$\S 15.4$ - Reducible Second Order Differential Equations
We'll say a second order $D E$ (i.e., one involving only $\left.x, y, y^{\prime}, y^{\prime \prime}\right)$ is reducible if it can be transformed into a first order $D E$. We can then solve the $D E$ using our earlier methods. We'll consider two cases of reducible second order LEs.

Case I: y does not appear
Here we will solve DEs involving only x, y^{\prime}, and $y^{\prime \prime}$.

Ex: Solve $x y^{\prime \prime}+y^{\prime}=8 x$

Idea: Let $y^{\prime}=v$, so $y^{\prime \prime}=v^{\prime}$. This will reduce the problem to a first order $D E$ involving x and v !

Solution: Let $y^{\prime}=v$, so $y^{\prime \prime}=v^{\prime}$. We have

$$
\left.x y^{\prime \prime}+y^{\prime}=8 x \Rightarrow x v^{\prime}+v=8 x \quad \text { (Linear! Divide by } x!\right)
$$

$$
\Rightarrow \quad v^{\prime}{\underset{T}{x(x)}}^{x}=8
$$

We multiply by

$$
\mu(x)=e^{\int \frac{1}{x} d x}=e^{\ln (x)}=x
$$

giving us $\underbrace{x v^{\prime}+v}_{\left[x^{2} v\right]^{\prime}}=8 x \Rightarrow[x v]^{\prime}=8 x$

$$
\begin{aligned}
& \Rightarrow \quad x v=4 x^{2}+c, c \in \mathbb{R} \\
& \Rightarrow \quad v=4 x+\frac{c}{x}, c \in \mathbb{R} .
\end{aligned}
$$

Recall that $v=y^{\prime}$, hence we have just shown that

$$
y^{\prime}=4 x+\frac{c}{x}, c \in \mathbb{R}
$$

Finally, integrate to get y :

$$
\begin{aligned}
y & =\int\left(4 x+\frac{c}{x}\right) d x \\
\Rightarrow y & =2 x^{2}+c \ln |x|+D, C, D \in \mathbb{R}
\end{aligned}
$$

We now have a two-parameter family of solutions!

Ex: Solve $y^{\prime \prime}=\frac{y^{\prime}}{x}$
Solution: Since y does not appear, let $y^{\prime}=v, y^{\prime \prime}=v^{\prime}$.
Then

$$
y^{\prime \prime}=\frac{y^{\prime}}{x} \Rightarrow v^{\prime}=\frac{v}{x} \xrightarrow{\text { Linear! }} \quad v^{\prime}-\frac{1}{x} v=0 .
$$

Approach 1: Solve as a Separable DE

$$
\begin{aligned}
\frac{d v}{d x}=\frac{v}{x} & \Rightarrow \int \frac{d v}{v}=\int \frac{d x}{x} \quad(\text { provided } \quad v \neq 0) \\
& \Rightarrow \ln |v|=\ln |x|+c \\
& \Rightarrow|v|=e^{\ln |x|+c}=e^{c} \cdot|x| \\
& \Rightarrow v= \pm e^{c} x
\end{aligned}
$$

Thus, $\quad v=y^{\prime}= \pm e^{c} x \Rightarrow y=\frac{ \pm e^{c}}{2} x^{2}+D$

$$
\Rightarrow \frac{y=c_{1} x^{2}+c_{2}}{L_{c_{1}}=\frac{ \pm e^{c}}{2}, c_{1} \neq 0}
$$

We must now consider $V=y^{\prime} \equiv 0$, in which case $y=$ constant; hence the $D E$ becomes $O=0$ (which is true!)

Thus, we have

$$
y=C_{1} x^{2}+C_{2}, C_{1} \neq 0, C_{2} \in \mathbb{R} \quad \text { or } \quad y=C_{3}, \quad C_{3} \in \mathbb{R}
$$

We can actually combine these possibilities into one big solution:

$$
y=C_{1} x^{2}+C_{2}, C_{1}, C_{2} \in \mathbb{R}
$$

Approach 2: Solve as a Linear DE (usually "cleaner"!)

$$
v^{\prime}=\frac{v}{x} \quad \Rightarrow \quad v^{\prime}-\frac{1}{x} v=0
$$

Multiply by

$$
\mu(x)=e^{\int \frac{-1}{x} d x}=e^{-\ln x}=e^{\ln \left(x^{-1}\right)}=\frac{1}{x}
$$

Hence $\quad v^{\prime}-\frac{1}{x} v=0 \quad \Rightarrow \quad \frac{1}{x} v^{\prime}-\frac{1}{x^{2}} v=0$

$$
\Rightarrow\left[\frac{1}{x} v\right]^{\prime}=0
$$

integrate!

$$
\begin{aligned}
& \stackrel{\text { regrate! }}{\Rightarrow} \frac{1}{x} v=C \\
& \Rightarrow v=C x, C \in \mathbb{R}
\end{aligned}
$$

Thus,

$$
V=\frac{d y}{d x}=C x \Rightarrow y=\frac{C x^{2}}{2}+D, C, D \in \mathbb{R}
$$

or, by letting $C_{1}=C / 2$ and $C_{2}=D$:

$$
y=C_{1} x^{2}+C_{2} \quad, \quad C_{1}, C_{2} \in \mathbb{R}
$$

Case II: X does not appear
We'll now solve DEs involving only y, y^{\prime}, and $y^{\prime \prime}$.
Ex: Solve $y^{\prime \prime}=\frac{y^{\prime}}{y^{2}}$ given $y(0)=2, \quad y^{\prime}(0)=-\frac{1}{2}$.
Idea: Well again let $y^{\prime}=\frac{d y}{d x}=v$, but this time, to avoid introducing any x 's to the $D E$, well write

$$
y^{\prime \prime}=\frac{d v}{d x}=\frac{d v}{d y} \frac{d y}{d x}=v \frac{d v}{d y}
$$

Step 1: Start by writing $y^{\prime}=v$ and $y^{\prime \prime}=v \frac{d v}{d y}$

In our example: $y^{\prime \prime}=\frac{y^{\prime}}{y^{2}} \Rightarrow v \frac{d v}{d y}=\frac{v}{y^{2}}$

Note: You should now have a first-order $D E$ involving just y 's and v 's!

Step 2: Solve the new $D E$ for v as a function of y.

In our example:

$$
v \frac{d v}{d y}=\frac{v}{y^{2}} \Rightarrow \frac{v d v}{v}=\frac{d y}{y^{2}} \quad \text { (Separable!) }
$$

$\left[\begin{array}{l}\text { provided } v \neq 0 \text {, but since } \\ v=y^{\prime} \text { and } y^{\prime}(0)=-1 / 2,\end{array} \Rightarrow \int 1 d v=\int \frac{1}{y^{2}} d y\right.$

$$
v \equiv 0 \text { is impossible! } \quad \Rightarrow \quad v=\frac{-1}{y}+C
$$

We now find C using our initial conditions:

When $x=0$, we have $y=2$ and $v=y^{\prime}=\frac{-1}{2}$, hence

$$
V=\frac{-1}{y}+C \Rightarrow \frac{-1}{2}=\frac{-1}{2}+C \Rightarrow C=0
$$

Thus, $v=-\frac{1}{y}$.

Step 3: Rewrite $v=y^{\prime}$ as $d y / d x$ and solve the resulting $D E$ for y.

In our example:

$$
\begin{aligned}
V=\frac{-1}{y} & \Rightarrow \frac{d y}{d x}=\frac{-1}{y} \quad \text { (separable!) } \\
& \Rightarrow y d y=-d x \\
& \Rightarrow \frac{y^{2}}{2}=-x+D
\end{aligned}
$$

We solve for D using $y(0)=2$ once again:

$$
\frac{y^{2}}{2}=-x+D=\frac{2^{2}}{2}=-0+D \Rightarrow D=2
$$

Thus, $\frac{y^{2}}{2}=-x+2 \Rightarrow y^{2}=4-2 x$

$$
\Rightarrow y= \pm \sqrt{4-2 x}
$$

However, only $y=\sqrt{4-2 x}$ satisfies $y(0)=2$!

Ex: Solve $y^{\prime \prime}=e^{y} \cdot y^{\prime}$ given $y(3)=0, \quad y^{\prime}(3)=1$
Solution: Since the $D E$ involves only y, y^{\prime}, and $y^{\prime \prime}$, we
let $y^{\prime}=v$ and $y^{\prime \prime}=v \frac{d v}{d y}$. Then

$$
\begin{aligned}
y^{\prime \prime}=e^{y} \cdot y^{\prime} & \Rightarrow v \frac{d v}{d y}=e^{y} \cdot v \\
& \Rightarrow \frac{d v}{d y}=e^{y} \quad(\text { Again, v丰 Since } \\
& \Rightarrow \int 1 d v=\int e^{y} d y \\
& \left.\Rightarrow v=y^{\prime} \text { and } y^{\prime}(3)=1 .\right) \\
& \Rightarrow e^{y}+C
\end{aligned}
$$

We are given that $y=0$ and $v=y^{\prime}=1$ when $x=3$, hence $v=e^{y}+C \Rightarrow 1=e^{0}+C \Rightarrow C=0$.

Thus,

$$
\begin{aligned}
v=e^{y} & \Rightarrow \frac{d y}{d x}=e^{y} \quad \text { (Separable!) } \\
& \Rightarrow \int e^{-y} d y=\int 1 d x
\end{aligned}
$$

$$
\Rightarrow-e^{-y}=x+D
$$

Using $y(3)=0$ once again, we have

$$
-e^{-y}=x+D \Rightarrow-e^{0}=3+D \quad \Rightarrow \quad D=-4
$$

Thus, $-e^{-y}=x-4 \Rightarrow e^{-y}=4-x$

$$
\Rightarrow y=-\ln (4-x)
$$

Ex: Find the general solution for $y^{\prime \prime}-y^{\prime}=0$.
Solution: Using the approach for DEs involving just y, y^{\prime}, and $y^{\prime \prime}$, we let $y^{\prime}=v$ and $y^{\prime \prime}=v \frac{d v}{d y}$:

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime}=0 & \Rightarrow v \frac{d v}{d y}=v \\
& \Rightarrow v \equiv 0 \text { or } \frac{d v}{\frac{d y}{y}}=1
\end{aligned}
$$

If $V \equiv O$, then $y=$ constant and the $D E$ becomes $0=0$ (which is true!), so $y \equiv C$ is a possibility.

If instead $V \neq 0$, then

$$
\begin{aligned}
\frac{d v}{d y}=1 & \Rightarrow \int 1 d v=\int 1 d y \\
& \Rightarrow v=y+D \\
& \Rightarrow \frac{d y}{d x}=y+D \\
& \Rightarrow \int \frac{d y}{y+D}=\int 1 d x \\
& \Rightarrow \ln |y+D|=x+E \\
& \Rightarrow|y+D|=e^{x} e^{E} \\
& \Rightarrow y+D= \pm e^{E} e^{x} \\
& \Rightarrow y=-D \pm e^{E} \cdot e^{x} \\
& \Rightarrow y=C_{1}+C_{2} e^{x} \quad\left(C_{2}= \pm e^{E}, C_{2} \neq 0\right)
\end{aligned}
$$

What if $y+D \equiv 0$?
Not possible. Note that $v=y+D$ and we've assumed in this case that $V \neq 0$!

Combining the results from the $V \equiv 0$ case and $V \neq 0$ case, our general solution is

$$
y=C_{1}+C_{2} e^{x}, C_{1} \in \mathbb{R}, C_{2} \neq 0 \quad \text { or } \quad y=C_{3}, C_{3} \in \mathbb{R}
$$

Alternatively,
We get the

$$
y=c_{1}+c_{2} e^{x}, c_{1}, c_{2} \in \mathbb{R}
$$ constant Solutions by allowing $\mathrm{C}_{2}=0$?

Note: The $D E$ in the last example can also be solved using the method from Case I, as y is not present. Try this as an exercise!

