A first order <u>linear DE</u> has the form

$$A(x)\cdot y' + B(x)\cdot y = C(x)$$
, where $A(x) \neq 0$

<u>e.g.</u> $x y' + 2y = x \leftarrow linear!$ $y' + xy^2 = 1$, $y \cdot y' = x \leftarrow non-linear!$

Alternatively, dividing by A(x), it can be written as $y' + P(x) \cdot y = Q(x)$

Let's start with an example, then we'll explore the general strategy! <u>Ex</u>: Let's solve the linear DE $y' + \frac{2}{x} \cdot y = 1$

For this DE, multiply both sides by X²!

We get
$$\chi^2 y' + \lambda x \cdot y = \chi^2$$
 $\implies (\chi^2 y)' = \chi^2$
Note: LHS is now $(\chi^2 y)'$ by the product rule!

Now integrate both sides and solve for
$$y:$$

$$\int (x^2y)' dx = \int x^2 dx \implies x^2y = \frac{x^3}{3} + C$$

$$\Rightarrow \quad y = \frac{x}{3} + \frac{C}{x^2}, \quad C \in \mathbb{R}$$

In general, we solve
$$y' + P(x)y = Q(x)$$
 by
multiplying both sides by
We call this
$$m(x) = e^{\int P(x) dx} = \frac{\int P(x) dx}{\int factor}.$$

In our example:

$$y' + (\frac{2}{x}) \cdot y = 1$$

 $p(x)$
 $\Rightarrow p(x) = e^{\int \frac{2}{x} dx} = e^{2\ln(x)} = e^{\ln(x^2)} = \frac{x^2}{2}$

Note: You can write
$$ln(x)$$
 instead of $ln|x|$ when
calculating $p(x)$. You can also omit the "+C".
The result will be the same when p is
multiplied into the DE!

Why is it helpful to multiply by
$$\mu(x)$$
?

Well... Since

$$\mu'(x) = \underbrace{e^{\int P(x) dx}}_{= \mu(x)} \cdot \underbrace{\left(\int P(x) dx\right)'}_{= P(x)} = \mu(x) P(x),$$

the DE y'+ P(x)y = Q(x) becomes

$$\mathcal{M}(x) \cdot \mathcal{Y}' + \underbrace{\mathcal{M}(x) P(x)}_{= \mathcal{M}'(x)} = \mathcal{M}(x) Q(x)$$

$$= \mathcal{M}(x) \cdot \mathcal{Y}' + \mathcal{M}'(x) \cdot \mathcal{Y} = \mathcal{M}(x) Q(x)$$

$$\Rightarrow \qquad \left[\mathcal{M}(x) \cdot \mathcal{Y} \right]' = \mathcal{M}(x) Q(x)$$

Now integrate both sides and solve for y!

To solve
$$A(x)y' + B(x)y = C(x)$$
:
1. Write the DE as $y' + P(x)y = Q(x)$
2. Multiply both sides by $\mu(x) = e^{\int P(x) dx}$.
3. Rewrite the LHS as $\left[\mu(x) \cdot y\right]'$
4. Integrate both sides with respect to X.
5. Solve for Y.

Ex: Solve
$$xy' - y = x^2 cosx$$

Solution: First divide by X to get
 $y' - \frac{1}{x} \cdot y = x \cdot cosx$
This is linear with $P(x) = \frac{-1}{x}$. We multiply by
 $\mu(x) = e^{\int \frac{-1}{x} dx} = e^{-ln(x)} = e^{ln(\frac{1}{x})} = \frac{1}{x}$.

to get

$$y' - \frac{1}{x} \cdot y = x \cdot \cos x \implies \frac{1}{x} y' - \frac{1}{x^2} y = \cos x$$
$$\implies \left(\frac{1}{x} \cdot y\right)' = \cos x$$
$$\frac{\text{Integrate!}}{\Rightarrow} \frac{1}{x} \cdot y = \sin x + C$$
$$\implies y = x \cdot \sin x + Cx, \ C \in \mathbb{R}$$

Solution: This is a linear DE with P(x) = 2x, hence

we multiply by
$$\mu(x) = e^{\int 2x \, dx} = e^{x^2}$$
. We have

$$y' + \lambda xy = x \Rightarrow e^{x^2}y' + \lambda xe^{x^2}y = 4xe^{x^2}$$

$$\Rightarrow \left[e^{x^{2}}y\right]' = 4xe^{x^{2}}$$

 $\frac{\text{Integrate!}}{\Rightarrow} e^{x^{2}}y = \int 4x e^{x^{2}} dx \quad \left(\begin{array}{c} \text{let } u = x^{2} \\ du = 2x dx \end{array}\right)$ $\Rightarrow e^{x^{2}}y = 2 \int e^{u} du = 2e^{x^{2}} + C$

$$\Rightarrow y^{=} 2 + \frac{c}{e^{x^{*}}}, C \in \mathbb{R}$$

Using the initial condition
$$y(0) = 7$$
, we get
 $7 = 2 + \frac{C}{e^{(0)^2}} = 2 + \frac{C}{1} \implies C = 5$
Thus, $y = 2 + \frac{5}{e^{x^2}}$

Note: The above DE is also separable! Try solving the problem using the methods of §15.2!

Additional Exercise:

Solve the IVP
$$2xy' + y = 2x^2$$
, $y(1) = 0$.

<u>Solution</u>: Divide by 2x to get $y' + \frac{1}{2x}y = x$, which is linear with $P(x) = \frac{1}{2x}$. We multiply by

$$M(x) = e^{\int \frac{1}{2x} dx} = e^{\int \frac{1}{2} \ln(x)} = e^{\ln(x^{\frac{1}{2}})} = \sqrt{x}$$

to get $\int x y' + \frac{1}{2\sqrt{x}} \cdot y = x \cdot \sqrt{x} \implies \left[\sqrt{x} \cdot y\right]' = x^{\frac{3}{2}}$ $\Rightarrow \sqrt{x} \cdot y = \int x^{\frac{3}{2}} dx$ $\Rightarrow \sqrt{x} \cdot y = \frac{2}{5} x^{\frac{5}{2}} + C$

Using
$$y(1) = 0$$
, we get

$$\int \frac{1 \cdot 0}{= 0} = \frac{\frac{2}{5}(1)^{5/2}}{= \frac{2}{5}} + C \implies C = \frac{-2}{5}$$

Therefore,

$$\sqrt{x} \cdot y = \frac{2}{5} \times \frac{5/2}{5} - \frac{2}{5} \implies y = \frac{2}{5} \times \frac{2}{5\sqrt{x}}$$