$\$ 9.2$ - Polar Coordinates

Were used to describing the location of a point in space using its $x y$-coordinates (a.k.a., Cartesian Coordinates)
$x=$ how for left/right from $(0,0)$.
$y=$ how for up/down from $(0,0)$.

In MATH 115, you learned that the location of P can be described in other coordinate systems to (ie., relative to a different basis)
$u=$ how for to move in the direction of \vec{b}_{1}.
$v=$ how for to move in the direction of \vec{b}_{2}.

Alternatively, we can specify the location of P by reporting
θ : the angle P makes with the positive x-axis (measured counterclockwise),
r : the distance from P to the origin.

We call (r, θ) the polar coordinates of P.

Let's plot some points given their polar coordinates!
(a) $(r, \theta)=(1, \pi / 2)$

(b) $\quad(r, \theta)=\left(2, \frac{5 \pi}{4}\right)$

(c) $(r, \theta)=\left(2,-\frac{3 \pi}{4}\right)$

Notice that $(r, \theta)=\left(2, \frac{5 \pi}{4}\right)$ and $(r, \theta)=\left(2, \frac{-3 \pi}{4}\right)$
actually describe the same point P. In fact,

$$
\left(2, \frac{5 \pi}{4}+2 k \pi\right), k \in \mathbb{Z}
$$

all describe this same point too!

A point P has infinitely many representations in polar coordinates!
(d) $(r, \theta)=(-1, \pi)$

Negative ${ }^{\prime} r$ means go
in opposite direction

To convert between Cartesian and polar coordinates, we can use the following formulas:

Given (r, θ), we have

$$
\begin{aligned}
& \frac{x}{r}=\cos \theta \Rightarrow \quad x=r \cos \theta \\
& \frac{y}{r}=\sin \theta \Rightarrow \quad y=r \sin \theta
\end{aligned}
$$

Ex: Find the Cartesian coordinates of $(r, \theta)=\left(2, \frac{5 \pi}{4}\right)$.

Solution:

$$
\begin{aligned}
x=r \cos \theta & =2 \cos \frac{5 \pi}{4} \\
& =2\left(\frac{-\sqrt{2}}{2}\right)=-\sqrt{2} \\
y=r \sin \theta & =2 \sin \frac{5 \pi}{4}
\end{aligned}
$$

$$
=2\left(\frac{-\sqrt{2}}{2}\right)=-\sqrt{2}
$$

Thus, $(x, y)=(-\sqrt{2},-\sqrt{2})$.

Given (x, y), we have

$$
\begin{aligned}
r^{2}=x^{2}+y^{2} \Rightarrow & r=\sqrt{x^{2}+y^{2}} \\
& (\text { if we take } r \geqslant 0)
\end{aligned}
$$

$$
\frac{x}{r}=\cos \theta, \frac{y}{r}=\sin \theta
$$

r Solve for θ !

Ex: Find polar coordinates for $(x, y)=(-1, \sqrt{3})$.

Solution:

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{4}=2
$$

and since $\left.\quad \begin{array}{rl}\cos \theta & =\frac{x}{r}=\frac{-1}{2} \\ \sin \theta & =\frac{y}{r}=\frac{\sqrt{3}}{2}\end{array}\right\} \quad \theta=\frac{2 \pi}{3} \quad(+2 k \pi, k \in \mathbb{Z})$

One solution is $(r, \theta)=\left(2, \frac{2 \pi}{3}\right)$.

Polar Curves

Let's sketch some curves defined in terms of $r \& \theta$!

Ex: $\quad r=2$

Solution: All points that are 2 units from the origin

We can also see this by converting to Cartesian:

$$
r=2 \Rightarrow \sqrt{x^{2}+y^{2}}=2 \Rightarrow x^{2}+y^{2}=4
$$

(circle of radius 2)

Ex: $\quad \theta=\pi / 4$
Solution: All points that make an angle of $\pi / 4$ with the positive x-axis

Ex: $r=\theta, \quad \theta \geqslant 0$.
Solution: This curve passes through $(r, \theta)=(0,0)$,
$(r, \theta)=(\pi / 2, \pi / 2), \quad(r, \theta)=(\pi, \pi)$, etc...

Ex: $\quad r=1+\sin \theta$

Solution: For more complicated curves like this, start by sketching the graph in the $r \theta$-plane

Now use this to sketch the graph in the $x y$-plane.
$\theta \in[0, \pi / 2]: \quad r$ increases from $r=1$ to $r=2$.

$\theta \in[\pi / 2, \pi]: \quad r$ decreases from $r=2$ to $r=1$.

$\theta \in\left[\pi, \frac{3 \pi}{2}\right]: \quad r$ decreases from $r=1$ to $r=0$.

$\theta \in\left[\frac{3 \pi}{2}, 2 \pi\right]: \quad r$ increases from $r=0$ to $r=1$.

This curve is called a cardioid

Ex: Sketch the graph of $r=1+2 \cos \theta$.
Solution:

$\theta \in\left[0, \frac{2 \pi}{3}\right]: \quad r$ decreases from $r=3$ to $r=0$.

$\theta \in\left[\frac{2 \pi}{3}, \pi\right]: \quad r$ decreases from 0 to -1
(or, r increases from 0 to 1 but in the opposite direction!)

$\theta \in\left[\pi, \frac{4 \pi}{3}\right]: \quad r$ increases from -1 to 0.

$\theta \in\left[\frac{4 \pi}{3}, 2 \pi\right]: \quad r$ increases from 0 to 3.

Ex: Sketch the graph of $r=\cos (2 \theta)$ for $\theta \in[0,2 \pi]$.

Solution:

$\theta \in[0, \pi / 4]: r$ decreases from 1 to 0

$\theta \in[\pi / 4, \pi / 2]: r$ decreases from 0 to -1 .

$\theta \in\left[\frac{\pi}{2}, \frac{3 \pi}{4}\right]: r$ increases from -1 to 0 .

$\theta \in\left[\frac{3 \pi}{4}, \pi\right]: r$ increases from 0 to 1 .

Similar behaviour occurs on the remaining intervals:

Ex: Sketch the graph of $r=2 \cos \theta$.
Solution: In Cartesian coordinates, we have

$$
\begin{aligned}
r=2 \cos \theta & \Rightarrow \sqrt{x^{2}+y^{2}}=2\left(\frac{x}{r}\right)=2\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) \\
& \Rightarrow x^{2}+y^{2}=2 x \\
& \Rightarrow x^{2}-2 x+y^{2}=0
\end{aligned}
$$

$$
\Rightarrow \quad(x-1)^{2}+y^{2}=1
$$

(complete the square!)

So were expecting a circle centred at $(1,0)$ of radius 1.

[See if you can arrive at the same curve without converting to Cartesian coordinates. Instead, use the same approach as in our earlier examples.]

