Geometric Series

A geometric series is a series of the form

$$
\sum_{n=0}^{\infty} a \cdot r^{n}=a+a r+a r_{\cdot r}^{2}+a r^{3}+\cdots
$$

where a, r are constants. We refer to r as the common ratio.

Ex: $\sum_{n=0}^{\infty} 2 \cdot\left(\frac{3}{2}\right)^{n}=2+2\left(\frac{3}{2}\right)+2\left(\frac{3}{2}\right)^{2}+\cdots$
This is a geometric series with $a=2, r=3 / 2$.

Ex: $\sum_{n=0}^{\infty} 3\left(\frac{-1}{5}\right)^{n}=3-\frac{3}{5}+\frac{3}{25}-\frac{3}{125}+\cdots$
This is a geometric series with $a=3, r=\frac{-1}{5}$.

Question: When does a geometric series $\sum_{n=0}^{\infty} a r^{n}$ converge? When does it diverge?

Answer: Let's consider a few cases...

Case I: $r=1$
We have $\sum_{n=0}^{\infty} a r^{n}=\underbrace{a+a+a+\cdots}_{\text {sum blows up! }} \Rightarrow$ divergent!
Case II: $r=-1$

Case III: $r \neq \pm 1$

Let's examine the partial sum S_{N}. We have
(1) $\quad S_{N}=a+a r+d r^{2}+\cdots+a r^{N}$
(2) $r \cdot S_{N}=a t+a / r^{2}+\cdots+a K^{N}+a r^{N+1}$
(1)-(2)

$$
\begin{aligned}
& S_{N}-r \cdot S_{N}=a-a r^{N+1} \\
& \quad \Rightarrow(1-r) S_{N}=a\left(1-r^{N+1}\right) \\
& \quad \Rightarrow S_{N}=\frac{a\left(1-r^{N+1}\right)}{1-r}
\end{aligned}
$$

To check convergence, we consider $\lim _{N \rightarrow \infty} S_{N}$:

If $r>1$ or $r<-1$, then r^{N+1} blows up as $N \rightarrow \infty$; but if $-1<r<1$, then $r^{N+1} \longrightarrow 0$ as $N \longrightarrow \infty$. Hence,

$$
\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} \frac{a\left(1-\left(r^{N+1}\right)\right.}{1-r^{\prime}}= \begin{cases}\frac{a}{1-r} & \text { if }|r|<1 \\ D N E & \text { if }|r|>1\end{cases}
$$

The Geometric Series Test
Consider the geometric series $\sum_{n=0}^{\infty} a r^{n}$.
(i) If $|r|<1$, then the series converges. In particular, $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}$
(ii) If $|r| \geqslant 1$, then the series diverges.

Ex: $\sum_{n=0}^{\infty} 2 \cdot\left(\frac{3}{2}\right)^{n}$ is geometric with $a=2, r=3 / 2$.
Since $|r| \geqslant 1$, this series diverges!
Ex: $\sum_{n=0}^{\infty} 3\left(\frac{-1}{5}\right)^{n}$ is geometric with $a=3, r=-1 / 5$.

Since $|r|<1$, this series converges. Specifically,

$$
\sum_{n=0}^{\infty} 3\left(\frac{-1}{5}\right)^{n}=\frac{a}{1-r}=\frac{3}{1-(-1 / 5)}=\frac{3}{6 / 5}=\frac{5}{2}
$$

Example: Let's use geometric series to show that

$$
0.99999 \ldots=1!
$$

Solution: $0.99999 \ldots=0.9+0.09+0.009+\cdots$

$$
\begin{aligned}
& =9\left(\frac{1}{10}\right)+9\left(\frac{1}{10}\right)^{2}+9\left(\frac{1}{10}\right)^{3}+\cdots \\
& =\sum_{n=1}^{\infty} 9\left(\frac{1}{10}\right)^{n}
\end{aligned}
$$

This is a geometric series with $r=\frac{1}{10}$. Since $|r|<1$, the series converges. However, the sum is NOT

$$
\frac{a}{1-r}=\frac{9}{1-\frac{1}{10}}=\frac{9}{9 / 10}=10
$$

The formula $\sum_{n=n_{0}}^{\infty} a \cdot r^{n}=\frac{a}{1-r}$ only works if $n_{0}=0$!

We have a couple options to get around this...
Option 1: Add and subtract terms to create a sum starting at $n_{0}=0$.

$$
\begin{aligned}
\sum_{n=1}^{\infty} 9\left(\frac{1}{10}\right)^{n} & =\sum_{n=1}^{\infty} 9\left(\frac{1}{10}\right)^{n}+9\left(\frac{1}{10}\right)^{0}-9\left(\frac{1}{10}\right)^{0} \\
\begin{array}{l}
\text { Geometric, } \\
a=9, r=\frac{1}{10}
\end{array} & =\sum_{n=0}^{\infty} 9\left(\frac{1}{10}\right)^{n}-9\left(\frac{1}{10}\right)^{0} \\
& =\frac{9}{1-\frac{1}{10}}-9 \\
& =10-9 \\
& =1
\end{aligned}
$$

Option 2: Reindex the sum to start at $n=0$.

$$
\begin{gathered}
\sum_{n=1}^{\infty} q\left(\frac{1}{10}\right)^{n}=\sum_{n=0}^{\infty} 9\left(\frac{1}{10}\right)^{n+1} \text { Make up for it! } \\
\text { Reduced by } 1
\end{gathered}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}\left(\frac{9}{10}\right)\left(\frac{1}{10}\right)^{n} \\
& =\frac{9 / 10}{1-\frac{1}{10}} \\
& =\frac{9 / 10}{9 / 10} \\
& =1
\end{aligned}
$$

Ex: $\sum_{n=2}^{\infty} \frac{3^{n+1}}{2^{2 n}}$ doesn't yet look like a geometric
Series... but let's rewrite it as

$$
\sum_{n=2}^{\infty} \frac{3^{n+1}}{2^{2 n}}=\sum_{n=2}^{\infty} \frac{3 \cdot 3^{n}}{\left(2^{2}\right)^{n}}=\sum_{n=2}^{\infty} 3\left(\frac{3}{4}\right)^{n}
$$

Geometric with $r=3 / 4$
Since $|r|<1$, the series converges. In particular,

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{3^{n+1}}{2^{2 n}} & =\sum_{n=2}^{\infty} 3\left(\frac{3}{4}\right)^{n} \\
& =\sum_{n=0}^{\infty} 3\left(\frac{3}{4}\right)^{n+2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} 3 \cdot\left(\frac{3}{4}\right)^{2} \cdot\left(\frac{3}{4}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{27}{16} \cdot\left(\frac{3}{4}\right)^{n} \\
& =\frac{27 / 16}{1-3 / 4}=\frac{27}{4}
\end{aligned}
$$

§10.10-10.12: Series Convergence Tests
For series that are neither geometric nor telescoping. it can be VERY hard to find a nice expression for the partial sums, S_{N}. As a result, it is often VERY hard to find the exact sum of such a series!
e.g. We will soon be able to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots
$$

converges. But what's the sum?

$$
S_{2}=1.25, \quad S_{3} \approx 1.361, \quad S_{4} \approx 1.424
$$

Perhaps the sum is 1.5? 2? Nope! In 1735, after many prominent mathematicians failed to find the sum, Euler proved that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Proof: Beyond the scope of MATH III!

From this point onward, we wont be interested in finding exact sums, but deciding whether a series converges or diverges. We have many tests for this!
(1) The Divergence Test

Our first test is based on the following observation:
If $\sum_{n=1}^{\infty} a_{n}$ has any hope of converging, the terms a_{n} must become small (i.e, $a_{n} \longrightarrow 0$).

Thus, we get the following:

The Divergence Test
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (or if $\lim _{n \rightarrow \infty} a_{n} D N E$) then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Ex: $\sum_{n=1}^{\infty} \frac{n}{n+1}=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots$

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1} \stackrel{\text { LH }}{=} \lim _{n \rightarrow \infty} \frac{1}{1+0}=1
$$

Since $\lim _{n \rightarrow \infty} \frac{n}{n+1} \neq 0, \quad \sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges by the divergence test.
Ex: $\sum_{n=1}^{\infty} \sec \left(\frac{1}{n}\right)=\sec (1)+\sec \left(\frac{1}{2}\right)+\sec \left(\frac{1}{3}\right)+\cdots$

$$
\lim _{n \rightarrow \infty} \sec \left(\frac{1}{n}\right)=\sec \left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)=\sec (0)=1 \quad(\neq 0)
$$

Thus, $\sum_{n=1}^{\infty} \sec \left(\frac{1}{n}\right)$ diverges by the divergence test.

Ex: $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
In this case we have $\lim _{n \rightarrow \infty} \frac{1}{n \cdot \ln n}=0$. What can we conclude from this? NOTHING!

Important Remark:
The divergence test gives no information if $\lim _{n \rightarrow \infty} a_{n}=0$. The series could converge or diverge!

Ex: Both $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ satisfy $\lim _{n \rightarrow \infty} a_{n}=0$, yet $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges while $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

