$\$ 10.8$ (continued) - Recursive Sequences
In the last section we learned that many limit techniques from MATH 116 (e.g., squeeze theorem, L'Hopital) can be used to find limits of sequences in MATH 118 . These methods work well for explicit sequences (eeg., $\left\{\frac{n}{2 n+1}\right\}$) but are difficult to apply to sequences defined recursively.

To discuss convergence of recursive sequences, weill need Some new terminology.

Definition: A sequence $\left\{a_{n}\right\}$ is said to be

- increasing if $a_{n} \leqslant a_{n+1}$ for all n.
- decreasing if $a_{n} \geqslant a_{n+1}$ for all n
- monotone (or monotonic) if $\left\{a_{n}\right\}$ is either increasing or decreasing (or both, in the case of a constant sequence).
- bounded if there exist numbers m and M such that $m \leq a_{n} \leq M$ for all n.

Examples (by picture!):

Increasing (hence monotone) but not bounded

Bounded, but not monotone.

But observe that if a sequence is both monotone and bounded...

... then it must "level off" at some value L!
That is, the sequence must converge! This gives us the following theorem.

The Monotone Sequence Theorem (MST)
Every bounded monotone sequence converges.

Note: $\left\{a_{n}\right\}$ may not converge to m or M, it could converge to some other number L in between!

The MST will be our main technique for proving that certain recursive sequences converge: we can try to show that they are bounded and monotone!

Example: Let's consider the recursive sequence

$$
a_{1}=\frac{1}{2} \text { and } a_{n+1}=\frac{1+a_{n}}{2}, n \geqslant 1
$$

Let's write out a few terms to see what's going on...

$$
\begin{aligned}
& a_{1}=\frac{1}{2} \\
& a_{2}=\frac{1+a_{1}}{2}=\frac{1+1 / 2}{2}=\frac{3}{4} \\
& a_{3}=\frac{1+a_{2}}{2}=\frac{1+3 / 4}{2}=\frac{7}{8} \\
& a_{4}=\frac{1+a_{3}}{2}=\frac{1+7 / 8}{2}=\frac{15}{16}
\end{aligned}
$$

Based on these terms, we guess that

- $\left\{a_{n}\right\}$ is increasing (hence monotone)
- $\left\{a_{n}\right\}$ is bounded with $\frac{1}{2} \leq a_{n} \leq 1$.

But how can we know for sure??

To prove that $\left\{a_{n}\right\}$ is increasing, for example, we would need to prove the following infinitely many propositions:

$$
\text { "Proposition 1" } \longrightarrow \begin{array}{cc}
P_{1}: & a_{1} \leq a_{2} \\
P_{2}: & a_{2} \leq a_{3} \\
P_{3}: & a_{3} \leq a_{4} \\
\vdots & \vdots \\
P_{n}: & a_{n} \leq a_{n+1} \\
\vdots & \vdots
\end{array}
$$

We can do this using a technique known as...

Mathematical Induction

Step 1: Prove that P_{1} is true. (The base case)

Step 2: Prove that if one of the statements P_{n} is true, then the next statement P_{n+1} must also be true. (The inductive step)

Think of each statement as a domino and proving the statement as Knocking the domino over.

If we can knock down the first domino (i.e., prove P_{1})...

AND we can show that when any domino falls it must also knock down the domino next to it (ie., prove that if P_{n} is true, then so is $\left.P_{n+1}\right) \ldots$

then this will be enough to knock down the whole stack (ie., prove all the statements!)

Ex: Consider the sequence $a_{1}=\frac{1}{2}, a_{n+1}=\frac{1+a_{n}}{2} \quad(n \geqslant 1)$.
Prove that a_{n} is increasing (i.e., $a_{n} \leq a_{n+1}$ for all n).

Proof (by induction!):
We will prove the statements $P_{n}: a_{n} \leq a_{n+1} \quad(n \in \mathbb{N})$

Base Case:

We first prove P_{1}. That is, we prove $a_{1} \leq a_{2}$. Since $a_{1}=1 / 2$ and $a_{2}=\frac{1+a_{1}}{2}=3 / 4$, clearly $a_{1} \leq a_{2}$, as needed.

Inductive Step:
Assume now that P_{n} is true for some $n \in \mathbb{N}$. That is assume $a_{n} \leq a_{n+1}$. We will prove P_{n+1}, that $a_{n+1} \leq a_{n+2}$.

Indeed,

$$
\begin{aligned}
& a_{n} \leq a_{n+1} \Rightarrow 1+a_{n} \leq 1+a_{n+1} \\
& \Rightarrow \underbrace{\frac{1+a_{n}}{2}}_{=a_{n+1}} \leq \underbrace{\frac{1+a_{n+1}}{2}}_{=a_{n+2}} \\
& \Rightarrow a_{n+1} \leq a_{n+2} \text {, as desired! }
\end{aligned}
$$

Therefore, by induction $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$, hence $\left\{a_{n}\right\}$ is increasing.

Ex: Once again, consider the sequence

$$
a_{1}=\frac{1}{2} \text { and } a_{n+1}=\frac{1+a_{n}}{2}, n \in \mathbb{N}
$$

Prove that $\frac{1}{2} \leq a_{n} \leq 1$ for all n.

Proof (by induction!):
We will prove the statements $P_{n}: 1 / 2 \leq a_{n} \leqslant 1 \quad(n \in \mathbb{N})$

Base Case:
We first prove P_{1}. Since $a_{1}=\frac{1}{2}$, it is clear that $\frac{1}{2} \leqslant a_{1} \leqslant 1$, so P_{1} is true.

Inductive Step:
Assume now that P_{n} is true for some $n \in \mathbb{N}$. We will prove P_{n+1}, that $\frac{1}{2} \leq a_{n+1} \leq 1$. We have

$$
\begin{aligned}
\frac{1}{2} \leq a_{n} \leq 1 & \Rightarrow 1+\frac{1}{2} \leq 1+a_{n} \leq 1+1 \\
& \Rightarrow \underbrace{\frac{1+\frac{1}{2}}{2}}_{=3 / 4} \leq \underbrace{\frac{1+a_{n}}{2}}_{=a_{n+1}} \leq \underbrace{\frac{1+1}{2}}_{=1} \\
& \Rightarrow 3 / 4 \leq a_{n+1} \leq 1
\end{aligned}
$$

Since $1 / 2 \leq 3 / 4$, we have $1 / 2 \leq a_{n+1} \leq 1$, as required!
By induction, $a_{n} \leq 1$ for all $n \in \mathbb{N}$.

We have now shown that the sequence

$$
a_{1}=1 / 2, \quad a_{n+1}=\frac{1+a_{n}}{2} \quad(n \in \mathbb{N})
$$

is increasing (hence monotone) and bounded. Thus, by the Monotone Sequence Theorem, $\left\{a_{n}\right\}$ converges!

Once we know $L=\lim _{n \rightarrow \infty} a_{n}$ exists, we do the following:

$$
\begin{aligned}
a_{n+1}=\frac{1+a_{n}}{2} & \Rightarrow \lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{1+a_{n}}{2} \\
& \Rightarrow L=\frac{1+L}{2} \\
& \Rightarrow \quad 2 L=1+L \\
& \Rightarrow \quad L=1
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty} a_{n}=1$.

Ex: Consider the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ given by

$$
a_{1}=2 \quad \text { and } \quad a_{n+1}=\frac{1}{3-a_{n}}, n \geqslant 1 .
$$

Prove that the sequence converges and find its limit.

Solution: Let's write out some terms to see what's going on here:

$$
\begin{aligned}
& a_{1}=2 \\
& a_{2}=\frac{1}{3-a_{1}}=\frac{1}{3-2}=1 \\
& a_{3}=\frac{1}{3-a_{2}}=\frac{1}{3-1}=\frac{1}{2}=0.5 \\
& a_{4}=\frac{1}{3-a_{3}}=\frac{1}{3-\frac{1}{2}}=\frac{2}{5}=0.4
\end{aligned}
$$

We therefore guess that
(i) $0<a_{n} \leq 2$ for all n, and
(ii) $\left\{a_{n}\right\}$ is decreasing.

We will prove these statements separately.
(i) Proof that $0<a_{n} \leqslant 2$ for all n
P_{n} is the statement that $0<a_{n} \leqslant 2 \quad(n \geqslant 1)$
Base Case:
We have $a_{1}=2$, hence $0<a_{1} \leq 2$, so P_{1} is true.

Inductive Step:
Assume that P_{n} is true for some n, so $0<a_{n} \leq 2$.
We will prove P_{n+1}, that $0<a_{n+1}<2$. Indeed,

$$
\begin{aligned}
0<a_{n} \leqslant 2 & \Rightarrow 0>-a_{n} \geqslant-2 \quad \text { (multiply by }-1 \text {) } \\
& \Rightarrow 3>3-a_{n} \geqslant 1 \quad \text { (add 3) } \\
& \Rightarrow \frac{1}{3}<\underbrace{\frac{1}{3-a_{n}}}_{=a_{n+1}} \leqslant 1 \quad \text { (reciprocate) } \\
& \Rightarrow \frac{1}{3}<a_{n+1} \leqslant 1
\end{aligned}
$$

Consequently, $0<a_{n+1} \leq 2$, so P_{n+1} is true.
By induction, $0<a_{n} \leqslant 2$ for all n.
(ii) Proof that $\left\{a_{n}\right\}$ is decreasing
P_{n} is the statement that $a_{n} \geqslant a_{n+1} \quad(n \geqslant 1)$

Base Case:
We will prove P_{1}, that $a_{1} \geqslant a_{2}$. Indeed, $a_{1}=2$ and $a_{1}=1$, hence $a_{1} \geqslant a_{2}$.

Inductive Step:
Assume that P_{n} is true for some n, so $a_{n} \geqslant a_{n+1}$.
We will prove P_{n+1}, that $a_{n+1} \geqslant a_{n+2}$. Indeed,

$$
\begin{aligned}
a_{n} \geqslant a_{n+1} & \Rightarrow-a_{n} \leq-a_{n+1} \quad(\text { multiply by }-1) \\
& \Rightarrow 3-a_{n} \leq 3-a_{n+1} \quad(\text { add } 3) \\
& \Rightarrow \frac{1}{3-a_{n}} \geqslant \frac{1}{3-a_{n+1}} \quad \text { (reciprocate) } \\
& \Rightarrow a_{n+1} \geqslant a_{n+2}, \text { as desired. }
\end{aligned}
$$

\therefore By induction, $a_{n} \geqslant a_{n+1}$ for all n, hence $\left\{a_{n}\right\}$ is decreasing.

OKay! We've successfully shown that $\left\{a_{n}\right\}$ is both bounded and monotonic, hence $\left\{a_{n}\right\}$ converges to a limit L by the Monotone Sequence Theorem. What is L?

$$
\begin{aligned}
a_{n+1}=\frac{1}{3-a_{n}} & \Rightarrow \lim _{n \rightarrow \infty} \underbrace{a_{n}}_{n \rightarrow L}=\lim _{n \rightarrow \infty} \frac{1}{3-\underline{a}_{n}} \\
& \Rightarrow L=\frac{1}{3-L} \\
& \Rightarrow 3 L-L^{2}=1 \\
& \Rightarrow L^{2}-3 L+1=0 \quad \begin{array}{l}
\text { which one is } \\
\text { our limit? }
\end{array} \\
& \Rightarrow L=\frac{3 \pm \sqrt{5}}{2}<\quad
\end{aligned}
$$

Since $0<a_{n} \leq 2$, we must have $0 \leq L \leq 2$.

However, $\frac{3+\sqrt{5}}{2} \approx 2.618$ (to obig!). Hence

$$
\lim _{n \rightarrow \infty} a_{n}=\frac{3-\sqrt{5}}{2} \approx 0.382
$$

Caution: Don't solve for L until you have proved that L exists (using the MST), otherwise it can lead to incorrect conclusions!
e.g. The sequence $a_{1}=2$ and $a_{n+1}=\frac{1}{a_{n}} \quad(n \geqslant 1)$
is given by $a_{1}=2, a_{2}=1 / 2, a_{3}=2, a_{4}=1 / 2, \ldots$
and hence is divergent. However, if we (incorrectly)
supposed that $a_{n} \longrightarrow L$ as $n \longrightarrow \infty$, we would find that

$$
\begin{aligned}
a_{n+1}=\frac{1}{a_{n}} & \Rightarrow \lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \\
& \Rightarrow L=\frac{1}{L} \\
& \Rightarrow L^{2}=1 \quad \begin{array}{l}
\text { Both of these are } \\
\text { wrong, the sequence } \\
\text { doesn't have a limit! }
\end{array} \\
& \Rightarrow L= \pm 1 \quad
\end{aligned}
$$

Additional Exercises:

1. Consider the sequence

$$
a_{1}=\frac{1}{2}, \quad a_{n+1}=\frac{1+a_{n}}{2} \quad(n \in \mathbb{N})
$$

By writing out the first several terms

$$
a_{1}=\frac{1}{2}, \quad a_{2}=\frac{3}{4}, \quad a_{3}=\frac{7}{8}, \quad a_{4}=\frac{15}{16}, \ldots
$$

We might be able to guess an explicit form for $\left\{a_{n}\right\}$:

$$
a_{n}=\frac{2^{n}-1}{2^{n}}=1-\frac{1}{2^{n}} \quad(n \in \mathbb{N})
$$

(a) Prove using induction that $a_{n}=1-\frac{1}{2^{n}}$ for all $n \in \mathbb{N}$.
(b) Use (a) to calculate $\lim _{n \rightarrow \infty} a_{n}$.

Solution:
(a) Proof: We will prove the statements

$$
P_{n}: a_{n}=1-\frac{1}{2^{n}}, n \in \mathbb{N} \text {. }
$$

Base Case:
We first prove P_{1}. We have $a_{1}=\frac{1}{2}$ and $1-\frac{1}{2^{\prime}}=\frac{1}{2}$,
hence $a_{1}=1-\frac{1}{2^{\prime}}$, as claimed.

Inductive Step:

Assume now that P_{n} is true for some $n \in \mathbb{N}$, so $a_{n}=1-\frac{1}{2^{n}}$. We will prove P_{n+1}, that $a_{n+1}=1-\frac{1}{2^{n+1}}$.

Indeed,

$$
\begin{aligned}
a_{n}=1-\frac{1}{2^{n}} & \Rightarrow 1+a_{n}=1+\left(1-\frac{1}{2^{n}}\right) \\
& \Rightarrow \frac{1+a_{n}}{2}=\frac{1}{2}-\frac{1}{2^{n}} \\
& \Rightarrow a_{n+1}=1-\frac{1}{2^{n+1}}
\end{aligned}
$$

Thus, by induction, $a_{n}=1-\frac{1}{2^{n}}$ for all $n \in \mathbb{N}$.
(b) It's now easy to determine the behavior of $\left\{a_{n}\right\}$ as $n \rightarrow \infty$. We have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(1-\underbrace{\frac{1}{2^{n}}}_{=0})=1-0=1
$$

