§ 9.1 - Parametric Curves

Up to now, we have mainly been working with curves defined by $y=f(x)$; that is, graphs of functions. But there are many interesting curves that are not defined by a function $y=f(x)$:

line test!

These curves can instead be described using parametric equations, where both x and y are functions of a parameter, t :

$$
x=f(t), \quad y=g(t), \quad t \in[a, b] .
$$

(often, this is written $x=x(t), y=y(t), t \in[a, b]$.)

You can think of $x(t)$ and $y(t)$ as the (x, y) coordinates of a bug at time t. The curve traced out as t increases from $t=a$ to $t=b$ is called a parametric curve.

Ex: Consider

$$
\begin{aligned}
& x(t)=t+1 \\
& y(t)=2 t+1 \quad \text { for } t \in(-\infty, \infty)
\end{aligned}
$$

which you may recognize from MATH 115 as the parametric equation of a line!

We can plot the line by eliminating t :

$$
x=t+1 \Rightarrow t=x-1 .
$$

which means $y=2 t+1=2(x-1)+1 \Rightarrow y=2 x-1$

Note: The parametric equation tells us more than $y=f(x)$ - it Specifies the direction in which the curve is traced!

Ex: Plot $x=t^{2}-2 t, \quad y=t+1$.
(Here, the domain of t is not stated. Assume all possible t 's are allowed!)

Solution: $y=t+1 \Rightarrow t=y-1$

Thus, $x=t^{2}-2 t=(y-1)^{2}-2(y-1)$

$$
\begin{aligned}
& =\left(y^{2}-2 y+1\right)-2 y+2 \\
& =y^{2}-4 y+3
\end{aligned}
$$

$=(y-2)^{2}-1$ (complete the square!)

Follow-up: what if we insisted that $t \in[0,3]$?

Answer: We would only see a piece of the parabola!

$$
\begin{aligned}
& t=0 \Rightarrow(x, y)=\left(t^{2}-2 t, t+1\right)=(0,1) \\
& t=3 \Rightarrow(x, y)=\left(t^{2}-2 t, t+1\right)=(3,4)
\end{aligned}
$$

Ex: Plot $x=\cos t, y=\sin t$ for $t \in[0,2 \pi]$.

Solution: $\cos ^{2} t+\sin ^{2} t=1 \Rightarrow x^{2}+y^{2}=1$

We recognize this as the unit circle traversed once counterclockwise.

Follow-up: Does $x=\cos (2 t), \quad y=\sin (2 t), \quad t \in[0,2 \pi]$ also describe the unit circle?

Solution: We still have

$$
x^{2}+y^{2}=\cos ^{2}(2 t)+\sin ^{2}(2 t)=1
$$

so the equations still describe the unit circle.

This time, however, we complete one revolution for $t \in[0, \pi]$ and another revolution for $t \in[\pi, 2 \pi]$.

So the curve looks the same, but now we make two revolutions!

The moral: Different parametric equations can describe the same parametric curve!

