A differential equation (DE) is an equation involving an UnKnown function and its derivatives. The equation may contain X, Y, Y', Y'', ..., $Y_{.}^{(n)}$. Typically, our goal is to solve the equation for the function(s) Y.

Ex:
$$y' = x$$
 is a DE of order 1.
"which function(s) y differentiates to $x?$ "
This DE isn't very interesting ... We can solve it
using integration:
 $y' = x \implies y = \int x \, dx = \frac{x^2}{2} + C$

$$Ex: \frac{dy}{dx} = y \quad is \quad a \quad more \quad interesting \quad DE \quad of \quad order \quad 1.$$
"Which function(s) $y \quad differentiates \quad to \quad itself?"$
Solutions to this $DE \quad include \quad y = e^{x}$, but also $y = 0$,
 $y = 2e^{x}$, $y = \pi e^{x}$, ... In general, $y = Ce^{x}$, CER

The complete set of solutions to a DE (including any
arbitrary constants) is called the general solution.
In our examples, we refer to the general solutions
$$y = \frac{\chi^2}{2} + C$$
, $C \in \mathbb{R}$ and $y = Ce^{\chi}$, $C \in \mathbb{R}$
as one-parameter families of solutions (since each
involves exactly one arbitrary constant.)

More examples of first order DEs:

$$\frac{dy}{dx} = y^{2}, \quad \frac{dy}{dx} = xy, \quad y' + 2y = e^{x}$$
(Already much harder to "see" solutions...)

We'll learn how to solve all of the above examples in MATH 118. First order DEs will be our focus, but you'll learn how to solve more complicated DEs in later courses:

AE	CHE	CIVE	ENVE	GEOE	MGTE	ME	MTE
AE 223	MATH 218	CIVE 222	ENVE 223	GE0E 223	MSCI 271	ME 203 ME 303	MTE 202 MTE 204

Ex: Is
$$y = \sqrt{x^2 + 1}$$
 a solution to the DE
 $\frac{dy}{dx} = \frac{x}{y}$?

Solution: Let's compute the left and right hand sides.

Now let's see how we could have arrived at this solution ourselves!