(2) The Integral Test

Weill introduce this test by studying the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots$

Idea: Think of each term $\frac{1}{n^{2}}$ like the area of a $\frac{1}{n^{2}} \times 1$ rectangle.

Thus, the shaded area is exactly $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. Is this area finite? Well... if the area under $y=\frac{1}{x^{2}}$ from 1 to ∞ is finite, then the shaded area must also be finite!

Area under $y=\frac{1}{x^{2}}=\int_{1}^{\infty} \frac{1}{x^{2}} d x$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x \\
& =\lim _{t \rightarrow \infty}\left[\frac{-1}{t}-\frac{-1}{1}\right]=1 \quad \text { (finite!) }
\end{aligned}
$$

Thus, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ must also be finite (i.e., convergent!)

The above argument is the main idea behind...
The Integral Test
Suppose $f(x)$ is continuous, positive, and decreasing on an interval $[k, \infty)$.
(i) If $\int_{k}^{\infty} f(x) d x$ converges, then $\sum_{n=k}^{\infty} f(n)$ converges.
(ii) If $\int_{k}^{\infty} f(x) d x$ diverges, then $\sum_{n=k}^{\infty} f(n)$ diverges.

Ex: Does $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln (n)}$ Converge or diverge?

Solution: Let $f(x)=\frac{1}{x \cdot \ln (x)}$. On $[2, \infty)$.

- f is continuous (since f is a quotient of non-zero continuous functions)
- f is positive (since $x>0$ and $\ln x>0$ on $[2, \infty)$)
- f is decreasing (since x and $\ln x$ are increasing)

Hence, the assumptions of the integral test are satisfied on $[2, \infty)$. We have

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x \cdot \ln x} d x & =\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x \cdot \ln x} d x \\
& =\lim _{t \rightarrow \infty} \int_{\ln 2}^{\ln t} \frac{1}{u} d u \quad \begin{array}{l}
(u=\ln x \\
d u=1 / x d x)
\end{array} \\
& =\lim _{t \rightarrow \infty} \ln |\ln t|-\ln |\ln 2|=\infty
\end{aligned}
$$

Since $\int_{2}^{\infty} \frac{1}{x \cdot \ln x} d x$ diverges, $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$ diverges too.

Ex: Does $\sum_{n=0}^{\infty} \frac{n}{n^{2}+6}$ converge or diverge?

Solution: Let's try the divergence test!

$$
\lim _{n \rightarrow \infty} \frac{n}{n^{2}+6} \stackrel{L H}{=} \lim _{n \rightarrow \infty} \frac{1}{2 n}=0 \quad \Rightarrow \quad \text { No conclusion! }
$$

Hmm... okay, let's try the integral test!
Let $f(x)=\frac{x}{x^{2}+6}$. Note that f is continuous (since f is a rational function and $x^{2}+6 \neq 0$) and positive for $x>0$.

Is f decreasing? Not clear - let's compute $f^{\prime}(x)$!

$$
\begin{aligned}
f(x)=\frac{x}{x^{2}+6} & \Rightarrow f^{\prime}(x)=\frac{\left(x^{2}+6\right) \cdot 1-x \cdot(2 x)}{\left(x^{2}+6\right)^{2}}=\frac{6-x^{2}}{\left(x^{2}+6\right)^{2}} \\
& \Rightarrow f^{\prime}(x)<0 \text { when en } 6-x^{2}<0 \\
& \Rightarrow f^{\prime}(x)<0 \text { when } x>\sqrt{6}
\end{aligned}
$$

$\Rightarrow f$ is decreasing for $x>\sqrt{6} \approx 2.45$
\therefore The assumptions of the integral test are satisfied on $[3, \infty)$.

We have $\int_{3}^{\infty} \frac{x}{x^{2}+6} d x=\infty$ (exercise!) and therefore $\sum_{n=3}^{\infty} \frac{n}{n^{2}+6}$ diverges by the integral test. Consequently,

$$
\sum_{n=0}^{\infty} \frac{n}{n^{2}+6}=\overbrace{\sum_{n=0}^{2} \frac{n}{n^{2}+6}}^{\text {finite }}+\overbrace{\sum_{n=3}^{\infty} \frac{n}{n^{2}+6}}^{\text {divergent }}
$$

is divergent as well.

Remark: When checking the convergence/divergence of
Series, we can look past (i.e., ignore) any finite number of terms. Convergence / divergence is determined by the infinitely many terms at the end of the series!

The integral test can be used to test the convergence of series of the form

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \quad(p=\text { constant }),
$$

which we refer to as a p-series.

We will summarize this as its own test!

The p-Series Test
$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges when $p>1$ and diverges when $p \leq 1$.

Ex: $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots$

This is a convergent p-series, since $p=3>1$.

Ex: $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots$

This is a divergent p-series, since $p=1 / 2 \leq 1$.

