§ 15.3 - First Order Linear Differential Equations
A first order linear DE has the form

$$
A(x) \cdot y^{\prime}+B(x) \cdot y=C(x) \text {, where } A(x) \neq 0
$$

e.g. $\quad x y^{\prime}+2 y=x \longleftarrow$ linear!

$$
y^{\prime}+x y^{2}=1, \quad y \cdot y^{\prime}=x \longleftarrow \text { non-linear! }
$$

Alternatively, dividing by $A(x)$, it can be written as

$$
y^{\prime}+P(x) \cdot y=Q(x)
$$

Let's start with an example, then well explore the general strategy!

Ex: Let's solve the linear DE $y^{\prime}+\frac{2}{x} \cdot y=1$
For this DE, multiply both sides by X^{2} !

We get $x^{2} y^{\prime}+2 x \cdot y=x^{2} \quad \Rightarrow \quad\left(x^{2} y\right)^{\prime}=x^{2}$
Note: LHS is now $\left(x^{2} y\right)^{\prime}$ by the product rule!
Now integrate both sides and solve for y :

$$
\begin{aligned}
\int\left(x^{2} y\right)^{\prime} d x=\int x^{2} d x & \Rightarrow x^{2} y=\frac{x^{3}}{3}+c \\
& \Rightarrow y=\frac{x}{3}+\frac{c}{x^{2}}, c \in \mathbb{R}
\end{aligned}
$$

In general, we solve $y^{\prime}+P(x) y=Q(x)$ by multiplying both sides by

We call this

$$
\mu(x)=e^{\int P(x) d x}
$$ an integrating factor.

In our example:

$$
y^{\prime}+\frac{2}{x} \cdot y=1
$$

$$
\Rightarrow \mu(x)=e^{\int \frac{2}{x} d x}=e^{2 \ln (x)}=e^{\ln \left(x^{2}\right)}=x^{2}!
$$

Note: You can write $\ln (x)$ instead of $\ln |x|$ when calculating $\mu(x)$. You can also omit the " $+C$ ". The result will be the same when μ is multiplied into the $D E$!

Why is it helpful to multiply by $\mu(x)$??

Well... since

$$
\mu^{\prime}(x)=\underbrace{e^{\int P(x) d x}}_{=\mu(x)} \cdot \underbrace{\left(\int P(x) d x\right)^{\prime}}_{=P(x)}=\mu(x) P(x),
$$

the $D E y^{\prime}+P(x) y=Q(x)$ becomes

$$
\begin{aligned}
& \quad \mu(x) \cdot y^{\prime}+\frac{\mu(x) P(x) \cdot y}{=\mu^{\prime}(x)}=\mu(x) Q(x) \\
\Rightarrow \quad & \quad \mu(x) \cdot y^{\prime}+\mu^{\prime}(x) \cdot y=\mu(x) Q(x) \\
\Rightarrow \quad & \quad[\mu(x) \cdot y]^{\prime}=\mu(x) Q(x)
\end{aligned}
$$

Now integrate both sides and solve for y !

To solve $A(x) y^{\prime}+B(x) y=C(x)$:

1. Write the $D E$ as $y^{\prime}+P(x) y=Q(x)$
2. Multiply both sides by $\mu(x)=e^{\int p(x) d x}$
3. Rewrite the LHS as $[\mu(x) \cdot y]^{\prime}$
4. Integrate both sides with respect to x.
5. Solve for y.

Ex: Solve $x y^{\prime}-y=x^{2} \cos x$
Solution: First divide by x to get

$$
y^{\prime}-\frac{1}{x} \cdot y=x \cdot \cos x
$$

This is linear with $P(x)=\frac{-1}{x}$. We multiply by

$$
\mu(x)=e^{\int \frac{-1}{x} d x}=e^{-\ln (x)}=e^{\ln \left(\frac{1}{x}\right)}=\frac{1}{x}
$$

to get

$$
\begin{aligned}
y^{\prime}-\frac{1}{x} \cdot y=x \cdot \cos x & \Rightarrow \frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\cos x \\
& \Rightarrow\left[\frac{1}{x} \cdot y\right]^{\prime}=\cos x \\
\frac{\text { Integrate! }}{} & \frac{1}{x} \cdot y=\sin x+c \\
& \Rightarrow y=x \cdot \sin x+C x, c \in \mathbb{R}
\end{aligned}
$$

Ex: Solve the IVP $y^{\prime}+2 x y=4 x, \quad y(0)=7$.
Solution: This is a linear $D E$ with $P(x)=2 x$, hence we multiply by $\mu(x)=e^{\int 2 x d x}=e^{x^{2}}$. We have

$$
\begin{aligned}
y^{\prime}+2 x y=x & \Rightarrow e^{x^{2}} y^{\prime}+2 x e^{x^{2}} y=4 x e^{x^{2}} \\
& \Rightarrow\left[e^{x^{2}} y\right]^{\prime}=4 x e^{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { Integrate! }}{\Rightarrow} e^{x^{2}} y=\int 4 x e^{x^{2}} d x\binom{\text { let } u=x^{2}}{d u=2 x d x} \\
& \Rightarrow e^{x^{2}} y=2 \int e^{u} d u=2 e^{x^{2}}+C
\end{aligned}
$$

$$
\Rightarrow \quad y=2+\frac{c}{e^{x^{2}}}, c \in \mathbb{R}
$$

Using the initial condition $y(0)=7$, we get

$$
7=2+\frac{c}{e^{(0)^{2}}}=2+\frac{c}{1} \quad \Rightarrow \quad c=5
$$

Thus, $y=2+\frac{5}{e^{x^{2}}}$

Note: The above $D E$ is also separable! Try solving the problem using the methods of $\$ 15.2$!

Additional Exercise:

Solve the IVP $2 x y^{\prime}+y=2 x^{2}, \quad y(1)=0$.

Solution: Divide by $2 x$ to get

$$
y^{\prime}+\frac{1}{2 x} y=x
$$

which is linear with $P(x)=\frac{1}{2 x}$. We multiply by

$$
\mu(x)=e^{\int \frac{1}{2 x} d x}=e^{\frac{1}{2} \ln (x)}=e^{\ln \left(x^{1 / 2}\right)}=\sqrt{x}
$$

to get

$$
\begin{aligned}
\sqrt{x} y^{\prime}+\frac{1}{2 \sqrt{x}} \cdot y=x \cdot \sqrt{x} & \Rightarrow[\sqrt{x} \cdot y]^{\prime}=x^{3 / 2} \\
& \Rightarrow \sqrt{x} \cdot y=\int x^{3 / 2} d x \\
& \Rightarrow \sqrt{x} \cdot y=\frac{2}{5} x^{5 / 2}+C
\end{aligned}
$$

Using $y(1)=0$, we get

$$
\underbrace{\sqrt{1} \cdot 0}_{=0}=\underbrace{\frac{2}{5}(1)^{5 / 2}}_{=2 / 5}+C \Rightarrow C=-2 / 5
$$

Therefore,

$$
\sqrt{x} \cdot y=\frac{2}{5} x^{5 / 2}-\frac{2}{5} \Rightarrow y=\frac{2}{5} x^{2}-\frac{2}{5 \sqrt{x}}
$$

