$\xi 10.5$ - New Taylor Series from Old
We can use the Maclaurin series for $e^{x}, \sin x$, $\cos x$, and $\frac{1}{1-x}$ to quickly obtain Taylor and Maclaurin series for related functions!

Ex: Find the Maclaurin series for $f(x)$ and its radius and interval of convergence.
(a) $\quad f(x)=x e^{x}$

Solution: We know $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $x \in(-\infty, \infty)$.

Thus,

$$
x e^{x}=x \sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!} \text {, and }
$$

this series will also converge for $x \in(-\infty, \infty)$.
So $I=(-\infty, \infty), R=\infty$.
(b) $f(x)=\sin \left(x^{2}\right)$.

Solution: We know $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ for $x \in(-\infty, \infty)$. Hence

$$
\sin \left(x^{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{(2 n+1)!}
$$

and this series will also converge for $x \in(-\infty, \infty)$.

Thus, $I=(-\infty, \infty), \quad R=\infty$
(c) $f(x)=\frac{2}{3-x}$

Solution: We know $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.
Thus, $\frac{2}{3-x}=\frac{2}{3}\left(\frac{1}{1-\frac{x}{3}}\right)$
For convergence we need $\left|\frac{x}{3}\right|<1$

$$
=\frac{2}{3} \sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}
$$

$$
\begin{aligned}
& \Rightarrow \quad|x|<3 \\
& \Rightarrow \quad x \in(-3,3)
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty} \frac{2 \cdot x^{n}}{3^{n+1}} .
$$

This series will converge for x in $I=(-3,3)$, so $R=3$.
(d) $f(x)=\frac{x^{3}}{4+x^{2}}$

Solution: Again, note that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.
Thus,

$$
\begin{array}{rlr}
\frac{x^{3}}{4+x^{2}} & =\frac{x^{3}}{4}\left(\frac{1}{1+\frac{x^{2}}{4}}\right) \\
& =\frac{x^{3}}{4}\left(\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right) \quad \text { For convergence, } \\
& =\frac{x^{3}}{4} \sum_{n=0}^{\infty}\left(\frac{-x^{2}}{4}\right)^{n} & \\
& \Rightarrow|x|^{2}<4 \\
& \Rightarrow|x|<2 \\
& \Rightarrow x \in(-2,2) \\
& =\frac{x^{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+3}}{4^{n+1}}
\end{array}
$$

This series converges for x in $I=(-2,2)$, so $R=2$.

Ex: Find the Taylor series for $f(x)=e^{x}$ centred at $x=4$.

Solution 1: Note that $f^{(n)}(x)=e^{x}$ for all n, and hence $f^{(n)}(4)=e^{4}$ for all n. Thus, from the definition of the Taylor Series, we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(4)}{n!}(x-4)^{n} & =\sum_{n=0}^{\infty} \frac{e^{4}}{n!}(x-4)^{n} \\
& =e^{4}+e^{4}(x-4)+\frac{e^{4}}{2!}(x-4)^{2}+\cdots
\end{aligned}
$$

Solution 2: Starting with the Maclaurin series for $f(x)=e^{x}$, we have

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \Rightarrow e^{x-4}=\sum_{n=0}^{\infty} \frac{(x-4)^{n}}{n!} \\
& \Rightarrow \frac{e^{x}}{e^{4}}=\sum_{n=0}^{\infty} \frac{(x-4)^{n}}{n!} \\
& \Rightarrow e^{4} \\
& e^{x}=\sum_{n=0}^{\infty} \frac{e^{4}}{n!}(x-4)^{n}
\end{aligned}
$$

We can also obtain new Taylor series by differentiating or integrating a Taylor series term-by-term. These operations wont change the radius of convergence!

Theorem: If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ with radius of convergence $R>0$, then
(i) $f^{\prime}(x)=\sum_{n=1 / k}^{\infty} c_{n} \cdot n(x-a)^{n-1}$

Note that differentiation
(ii) $\int f(x) d x=\left(\sum_{n=0}^{\infty} \frac{C_{n}(x-a)^{n+1}}{n+1}\right)+C$
and both of these series have radius of convergence R.

Note: While differentiating or integrating a power series wont change its radius, they may change the interval!

We need to re-check convergence at the endpoints!

Ex: Find the Maclaurin series and interval of convergence.
(a) $f(x)=\frac{1}{(1-x)^{2}}$.

Solution: Note that

$$
\frac{1}{(1-x)^{2}}=\left[\frac{1}{1-x}\right]^{\prime}=\left[\sum_{n=0}^{\infty} x^{n}\right]^{\prime}=\sum_{n=1}^{\infty} n x^{n-1}
$$

Since $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ has radius of convergence $R=1$,

So too does our new series. Thus, we at least have convergence for $x \in(-1,1)$. We check the endpoints.

$$
\begin{aligned}
& x=1 \Rightarrow \sum_{n=1}^{\infty} n(1)^{n-1}=\sum_{n=1}^{\infty} n \Rightarrow \begin{array}{c}
\text { Diverges by the } \\
\text { divergence test! }
\end{array} \\
& x=-1 \Rightarrow \sum_{n=1}^{\infty} n(-1)^{n-1 \Rightarrow} \begin{array}{l}
\text { Diverges by the } \\
\text { divergence test! }
\end{array}
\end{aligned}
$$

\therefore The interval of convergence is $I=(-1,1)$.
(b) $f(x)=\frac{1}{(1-x)^{3}}$

Solution: We have

$$
\frac{2}{(1-x)^{3}}=\left[\frac{1}{(1-x)^{2}}\right]^{\prime}=\left[\sum_{n=1}^{\infty} n x^{n-1}\right]^{\prime}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}
$$

Hence $\frac{1}{(1-x)^{3}}=\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^{n-2}$ with radius $R=1$.

Exercise: Check convergence at $x= \pm 1$. You should
find that $I=(-1,1)$
(c) $f(x)=\arctan (x)$

Solution: Well start by finding the Maclaurin series for $\frac{1}{1+x^{2}}$. We have

$$
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

Thus

$$
\begin{aligned}
\arctan (x) & =\int \frac{1}{1+x^{2}} d x \\
& =\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x \\
& =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}\right)+C
\end{aligned}
$$

We can find C by plugging in $x=0$ (or in general, $x=$ centre):

$$
\arctan (0)=\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} / 0^{2 n+1}}{2 n+1}\right)+C \Rightarrow C=\arctan (0)=0 .
$$

Therefore,

$$
\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

The radius is still $R=1$, so it converges for $x \in(-1,1)$.

Let's check the endpoints!

$$
\begin{array}{r}
x=1 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \quad \begin{array}{c}
\text { (converges by } \\
\text { the AST!) }
\end{array} \\
x=-1 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2 n+1} \quad \begin{array}{c}
\text { (converges by } \\
\text { the AST!) }
\end{array} \\
-1 \text { to odd power is just -1 }
\end{array}
$$

Thus, the interval of convergence is $I=[-1,1]$.

Additional Exercises

1. Use integration to show that

$$
\ln |1+x|=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

with interval of convergence $I=(-1,1]$.
2. Find the Maclaurin series for $f(x)=\frac{x^{2}}{(3+x)^{2}}$ and its interval of convergence.

Solutions:
(a) First, note that

$$
\frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}
$$

with radius of convergence $R=1$. Hence,

$$
\begin{aligned}
\ln |1+x| & =\int \frac{1}{1+x} d x \\
& =\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x \\
& =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}\right)+C
\end{aligned}
$$

also with $R=1$. We find C by setting $x=0$:

$$
\ln |1+0|=\sum_{n=0}^{\infty} \frac{(-1)^{n} / O^{n+1}}{n+1}+C \Rightarrow C=\ln 1=0 .
$$

We therefore have

$$
\ln |1+x|=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Lastly, we check convergence at $x= \pm 1$.
$x=1 \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} \quad \begin{gathered}\text { (converges } \\ \text { by AST) }\end{gathered}$

$$
\begin{aligned}
\underline{x=-1} \Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{n+1}-\text { Always }}{n+1}=-1 \\
& =-\sum_{\substack{n=0} \frac{1}{n+1}}^{n} \frac{1}{n o r m o n i c ~ s e r i e s ~} \Rightarrow \text { divergent }
\end{aligned}
$$

Thus, $I=(-1,1]$, as required.
(b) Note that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ with radius $R=1$.

$$
\left.\begin{array}{l}
\Rightarrow \frac{1}{(1-x)^{2}}=\left(\frac{1}{1-x}\right)^{\prime}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n x^{n-1} \text { with } R=1 \\
\Rightarrow \frac{x^{2}}{(3+x)^{2}}=\frac{x^{2}}{3^{2}\left(1+\frac{x}{3}\right)^{2}}
\end{array}=\frac{x^{2}}{9} \cdot \frac{1}{\left(1-\left(\frac{-x}{3}\right)\right)^{2}} \text { Replace } x \text { with } \frac{-x}{3}\right\}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{9} \sum_{n=1}^{\infty} \frac{n(-1)^{n-1} x^{n-1}}{3^{n-1}} \\
& =\sum_{n=1}^{\infty} \frac{n(-1)^{n-1} x^{n+1}}{3^{n+1}}
\end{aligned}
$$

Exercise: Check convergence at the endpoints of $(-3,3)$. You should find that the series diverges in each case, hence

$$
I=(-3,3)
$$

