solutions!

Thus,
$$V = y' = \pm e^{c} \times \Rightarrow y = \pm \frac{\pm e^{c}}{2} \times^{2} + D$$

$$\Rightarrow \frac{y = C_{1} \times^{2} + C_{2}}{C_{1} = \pm \frac{e^{c}}{2}, C_{1} \neq 0}$$

We must now consider $V = y' \equiv 0$, in which case y = constant; hence the DE becomes O = O (which is true!) Thus, we have

$$y = C_1 \times^2 + C_2$$
, $C_1 \neq 0$, $C_2 \in \mathbb{R}$ or $y = C_3$, $C_3 \in \mathbb{R}$

We can actually combine these possibilities into one
big solution:
$$y = C_1 X^2 + C_2, C_1, C_2 \in \mathbb{R}$$

Approach 2: Solve as a Linear DE (usually "cleaner"!)
$$V' = \frac{V}{X} \implies V' - \frac{1}{X}V = 0$$

integrate!

$$\Rightarrow \frac{1}{X} \vee = C$$

$$\Rightarrow \vee = C \times, C \in \mathbb{R}$$

Thus,

$$V = \frac{dy}{dx} = C_X \implies Y = \frac{C_X^2}{2} + D, C, D \in \mathbb{R}$$

or, by letting
$$C_1 = C/2$$
 and $C_2 = D$:
 $y = C_1 X^2 + C_2$, $C_1, C_2 \in \mathbb{R}$

Case II: X does not appear We'll now solve DEs involving only y, y', and y". <u>Ex</u>: Solve $y'' = \frac{y'}{y^2}$ given y(0) = 2, $y'(0) = -\frac{1}{2}$. <u>Idea</u>: We'll again let $y' = \frac{dy}{dx} = v$, but this time, to avoid introducing any X's to the DE, we'll write $y'' = \frac{dv}{dx} = \frac{dv}{dy} \cdot \frac{dy}{dx} = v \frac{dv}{dy}$

<u>Step 1</u>: Start by writing y' = V and $y'' = V \frac{dv}{dy}$

In our example:
$$y'' = \frac{y'}{y^2} \Rightarrow \sqrt{\frac{dv}{dy}} = \frac{y}{y^2}$$

Note: You should now have a first-order DE involving
just y's and v's!

$$\frac{\operatorname{In} \text{ our example :}}{\bigvee \frac{dv}{dy} = \frac{v}{y^{2}} \implies \frac{v \, dv}{v} = \frac{dy}{y^{2}} \quad (\text{Separable!})$$

$$\left[\begin{array}{c} \operatorname{prwided} v \neq 0, \text{ but Since} \implies \int 1 \, dv = \int \frac{1}{y^{2}} \, dy \\ v = y' \text{ and } y'(o) = ^{-1}y, \qquad \Rightarrow \quad \int 1 \, dv = \int \frac{1}{y^{2}} \, dy \\ v = 0 \text{ is impossible!} \quad \Rightarrow \quad v = -\frac{1}{y} + C \\ \underline{We \ now \ find \ C \ using \ our \ initial \ conditions:} \\ When \ x = 0, \ we \ have \ y = 2 \ and \ v = y' = \frac{-1}{2}, \ hence \\ v = -\frac{1}{y} + C \quad \Rightarrow \quad -\frac{1}{2} = -\frac{1}{2} + C \quad \Rightarrow \quad C = 0. \end{array}$$

Thus,
$$V = -\frac{1}{y}$$
.
Step 3: Rewrite $V = y'$ as dy/dx and solve the resulting DE for Y.

In our example:

$$V = \frac{-i}{y} \implies \frac{dy}{dx} = \frac{-i}{y} \quad (separable!)$$
$$\implies y dy = -dx$$
$$\implies \frac{y^{2}}{2} = -x + D$$

We solve for D using
$$y(o) = 2$$
 once again:

$$\frac{y^2}{2} = -x + D = \frac{2^2}{2} = -0 + D \implies D = 2.$$

Thus,
$$\frac{y^2}{2} = -x + 2 \implies y^2 = 4 - 2x$$

 $\implies y = \pm \sqrt{4 - 2x}$
However, only $y = \sqrt{4 - 2x}$ Satisfies $y(0) = 2!$

Ex: Solve
$$y'' = e^{y} \cdot y'$$
 given $y(3) = 0$, $y'(3) = 1$

Solution: Since the DE involves only y, y', and y", we

$$\begin{aligned} |e+y'=v \quad \text{and} \quad y'' &= v \frac{dv}{dy} \quad \text{Then} \\ y'' &= e^{y} \cdot y' \implies v \frac{dv}{dy} = e^{y} \cdot v \\ &\Rightarrow \frac{dv}{dy} = e^{y} \quad (Again, v \neq 0 \text{ since} \\ & y' \quad v = y' \text{ and } y'(3) = 1.) \end{aligned}$$
$$\begin{aligned} &\Rightarrow \int 1 \, dv = \int e^{y} \, dy \\ &\Rightarrow v = e^{y} + C \end{aligned}$$

We are given that y=0 and V=y'=1 when x=3, hence $V=e^{y}+C \Rightarrow 1=e^{o}+C \Rightarrow C=0$.

Thus,

$$\sqrt{=} e^{y} \Rightarrow \frac{dy}{dx} = e^{y} \quad (\text{Separable!})$$

$$\Rightarrow \int e^{-y} dy = \int 1 dx$$

$$\Rightarrow -e^{-y} = x + D$$
Using $y(3) = 0$ once again, we have
$$-e^{-y} = x + D \Rightarrow -e^{0} = 3 + D \Rightarrow D = -4$$
Thus, $-e^{-y} = x - 4 \Rightarrow e^{-y} = 4 - x$

$$\Rightarrow y = -\ln(4 - x)$$

Ex: Find the general solution for
$$y'' - y' = 0$$
.
Solution: Using the approach for DEs involving just
 $y, y', and y'', we let y' = v and y'' = v \frac{dv}{dy}$:
 $y'' - y' = 0 \Rightarrow v \frac{dv}{dy} = v$
 $\Rightarrow v = 0 \text{ or } \frac{dv}{dy} = 1$

If $V \equiv 0$, then $y \equiv Constant$ and the DE becomes $0 \equiv 0$ (which is true!), so $y \equiv C$ is a possibility.

If instead $V \neq 0$, then

$$\frac{dv}{dy} = 1 \implies \int 1 \, dv = \int 1 \, dy$$

$$\implies v = y + D$$

$$\implies \frac{dy}{dx} = y + D$$

$$\implies \int \frac{dy}{y + D} = \int 1 \, dx$$

$$\implies \int \frac{dy}{y + D} = \int 1 \, dx$$

$$\implies \int \ln |y + D| = x + E$$
Not possible. Note
$$= \ln |y + D| = e^{x} e^{E}$$

$$\implies y + D = e^{E} e^{x}$$

$$\implies y = -D \pm e^{E} e^{x}$$

$$\implies y = -D \pm e^{E} e^{x}$$

$$\implies y = -D \pm e^{E} e^{x}$$

Combining the results from the V=0 case and $V\neq 0$ case, our general solution is

$$y = C_1 + C_2 e^{\times}$$
, $C_1 \in \mathbb{R}$, $C_2 \neq 0$ or $y = C_3$, $C_3 \in \mathbb{R}$

Alternatively, $y = C_1 + C_2 e^{x}$, $C_1, C_2 \in \mathbb{R}$ by allowing $C_2 = 0!$ Note: The DE in the last example can also be solved using the method from Case I, as y is not present. Try this as an exercise!