(3) The Comparison Tests

Ex: Does $\sum_{n=1}^{\infty} \frac{1}{n^{5}+2}$ converge or diverge?

This would be easy if the "+2" weren't present, since $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ is a convergent $p$-series $(p=5>1)$.

We can, however, say that

$$
\frac{1}{n^{5}+2} \leq \frac{1}{n^{5}} \text { for all } n \text {. }
$$

So the terms of our series $\sum_{n=1}^{\infty} \frac{1}{n^{5}+2}$ are even Smaller than those of the convergent series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$. Thus, $\sum_{n=1}^{\infty} \frac{1}{n^{5}+2}$ must also converge!

The above argument is the idea behind...

The Comparison Test
Suppose that $0 \leq a_{n} \leq b_{n}$ for all $n$ sufficiently large.
(i) If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
(ii) If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.

Note: If $\sum a_{n}$ converges or $\sum b_{n}$ diverges, the comparison test gives no information!

Ex: $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+1}$
We have $0 \leqslant \frac{2^{n}}{3^{n}+1} \leqslant \frac{2^{n}}{3^{n}}=\left(\frac{2}{3}\right)^{n}$ and $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}$
is a convergent geometric series $(|r|=2 / 3<1)$.
Consequently, $\sum_{n=0}^{\infty} \frac{2^{n}}{3^{n}+1}$ converges by comparison.

Ex: $\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)+1}{n^{8}}$
Note that since $0 \leqslant \cos ^{2}(n) \leqslant 1$, we have

$$
\frac{\cos ^{2}(n)+1}{n^{8}} \leq \frac{1+1}{n^{8}}=\frac{2}{n^{8}} .
$$

The series $\sum_{n=1}^{\infty} \frac{2}{n^{8}}=2 \sum_{n=1}^{\infty} \frac{1}{n^{8}}$ converges, as it is 2 times a convergent $p$-series. Therefore, $\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)+1}{n^{8}}$ converges by comparison.

Ex: $\quad \sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+n+1}}{n^{2}}$
We have $\frac{\sqrt{n^{3}+n+1}}{n^{2}} \geqslant \frac{\sqrt{n^{3}}}{n^{2}}=\frac{n^{3 / 2}}{n^{2}}=\frac{1}{\sqrt{n}}$, and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent $p$-series (as $p=\frac{1}{2} \leq 1$ ). Thus, $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+n+1}}{n^{2}}$ also diverges by comparison.

Ex: Does $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ converge or diverge?

Idea: Try removing the "-1" in the denominator. We have $\frac{1}{2^{n}-1} \geqslant \frac{1}{2^{n}}=\left(\frac{1}{2}\right)^{n}$ for all $n$ and
$\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ is a convergent geometric series ...
... but this isn't helpful!

Recall: Being larger than a convergent series or smaller than a divergent series tells us nothing!

We still guess that $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ converges, as $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges and $\frac{1}{2^{n}-1} \approx \frac{1}{2^{n}}$ when $n$ is large.

To make this precise, we'll need a new test!

The Limit Comparison Test (LCT)
Let $\sum a_{n}$ and $\sum b_{n}$ be series of positive terms, and let

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}
$$

If $L$ exists and $0<L<\infty$, then $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.

Back to the example of $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ :
Let's try the LCT with $a_{n}=\frac{1}{2^{n}-1}$ and $b_{n}=\frac{1}{2^{n}}$
We have

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{2^{n}-1}\right)}{\left(\frac{1}{2^{n}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}-1} \\
& =\lim _{n \rightarrow \infty} \frac{\sum^{n}}{2^{n}\left(1-\frac{1}{2^{n}}\right)}=\frac{1}{1-0}=1 .
\end{aligned}
$$

Since $L$ exists and $0<L<\infty$, the $L C T$ implies that $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ either both converge or both diverge. Thus, since $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is a convergent geometric series $(|r|=1 / 2), \sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ must converge too!

Ex: Does $\sum_{n=1}^{\infty} \frac{n}{n^{2}+6}$ converge or diverge?


Solution: Let's try the LCT with $a_{n}=\frac{n}{n+2}$ and

$$
b_{n}=\frac{n}{n^{2}}=\frac{1}{n} .
$$

Tip: Use the most dominant term
in the numerator and denominator to define $b_{n}$ !
We have

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\left(\frac{n}{n^{2}+6}\right)}{\left(\frac{1}{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+6} \\
& \stackrel{L H}{=} \lim _{n \rightarrow \infty} \frac{2 n}{2 n}=1 \in(0, \infty) .
\end{aligned}
$$

By the LCT, since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (it's the harmonic series!), $\sum_{n=1}^{\infty} \frac{n}{n^{2}+6}$ must also diverge.

Ex: Does $\sum_{n=1}^{\infty} \frac{\sqrt{n^{6}+4}}{2 n^{5}+1}$ converge or diverge?
Solution: Use the LCT with $a_{n}=\frac{\sqrt{n^{6}+4}}{2 n^{5}+1}$ and
$b_{n}=\frac{\sqrt{n^{6}}}{n^{5}}=\frac{n^{3}}{n^{5}}=\frac{1}{n^{2}}$. We have

$$
\begin{aligned}
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\left(\frac{\sqrt{n^{6}+4}}{2 n^{5}+1}\right)}{\left(\frac{1}{n^{2}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2} \sqrt{n^{6}+4}}{2 n^{5}+1} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2} \sqrt{n^{6}} \sqrt{1+4 / n^{6}}}{2 n^{5}+1} \\
& =\lim _{n \rightarrow \infty} \frac{n^{5} \sqrt{1+4 / n^{6}}}{n^{5}\left(2+1 / n^{5}\right)}=\frac{\sqrt{1+0}}{2+0}=\frac{1}{2} \in(0, \infty) .
\end{aligned}
$$

Thus, by the LCT, since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent p-series $\quad(p=2>1), \sum_{n=1}^{\infty} \frac{\sqrt{n^{6}+4}}{2 n^{5}+1}$ must converge too!

