§10.4 - Power Series
We've just learned how to approximate functions using polynomials: $\quad C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+\cdots+C_{n}(x-a)^{n}$

If we allow for infinitely many terms we will get
a series of the form
coefficients depending on n.
which we call a power series centred at $x=a$.

Remark: A power series will always converge at its centre, $x=a$, since

$$
\begin{aligned}
X=a \Rightarrow \sum_{n=0}^{\infty} C_{n}(x-a)^{n} & =C_{0}+C_{1} \underbrace{(a-a)}_{=0}+C_{2} \underbrace{(a-a)^{2}}_{=0}+\cdots \\
& =C_{0} \quad\left(f_{\text {finite }!}\right)
\end{aligned}
$$

But what if we plug in other x 's? Will the series
converge if we plug in $x=1 ? \quad x=0.5$? Not sure!
We can answer this question using the ratio test!

Ex: For which x does the power series

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \quad \text { converge? }
$$

Solution: Given $x \in \mathbb{R}$, we use the ratio test :

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty}\left|\frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^{n}}{n!}}\right| & =\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!} \cdot \frac{|x|^{n+1}}{|x|^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0
\end{aligned}
$$

Since $L<1$ always, $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges (absolutely) for all $x \in(-\infty, \infty)$.

Ex: For which values of x does the power series $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 2^{n}}$ converge?

Solution: Using the ratio test, we compute

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-3)^{n+1}}{(n+1) 2^{n+1}}}{\frac{(x-3)^{n}}{n \cdot 2^{n}}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{n}{n+1} \cdot \frac{2^{n}}{2^{n+1}} \cdot \frac{|x-3|^{n+1}}{|x-3|^{n}} \\
& =\lim _{n \rightarrow \infty} \underbrace{\frac{n}{n+1}}_{\rightarrow 1} \cdot \frac{1}{2} \cdot|x-3| \\
& =\frac{|x-3|}{2}
\end{aligned}
$$

We know the series will converge when $L<1$:

$$
L<1 \Leftrightarrow \frac{|x-3|}{2}<1 \Leftrightarrow \underbrace{|x-3|<2}_{\text {"distance from } x \text { to } 3 \text { is }<2 \text { " }}
$$

What about the endpoints?

At the endpoints, $x=1$ and $x=5$, the ratio test is inconclusive as $L=\frac{|x-3|}{2}=1$. We need to check convergence at $x=1$ and $x=5$ separately using other tests.

$$
\begin{aligned}
x=5 \Rightarrow \sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 2^{n}} & =\sum_{n=1}^{\infty} \frac{(5-3)^{n}}{n \cdot 2^{n}} \\
& =\sum_{n=1}^{\infty} \frac{2^{n}}{n \cdot 2^{n}} \\
& =\sum_{n=1}^{\infty} \frac{1}{n} \quad \text { (divergent p-series!) } \\
x=1 \Rightarrow \sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 2^{n}} & =\sum_{n=1}^{\infty} \frac{(1-3)^{n}}{n \cdot 2^{n}} \\
& =\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n \cdot 2^{n}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}}{n \cdot 2^{n}}
\end{aligned}
$$

$=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ (converges by AST)

Thus, $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 2^{n}}$ converges for $x \in[1,5)$.

Theorem: A power series $\sum_{n=0}^{\infty} C_{n}(x-a)^{n}$ will always converge on an interval I centred at $x=a$ and will diverge outside of I.

$$
I=(a-R, a+R)
$$

or $\quad I=[a-R, a+R)$

or $\quad I=(a-R, a+R]$

or $I=[a-R, a+R]$

We call I the interval of convergence and call R the radius of convergence.

Using our new terminology, we can say

- $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ (1^{s+} example) has interval of convergence $I=(-\infty, \infty)$ and radius of convergence $R=\infty$
- $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n \cdot 2^{n}}$ (2 $2^{\text {nd }}$ example) has interval of convergence $I=[1,5)$ and radius of convergence $R=2$

The distance from the centre, $a=3$, to the edge of the interval $[1,5)$.

Ex: Find the radius and interval of convergence.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-5)^{n}}{n^{2} \cdot 3^{n}}$
(b) $\sum_{n=0}^{\infty} n!(x+1)^{n}$

Solutions:
(a) We use the ratio test:

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-)^{n+1}(x-5)^{n+1}}{(n+1)^{2} \cdot 3^{n+1}}}{\frac{(x-1)^{n}(x-5)^{n}}{n^{2} \cdot 3^{n}}}\right| & =\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}} \cdot \frac{3^{n}}{3^{n+1}} \cdot \frac{|x-5|^{n+1}}{|x-5|^{n}} \\
& =\lim _{n \rightarrow \infty} \underbrace{\left(\frac{n}{n+1}\right)^{2}}_{\left.\rightarrow\right|^{2}} \cdot \frac{|x-5|}{3} \\
& =\frac{|x-5|}{3}
\end{aligned}
$$

We have

$$
L<1 \Leftrightarrow \frac{|x-5|}{3}<1 \Leftrightarrow|x-5|<3
$$

We must check convergence at the endpoints!

$$
x=8 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}(x-5)^{n}}{n^{2} \cdot 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(8-5)^{n}}{n^{2} \cdot 3^{n}}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \frac{(-1)^{n} \cdot 3^{n}}{n^{2} \cdot 3^{n}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \text { (converges by AST) } \\
x=2 \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n}(x-5)^{n}}{n^{2} 3^{n}} & =\sum_{n=1}^{\infty} \frac{(-1)^{n}(2-5)^{n}}{n^{2} 3^{n}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}(-3)^{n}}{n^{2} \cdot 3^{n}} \\
& =\sum_{n=1}^{\infty} \frac{\frac{(-1)^{n}\left[(-1)^{n} 3^{n}\right]}{n^{2} 3^{n}}}{} \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { (convergent p-series) }
\end{aligned}
$$

Thus,

$$
I=[2,8] \text { and } R=3
$$

(b) Using the ratio test, we have

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x+1)^{n+1}}{n!(x+1)^{n}}\right| & =\lim _{n \rightarrow \infty}(n+1)|x+1| \\
& =\infty \text { for all } x \neq-1 .
\end{aligned}
$$

Since $L>1$ for all $x \neq-1$, the series diverges for all such X and hence only converges at its centre, $x=-1$. Thus,

$$
I=\{-1\}, \quad R=0
$$

